Utilizing Machine Learning for Context-Aware Digital Biomarker of Stress in Older Adults
Abstract
:1. Introduction
- We explore the effectiveness of machine learning models to find the correlation of digital biomarkers of stress with experimental data from 40 healthy older adults.
- We propose a ground truth labeling scheme based on cortisol concentration. We labeled stress into three distinct classes: No Stress, Low Stress, and High Stress.
- We investigate the efficacy of digital biomarkers from three signal streams (EDA, Blood Volume Pulse (BVP), and Interbeat Interval (IBI)) for stress classification.
- We also validate that the combinations of features from different sensors, also known as sensor fusion, enhances the accuracy of the machine learning classifier when compared to the case of a single-signal stream.
- We also propose a CNN-based feature encoder that automates the feature selection process and selects the best possible inputs for the FCN.
- We finally report that there's an increase in accuracy and F-1 score for the CNN-based feature extraction compared to the stress detection method with Random Forest on our dataset.
2. Related Works
3. Data Collection, Preprocessing, and Labeling
3.1. Data Collection
3.2. Stress Protocol: Trier Social Stress Test
3.3. Ground Truth Estimation from Cortisol Concentration
3.4. Distribution of Labeled Dataset and Incorporating Context
4. Context-Aware Stress Detection with Supervised Machine Learning
4.1. Statistical Feature Extraction from Signal Stream
4.2. Machine Learning Model
- Bootstrap Sampling:The dataset is broken into subsets to send randomly in individual trees.
- Decision Trees: For each sample and feature subset, a decision tree is constructed. The splitting is based on a preset criterion. For the classification problem, we used logarithmic Gini impurity, which is shown in Equation (2):Here, D is the dataset at that tree node, C is the number of classes iterated by i, and is the probability of class i in node D.
- Ensembling and Voting: Based on the criterion, the required number of trees is constructed. The loss is calculated based on logarithmic entropy, as shown in Equation (3). These ensemble trees will provide a prediction of their own, and out of it, the majority-voted class will be the final prediction. The equation for the prediction of individual trees is shown in Equation (4), and the final prediction is shown in Equation (5). Here, denotes the prediction of a tree, is the indicator function, and is the leaf node to which x is assigned in tree i.
4.3. Model Training and Testing
4.4. Result Analysis
5. Context-Aware Stress Detection with CNN-Based Automatic Feature Encoder
5.1. Automatic Feature Extraction with Feature Encoder
5.2. Fully Connected Neural Network
5.3. Result Analysis
6. Results Comparison and Discussion
7. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Alzheimer’s Disease |
ANN | Artificial Neural Network |
AT | Air Temperature |
BVP | Blood Volume Pressure |
CNN | Convolutional Neural Network |
DCNN | Deep Convolutional Neural Network |
ECG | Electrocardiogram |
EDA | Electrodermal Activity |
EEG | Electroencephalography |
EMG | Electromyography |
FLD | Fisher’s Linear Discriminant |
HR | Heart Rate |
