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Abstract: Conventional few-shot learning (FSL) mainly focuses on knowledge transfer from a single
source dataset to a recognition scenario with only a few training samples available but still similar to
the source domain. In this paper, we consider a more practical FSL setting where multiple semantically
different datasets are available to address a wide range of FSL tasks, especially for some recognition
scenarios beyond natural images, such as remote sensing and medical imagery. It can be referred to
as multi-source cross-domain FSL. To tackle the problem, we propose a two-stage learning scheme,
termed learning and adapting multi-source representations (LAMR). In the first stage, we propose a
multi-head network to obtain efficient multi-domain representations, where all source domains share
the same backbone except for the last parallel projection layers for domain specialization. We train the
representations in a multi-task setting where each in-domain classification task is taken by a cosine
classifier. In the second stage, considering that instance discrimination and class discrimination are
crucial for robust recognition, we propose two contrastive objectives for adapting the pre-trained
representations to be task-specialized on the few-shot data. Careful ablation studies verify that
LAMR significantly improves representation transferability, showing consistent performance boosts.
We also extend LAMR to single-source FSL by introducing a dataset-splitting strategy that equally
splits one source dataset into sub-domains. The empirical results show that LAMR can achieve
SOTA performance on the BSCD-FSL benchmark and competitive performance on mini-ImageNet,
highlighting its versatility and effectiveness for FSL of both natural and specific imaging.

Keywords: few-shot learning; image recognition; transfer learning; domain adaptation

1. Introduction

Recent years have witnessed significant progress in computer vision applications
thanks to the development of deep learning [1,2] with large-scale annotated data [3].
However, when the deployed domain is specific, the training data may be limited or the
labeling cost can be particularly extreme as it must be done by an expert, for example, a
doctor in the medical area. To relax the demanding data requirements in deep learning,
the emerging topic of few-shot learning (FSL) [4] has received considerable attention and
developed as a fundamental research problem in the past few years. With only a few
annotated samples per class available, few-shot image recognition aims to efficiently build
a classification model for recognizing new classes in an unseen domain.

Directly training a deep recognition model [2] from scratch with only scarce data
would intuitively lead to over-fitting collapse [5]. So recent few-shot image recognition is
typically addressed in an inductive transfer learning paradigm [6], which aims to improve
the learning with limited few-shot data (typically denoted as support set S) using the
knowledge in a base set Db containing abundant samples. Conventionally, the learning
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process is divided into two stages: (1) learning a transferable model from the base dataset
Db, and (2) adapting the pre-trained model to the unseen target few-shot task with S .

Prevailing approaches [7–10] to learning in the first stage are typically based on
meta-learning [11]. It learns a meta-model by maximizing the generalization accuracy
across a variety of few-shot tasks drawn from the base set, with the goal of transferring
meta-knowledge to improve generalization on the unseen domain. The meta-model is
shown to hold the promise of fast adaptation [8] and avoiding over-fitting [7]. Although
meta-learning provides an elegant solution to FSL, recent studies also indicate that the
sophisticated meta-learning algorithms may be unnecessary [12–16]. Instead, the simple
representation learning based on supervised cross-entropy loss on the entire dataset could
transfer well, and achieve even better performance. Those findings significantly underpin
that the essential role of few-shot transfer mainly relies on feature reuse [17] instead of
fast adaptation. Other techniques, including self-supervised learning [18] and knowledge
distillation [14], have also effectively improved feature transferability. Besides directly
leveraging the frozen representation for target FSL, some efforts have also explored the
improvements based on task-specific adaptation [19], indicating that proper adaptation
may still be necessary [20], especially for cross-domain FSL [21].

However, most of those existing FSL protocols and methods limit their source domains
to using only one dataset for pre-training, but many datasets from semantically different
domains are indeed available. Besides, a recent benchmark called meta-dataset [22] suggests
using multiple source datasets to deal with FSL, but its target datasets for evaluations are
still just natural images. In practice, the scenarios for FSL are more likely to come from the
specific recognition domains, such as remote sensing [23] and medical imagery [24–26]. In
this paper, we aim to address the practical few-shot setting, referred to as multi-source cross-
domain few-shot learning. To promote FSL with knowledge from multiple source domains,
some methods [27–29] are devoted to learning universal representations but still lack effective
adaptations. Unlike most prior methods that focus on either representation learning or
adaptation on the few-shot data, we address the problem by exploring both aspects: how
to effectively learn different generalizable features from multiple source domains and how
to use few-shot data to make an efficient adaptation (or deployment) for a wide range of
cross-domain FSL scenarios. Therefore, we propose a novel two-stage learning scheme (as
illustrated in Figure 1), namely learning and adapting representations (LAMR).