HUM | Humidity |
IBI | Interbeat Interval |
IMU | Inertial Measurement Unit |
LOSO | Leave One Sample Out |
PPG | Photoplethysmography |
ReLU | Rectified Linear Unit |
RF | Random Forest |
SC | Step Counter |
SCL | Skin Conductance Level |
ST | Skin Temperature |
TSST | Trier Social Stress Test |
zEMG | Zygomaticus Electromyography |
References
- Harms, M.B. Stress and Exploitative Decision-Making. J. Neurosci. 2017, 37, 10035–10037. [Google Scholar] [CrossRef] [PubMed]
- Giannakakis, G.; Grigoriadis, D.; Giannakaki, K.; Simantiraki, O.; Roniotis, A.; Tsiknakis, M. Review on Psychological Stress Detection Using Biosignals. IEEE Trans. Affect. Comput. 2022, 13, 440–460. [Google Scholar] [CrossRef]
- Kourtis, L.C.; Regele, O.B.; Wright, J.M.; Jones, G.B. Digital biomarkers for Alzheimer’s disease: The mobile/wearable devices opportunity. NPJ Digit. Med. 2019, 2, 9. [Google Scholar] [CrossRef]
- Ávila Villanueva, M.; Gómez-Ramírez, J.; Maestú, F.; Venero, C.; Ávila, J.; Fernández-Blázquez, M.A. The Role of Chronic Stress as a Trigger for the Alzheimer Disease Continuum. Front. Aging Neurosci. 2020, 12, 561504. [Google Scholar] [CrossRef] [PubMed]
- Opoku Asare, K.; Moshe, I.; Terhorst, Y.; Vega, J.; Hosio, S.; Baumeister, H.; Pulkki-Råback, L.; Ferreira, D. Mood ratings and digital biomarkers from smartphone and wearable data differentiates and predicts depression status: A longitudinal data analysis. Pervasive Mob. Comput. 2022, 83, 101621. [Google Scholar] [CrossRef]
- Saylam, B.; Incel, O.D. Quantifying Digital Biomarkers for Well-Being: Stress, Anxiety, Positive and Negative Affect via Wearable Devices and Their Time-Based Predictions. Sensors 2023, 23, 8987. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, W.; Scargill, T.; Rothman, M.; Dunn, J.; Gorlatova, M. Digital biomarkers reflect stress reduction after augmented reality guided meditation: A feasibility study. In DigiBiom ’22, Proceedings of the 2022 Workshop on Emerging Devices for Digital Biomarkers, Oregon, Portland, 1 July 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 29–34. [Google Scholar]
- Giannakakis, G.; Pediaditis, M.; Manousos, D.; Kazantzaki, E.; Chiarugi, F.; Simos, P.; Marias, K.; Tsiknakis, M. Stress and anxiety detection using facial cues from videos. Biomed. Signal Process. Control 2017, 31, 89–101. [Google Scholar] [CrossRef]
- Onim, M.S.H.; Rhodus, E.; Thapliyal, H. A Review of Context-Aware Machine Learning for Stress Detection. IEEE Consum. Electron. Mag. 2023, 1–6. [Google Scholar] [CrossRef]
- Payne, J.D.; Nadel, L. Sleep, dreams, and memory consolidation: The role of the stress hormone cortisol. Learn. Mem. 2004, 11, 671–678. [Google Scholar] [CrossRef]
- Jafari, A.; Ganesan, A.; Thalisetty, C.S.K.; Sivasubramanian, V.; Oates, T.; Mohsenin, T. SensorNet: A Scalable and Low-Power Deep Convolutional Neural Network for Multimodal Data Classification. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 274–287. [Google Scholar] [CrossRef]
- Aristizabal, S.; Byun, K.; Wood, N.; Mullan, A.F.; Porter, P.M.; Campanella, C.; Jamrozik, A.; Nenadic, I.Z.; Bauer, B.A. The Feasibility of Wearable and Self-Report Stress Detection Measures in a Semi-Controlled Lab Environment. IEEE Access 2021, 9, 102053–102068. [Google Scholar] [CrossRef]