𝐹𝐹1 𝐹𝐹2 𝐹𝐹3

Learning Multi-source Representations Adapting Representations for Few-shot Tasks 

Few-shot Adaptation

𝐹𝐹1 𝐹𝐹2 𝐹𝐹3

Domain1 Domain2 Domain3

Support SetsAbundant Data from Multiple Sources

Query

Prediction 

F(x)

CropHighway Forest Industrial

Figure 1. Illustration of our approach. First, we pre-train efficient multi-domain feature represen-
tations on the abundant data from semantically different domains. Then, given a few-shot task
(such as remote sensing scene recognition), we perform adaptation on the pre-trained multi-domain
representations by optimizing domain-specific parameters with few-shot data (the support set).

Concretely, in the first stage, we propose a parameter-efficient multi-head framework
for training multi-source representations. Instead of learning a single domain-agnostic em-
bedding, we aim to represent diverse features by constructing separate sub-spaces, each of
which corresponds to a specific domain. This is achieved by optimizing multiple in-domain
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classification tasks on the multi-head representation spaces with a shared backbone. In this
way, our model can preserve information with regard to each domain in a compact network.
The representations can then be universal enough to further support generalization to
vastly different FSL tasks.

The pre-trained representations are expected to generalize well to the unseen task
that is similar to the source domain. However, this is still a challenge if a large domain
shift exists between the source and target data, where pre-trained features are less trans-
ferable and proper task-specific adaptation on the limited target data becomes necessary.
Besides, we consider that instance discrimination and class discrimination are two crucial
capabilities for a robust recognition model. To impose the two objectives, we accordingly
propose two feature contrastive losses for improving model discrimination towards unseen
classes on the few-shot training data. This enables effective task-specific adaptation as the
adapted features can be more task-relevant to the target classes. Empirical results show that
the adaptation can yield significant performance boosts; the recognition scenario suffers
extreme domain shifts, such as remote sensing and medical domains.

In summary, our contributions are as follows:

• We develop a novel two-stage learning scheme, namely learning and adapting rep-
resentations (LAMR), for vastly addressing cross-domain few-shot learning tasks,
especially for recognition scenarios beyond natural images, including remote sensing
and medical imagery.

• To achieve multi-source representations, we propose a parameter-efficient multi-
head framework, which can further support simple but effective transfer to different
downstream FSL tasks.

• To achieve task-specific transfer, we propose a few-shot adaptation method for improv-
ing model discrimination towards unseen classes by imposing instance discrimination
and class discrimination at the feature level.

• LAMR can achieve state-of-the-art results on cross-domain FSL benchmarks in the
multi-source setting.

Compared to the preliminary version of the conference paper [30], this work addition-
ally presents the following novel contents:

• We extend LAMR to single-source FSL by introducing dataset-splitting strategies that
equally split one source dataset into sub-domains. The empirical results show that
applying simple “random splitting” can improve conventional cosine-similarity-based
classifiers in FSL with a fixed single-source data budget. LAMR also achieves superior
performance on (single-source) BSCD-FSL benchmark and competitive results on
mini-ImageNet.

• We conduct more careful ablation studies, which verify that the performance gains
come from not only the good transferability of the proposed multi-source representa-
tions but also each component in the objectives of few-shot adaptation.

• Discussions and comparisons of more related works, especially for few-shot learning
with multi-source domains, are included.

• More feature visualizations and analyses are included. Limitations and future direc-
tions are discussed.

The rest of this paper is organized as follows. In Section 2, we briefly review the related
works. In Section 3, we formulate the task and present baseline methods. In Section 4,
we elaborate on our proposed method. In Sections 5 and 6, we describe the benchmark
datasets, implementation details, experiment results, and ablation studies. In Section 7, we
draw conclusions, discuss limitations and provide some promising future directions.

2. Related Works
2.1. Few-Shot Learning

Meta-learning [11] is a pioneering approach to addressing few-shot learning [7–10].
The corresponding training regime is namely episodic training, which focuses on mimicking
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a target few-shot task style, i.e., “N-way K-shot task”. Concretely, this approach trains
a meta-model on various “N-way K-shot” tasks (or episodes) sampled from the source
dataset, with the goal of steering meta-knowledge that can generalize well in the unseen
domain. For instance, MAML [7] optimizes a model-agnostic meta-initialization that can
enable fast adaptation to a novel FSL task with only a few fine-tuning steps. Meta-LSTM [8]
suggests using an LSTM module as the meta-learner to provide the task-specific update
rule for the optimization. Prototypical networks [9] and Matching Networks [10] seek to
learn a good metric space capable of directly separating new, unknown classes. Those
methods are proven to avoid over-fitting and hold the promise of fast adaptation, as the
meta-model is assumed to be the optimal initialization for the different unseen few-shot
tasks. Although meta-learning is an elegant solution to the problem of few-shot learning,
recent research indicates that it may not be necessary to use complex algorithms. Instead,
the simple representation learning [12–16,21,31] based on supervised cross-entropy loss on
the entire dataset could transfer well and achieve competitive or even better performance.
Those findings significantly highlight that the essential role of few-shot transfer mainly
relies on source-feature reuse [17] instead of fast adaptation. Furthermore, to make the
feature representations more generalizable and transferable, other techniques, including
self-supervised learning [18], knowledge distillation [14,32], saliency-guided attention [33],
and contrastive learning [34] have also been proved to effectively improve the performance
and enhance model discrimination on the novel categories.