- Hassan, M.M.; Alam, M.G.R.; Uddin, M.Z.; Huda, S.; Almogren, A.; Fortino, G. Human emotion recognition using deep belief network architecture. Inf. Fusion 2019, 51, 10–18. [Google Scholar] [CrossRef]
- Jung, T.P.; Sejnowski, T.J. Utilizing Deep Learning Towards Multi-Modal Bio-Sensing and Vision-Based Affective Computing. IEEE Trans. Affect. Comput. 2022, 13, 96–107. [Google Scholar]
- Belk, M.; Portugal, D.; Germanakos, P.; Quintas, J.; Christodoulou, E.; Samaras, G. A Computer Mouse for Stress Identification of Older Adults at Work. In Proceedings of the User Modeling, Adaptation, and Personalization, Halifax, NS, Canada, 13–17 July 2016. [Google Scholar]
- Delmastro, F.; Di Martino, F.; Dolciotti, C. Cognitive Training and Stress Detection in MCI Frail Older People Through Wearable Sensors and Machine Learning. IEEE Access 2020, 8, 65573–65590. [Google Scholar] [CrossRef]
- Cheong, S.M.; Bautista, C.; Ortiz, L. Sensing physiological change and mental stress in older adults from hot weather. IEEE Access 2020, 8, 70171–70181. [Google Scholar] [CrossRef]
- Nath, R.K.; Thapliyal, H. Smart Wristband-Based Stress Detection Framework for Older Adults With Cortisol as Stress Biomarker. IEEE Trans. Consum. Electron. 2021, 67, 30–39. [Google Scholar] [CrossRef]
- Ferreira, E.; Ferreira, D.; Kim, S.; Siirtola, P.; Röning, J.; Forlizzi, J.F.; Dey, A.K. Assessing real-time cognitive load based on psycho-physiological measures for younger and older adults. In Proceedings of the 2014 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), Orlando, FL, USA, 9–12 December 2014; pp. 39–48. [Google Scholar]
- Kikhia, B.; Stavropoulos, T.G.; Andreadis, S.; Karvonen, N.; Kompatsiaris, I.; Sävenstedt, S.; Pijl, M.; Melander, C. Utilizing a wristband sensor to measure the stress level for people with dementia. Sensors 2016, 16, 1989. [Google Scholar] [CrossRef]
- Adeli, K.; Higgins, V.; Nieuwesteeg, M.; Raizman, J.E.; Chen, Y.; Wong, S.L.; Blais, D. Biochemical Marker Reference Values across Pediatric, Adult, and Geriatric Ages: Establishment of Robust Pediatric and Adult Reference Intervals on the Basis of the Canadian Health Measures Survey. Clin. Chem. 2015, 61, 1049–1062. [Google Scholar] [CrossRef]
- Deng, L.; Yu, D. Deep Learning: Methods and Applications. Found. Trends Signal Process. 2014, 7, 197–387. [Google Scholar] [CrossRef]
- Tabar, Y.R.; Halici, U. A novel deep learning approach for classification of EEG motor imagery signals. J. Neural Eng. 2016, 14, 016003. [Google Scholar] [CrossRef]
- Zhai, X.; Jelfs, B.; Chan, R.H.M.; Tin, C. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network. Front. Neurosci. 2017, 11, 266372. [Google Scholar] [CrossRef]
- Geng, W.; Du, Y.; Jin, W.; Wei, W.; Hu, Y.; Li, J. Gesture recognition by instantaneous surface EMG images. Sci. Rep. 2016, 6, 36571. [Google Scholar] [CrossRef]
- Ruiz, J.T.; Pérez, J.D.B.; Blázquez, J.R.B. Arrhythmia Detection Using Convolutional Neural Models. In Proceedings of the Distributed Computing and Artificial Intelligence, 15th International Conference, Toledo, Spain, 20–22 June 2018; Springer International Publishing: New York, NY, USA; pp. 120–127. [Google Scholar]
- Xiang, Y.; Lin, Z.; Meng, J. Automatic QRS complex detection using two-level convolutional neural network. Biomed. Eng. Online 2018, 17, 13. [Google Scholar] [CrossRef]
- Labati, R.D.; Muñoz, E.; Piuri, V.; Sassi, R.; Scotti, F. Deep-ECG: Convolutional Neural Networks for ECG biometric recognition. Pattern Recognit. Lett. 2019, 126, 78–85. [Google Scholar] [CrossRef]
- Birkett, M.A. The Trier Social Stress Test Protocol for Inducing Psychological Stress. J. Vis. Exp. 2011, 56, e3238. [Google Scholar]
- Onim, M.S.H.; Thapliyal, H. CASD-OA: Context-Aware Stress Detection for Older Adults with Machine Learning and Cortisol Biomarker. In GLSVLSI ’23, Proceedings of the Great Lakes Symposium on VLSI 2023, Knoxville, TN, USA, 5–7 June 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 103–108. [Google Scholar]
- Setz, C.; Arnrich, B.; Schumm, J.; La Marca, R.; Tröster, G.; Ehlert, U. Discriminating stress from cognitive load using a wearable EDA device. IEEE J. Biomed. Health Inform. 2009, 14, 410–417. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Kulkarni, S.; O’Farrell, I.; Erasi, M.; Kochar, M. Stress and hypertension. WMJ Off. Publ. State Med Soc. Wis. 1998, 97, 34. [Google Scholar]
- Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
Authors & Year | Signals | Feature Extraction | Base Model | Used Context | Stress Ground Truth |
---|---|---|---|---|---|
Ferreira et al. [19] 2014 | ECG, EEG, EDA | Manual | Quadratic Discriminant Analysis | ✗ | Questionnaire |
Kikhia et al. [20] 2016 | EDA | Manual | Thresholding | ✗ | Annotation by clinical Staff |
Belk et al. [15] 2016 | EDA, IMU, HR, ST, Grip Force | Manual | Bayesian Probability | ✗ | Annotation by external observer |
Delmastro et al. [16] 2020 | ECG, EDA | Manual | Support Vector Machine,K-NN, Decision Tree | ✗ | Predetermined annotation |
Cheong et al. [17] 2020 | ST, HR, SC, HUM, AT | Manual | Statistical Correlation | ✗ | Questionnaire |
Nath et al. [18] 2021 | EDA, BVP, IBI, ST | Manual | Decision Tree | ✗ | Cortisol Concentration |
Proposed Work 2024 | EDA, BVP, IBI, ST | Manual | Random Forest | ✓ | Cortisol Concentration |
Automatic | 1-D CNN | ✓ |
Physiological Signals | Extracted Features | Statistical Measures |
---|---|---|
EDA | Amplitude: | Mean, Median, Maximum, Minimum Standard Deviation, Root Mean Square |
Width: | Median, Standard Deviation, Root Mean Square | |
Prominence: | Minimum | |
BVP | Amplitude: | Mean, Standard Deviation, Root Mean Square |
Width: | Median | |
Prominence: | Mean, Median, Maximum, Minimum, No of Peaks, Standard Deviation, Root Mean Square | |
IBI | Amplitude: | Maximum, Standard Deviation |
ST | Amplitude: | Maximum, Standard Deviation |
Parameter | Value | |
---|---|---|
No. of Estimators | - | 40 |
Criterion | - | Entropy |
Minimum Samples Split | - | 2 |
Maximum Depth | - | Till (minimum sample Split − 1) |
Minimum Samples Leaf | - | 1 |
Maximum Feature | - | Auto |
Bootstrap | - | True |
Random State | - | 4 |
Criteria | Sensor List | EDA | PPG | PPG | EDA, PPG | EDA, PPG | EDA, PPG, ST |
---|---|---|---|---|---|---|---|
Signal List | EDA | BVP | IBI | EDA, BVP | EDA, BVP, IBI | EDA, BVP, IBI, ST | |
Features | Total | 18 | 17 | 6 | 35 | 41 | 47 |
Selected | 11 | 11 | 2 | 22 | 24 | 27 | |