The methods discussed above assume only one source dataset is used for pre-training,
but many datasets collected from semantically different domains can be available in the
machine learning community. To promote few-shot learning with knowledge from multiple
domains, learning Universal Representations [21,27–29] and feature selection [21,27,28] are
explored in the literature. Concretely, the simplest way [21] to achieve such representations
is to train separate feature extractors for each available domain. SUR [27] and URT [28]
obtain multiple representations in a parameter-efficient backbone [35] where domain-
specific FiLM [36] layers are inserted after each batch normalization layer. For addressing
given few-shot tasks, Guo et al. [21] propose a greedy selection algorithm that iteratively
searches for the best subset of features on all layers of all pre-trained models, and the
selected features in the set are concatenated for training a linear classifier. SUR [27] proposes
a feature selection procedure to linearly combine the domain-specific representations with
different weights. URT [28] further trains a universal representation transformer layer
to weigh the features. Different from [21,27,28] use multiple representations, URL [29]
proposes distilling knowledge from the separate multi-domain networks into a single
feature extractor.

Aside from directly using representations trained from one domain or multiple do-
mains, some work has also looked into how to make effective few-shot task adaptations
with limited data [19,20,37–40]. Concretely, TADAM [20] applies a task embedding network
block, which takes the mean vector of few-shot features as input and produces element-wise
scaling and shift vectors to adjust each batch normalization layer, thus making the feature
extractor task-specific. FN [38] directly fine-tunes the scaling and shifting parameters of
batch normalization on few-shot data to adapt the feature extractor. ConFeSS [39] proposes
to learn a task-specific feature masking module that can produce refined features for fine-
tuning a target classifier and the feature extractor. Associative alignment [19] first selects a
set of task-relevant categories from source data and conducts feature alignment between
the selected source data and target data for network adaptation. PDA [41] proposes a
proxy-based domain adaptation scheme to optimize the pre-trained representation and a
novel few-shot classifier simultaneously. Instead of adjusting the pre-trained network, some
methods [37,40] choose to incrementally learn some parametric modules for adaptation
to novel tasks and leave the pre-trained parameters frozen. For example, Implanting [37]
adds and learns new convolutional filters within the existing CNN layers. TSA [40] at-
taches residual adapters to each module of a pre-trained model and optimizes them from
scratch on the few-shot data. Unlike these methods that perform adaptation by leveraging
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auxiliary parametric modules [20,37,39,40] or additional data [19], our method provides a
more effective adaptation scheme that directly optimizes the pre-trained representations
with the limited target data.

Except for the widely investigated few-shot learning for regular image recognition,
recent studies have also focused on other tasks, such as scene recognition [42], multi-label
classification [43] and multi-modal learning [44]. In this paper, we aim at a practical FSL
setting, namely multi-source cross-domain few-shot learning. Different from most existing
methods that focus on either representation learning or adaptation on the few-shot data,
we address the problem by focusing on both aspects: how to design a good multi-source
representation network and how to adapt the representations to address cross-domain FSL
in a wide range of scenarios.

2.2. Domain Adaptation

Domain adaptation (DA) typically aims at transferring knowledge from a data-rich
source domain to an unlabeled target domain. Most existing DA approaches intend to learn
invariant feature representations across two domains by distribution alignment [45,46] or
adversarial learning [47]. Besides the single-source DA, our method is more relevant to the
multi-source DA [48,49], which also intends to leverage knowledge from multiple source
domains. To learn domain-invariant feature representations, these methods typically
align domains pairwise based on a domain-shared feature extractor, where the learning
framework is also similar to ours. Concretely, Xu et al. [49] leverages multiple domain
discriminators to reduce the domain shift by adversarial learning, while [48] matches
moments of feature distributions across all pairs of source and target domains. However,
the addressed task in this paper intrinsically differs in both single-source and multi-source
DA, where the source and target domains have the same classes (or label space). In contrast,
we tackle the problem of few-shot learning, where the classes in the source and target
domains do not overlap.