Without Context | Macro F-1 Score | 0.723 | 0.711 | 0.713 | 0.712 | 0.734 | 0.734 |
Accuracy (%) | 72.95 | 73.40 | 72.77 | 72.51 | 72.44 | 72.44 | |
With Context | Macro F-1 Score | 0.922 | 0.907 | 0.910 | 0.909 | 0.937 | 0.943 |
Accuracy (%) | 93.13 | 93.69 | 92.89 | 92.56 | 92.48 | 91.01 |
Parameter | Value | |
---|---|---|
Base Architecture | - | CNN |
Classes | - | 3 |
Number of Epochs Trained | - | 25 |
Hidden Layer Activation | - | Rectified Linear Unit (ReLU) |
Output Layer Activation | - | Softmax |
Optimizer | - | Adam |
Loss Function | - | Categorical Crossentropy |
Model | Layer Name | Layer Info | Number of Parameters |
---|---|---|---|
Feature Encoder | Conv-1D | Filter = 32 | 128 |
Conv-1D | Filter = 64 | 6208 | |
Maxpool-1D | – | 0 | |
Conv-1D | Filter = 128 | 24,704 | |
Maxpool-1D | – | 0 | |
Conv-1D | Filter = 256 | 98,560 | |
Maxpool-1D | – | 0 | |
Flatten | – | 0 | |
Dense | Node = 2048 | 3,147,776 | |
Dropout | Rate = 30% | 0 | |
Dense | Node = 512 | 1,049,088 | |
Dropout | Rate = 30% | 0 | |
Fully Connected NN | Dense | Node = 128 | 65,664 |
Dense | Node = 32 | 4128 | |
Dense | Node = 8 | 264 | |
Dense | Node = 3 | 27 | |
Total Parameters | 4,396,547 |
Fold Sequence | Avg Accuracy | F-1 Score |
---|---|---|
Fold-1 | 99.8685% (highest) | 0.9888 |
Fold-2 | 86.9696% (lowest) | 0.9379 (lowest) |
Fold-3 | 99.2796% | 0.9928 (highest) |
Fold-4 | 99.3216% | 0.9752 |
Fold-5 | 98.3232% | 0.9778 |
Average | 96.7525% | 0.9745 |
Ground | Predicted Class | ||
---|---|---|---|
Truth | No Stress | Low Stress | High Stress |
No Stress | 83.8 | 2.6 | 3 |
Low Stress | 5.6 | 243.8 | 2.2 |
High Stress | 2.6 | 2.8 | 58 |
Criteria | Sensor List | EDA | EDA, PPG | EDA, PPG | EDA, PPG, ST |
---|---|---|---|---|---|
Signal List | EDA | EDA, BVP | EDA, BVP, IBI | EDA, BVP, IBI, ST | |
Without Context | Macro F-1 Score | 0.6992 | 0.7161 | 0.7492 | 0.7552 |
Accuracy (%) | 80.0078 | 81.4290 | 83.2227 | 83.7797 | |
With Context | Macro F-1 Score | 0.9022 | 0.9240 | 0.9667 | 0.9745 |
Accuracy (%) | 92.3965 | 94.0378 | 96.1092 | 96.7525 |
Criteria | Without Context | With Context | |||
---|---|---|---|---|---|
Sensor List |
Signal List |
Manual Feature ML |
CNN-Based ML |
Manual Feature ML |
CNN-Based ML |
EDA, PPG, ST | EDA, BVP, IBI, ST | F-1: 0.73 ACC: 72.44 | F-1: 0.75 ACC: 83.77 | F-1: 0.94 ACC: 92.48 | F-1: 0.97 ACC: 96.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onim, M.S.H.; Thapliyal, H.; Rhodus, E.K. Utilizing Machine Learning for Context-Aware Digital Biomarker of Stress in Older Adults. Information 2024, 15, 274. https://doi.org/10.3390/info15050274
Onim MSH, Thapliyal H, Rhodus EK. Utilizing Machine Learning for Context-Aware Digital Biomarker of Stress in Older Adults. Information. 2024; 15(5):274. https://doi.org/10.3390/info15050274
Chicago/Turabian StyleOnim, Md Saif Hassan, Himanshu Thapliyal, and Elizabeth K. Rhodus. 2024. "Utilizing Machine Learning for Context-Aware Digital Biomarker of Stress in Older Adults" Information 15, no. 5: 274. https://doi.org/10.3390/info15050274
APA StyleOnim, M. S. H., Thapliyal, H., & Rhodus, E. K. (2024). Utilizing Machine Learning for Context-Aware Digital Biomarker of Stress in Older Adults. Information, 15(5), 274. https://doi.org/10.3390/info15050274