2.3. Contrastive Learning

Our few-shot adaptation strategy is highly inspired by the self-supervised contrastive
learning by imposing instance discrimination [50–53] and supervised contrastive learn-
ing [54]. All those methods aim to learn a good universal representation from a large-scale
dataset, thus boosting transferability on a variety of computer vision tasks. A basic idea
of these methods is to make contrasts between positive and negative pairs. For instance,
NCE [50] proposes a non-parametric softmax classifier that is made up of instance features
to achieve instance discrimination. MoCo [52] and SimCLR [53] typically construct different
views from the same instance via a variety of data augmentations. SimCLR [53] learns the
representation by minimizing the distance of the features from these views and maximizing
the distance of the features from other instances. MoCo [52] minimizes contrastive loss
based on a dynamic feature dictionary and a momentum encoder. Supervised contrastive
learning [54] minimizes the distance of the features of the same category samples and
maximizes the distance of the features from different categories. Unlike these methods that
make use of contrastive learning for large-scale pre-training, we propose two contrastive
objectives to impose both instance discrimination and class discrimination on the few-shot
data for adapting pre-trained feature representations to be task-specific.

2.4. Multi-Task Learning

Multi-task learning aims to learn multiple related tasks simultaneously [35,55,56].
The main idea is to build a compact network that can represent all domains by sharing
most model parameters except for minimal parameters for task specialization. Unlike
multi-task learning, which aims to achieve optimal performance across multiple source
tasks, transfer learning focuses on addressing a specific target task with insufficient training
data using knowledge from a single or multiple source domain. In this paper, we seek
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efficient multi-source representation learning in a multi-task setting in order to further
support a broad range of downstream few-shot learning tasks.

3. Preliminary
3.1. Task Formulation

Few-shot image recognition aims to generalize basic knowledge to perform novel
class categorization in previously unseen domains. It can be defined from an inductive
transfer learning perspective, corresponding to two learning routines, i.e., meta-training
and meta-testing stages. In the conventional few-shot setting, there is only one source
dataset for training, and the deployed recognition scenario is also similar to the source
domain, which is also regarded as in-domain few-shot learning. In contrast to the usual
single-source setting, we look at how to use more abundant modal information from
multiple source datasets sampled from different domains to support broad FSL tasks,
especially for visual recognition tasks that go beyond natural images, such as remote
sensing and medical images.

Formally, let us assume we have B source datasets D = {Db}B
b=1 in the meta-training

stage, where each Db = {(x, y)} ⊂ Xb ×Yb corresponds to a specific domain, and the (x, y)
denotes an image sample and its associated class label. Based on deep neural networks,
few-shot learning algorithms aim to extract general and transferable knowledge from
large-scale data D. In the meta-testing stage, the pre-trained model is adapted with a novel
few-shot learning task which provides a small support set S sampled from target domain
Dn = {(x, y)} ⊂ Xn ×Yn. The configuration with the support set S containing N different
classes with K samples each (S = {Si}N

i=1, |Si| = K) is referred to as the “N-way K-shot”
recognition task. Particularly, all the source datasets Db and target dataset Dn have no
common class. After the pre-trained model has been adapted to the support set, a query set
Q sampled from the unseen classes is used to evaluate the generalization performance.

3.2. Transfer Learning Baseline

We revisit a conventional transfer learning baseline, where a feature extractor F is first
pre-trained on the source data and then frozen when adapting to the few-shot task. For the
multi-source setting, we can simply merge the multiple source datasets into a joint dataset

DJ = D1 ∪D2 ∪ · · · Db ∪ · · · DB ⊆ XJ ×YJ . (1)

Therefore, the representation learning can be conducted by one joint classification task.
Associated with a classification layer Cbase, the feature extractor can be trained in an end-to-
end manner for recognizing all joint classes by minimizing the expected empirical risk,

F = arg min
F,Cbase

E
(x,yJ)∼DJ

L(Cbase ◦ F(x), yJ) , (2)

where the L denotes a loss function (typically as cross-entropy) that measures the agreement
between the true class label and the corresponding prediction from the classifier. Note,
that the yJ denotes the class label in the current joint space YJ instead of the space in the
original source domain.

3.2.1. FT Baseline

Given a target few-shot task presented by S , a simple fine-tuning (FT) baseline is
freezing the pre-trained feature extractor and retraining a new classifier head Cnovel with
the features of the support set, i.e.,

Cnovel = arg min
Cnovel

E
(x,y)∼S

L(Cnovel ◦ F(x), y) . (3)
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The new recognition model composed of {F, Cnovel} can be used for a target task. This
baseline method has recently been proven to be effective when the pre-trained features can
be transferable and reused in the target domain.

3.2.2. NNC Baseline

Another natural approach to directly performing unseen class categorization can resort
to the k-nearest neighbor (KNN) with the pre-trained representation. Particularly, this
method expects that the deeply learned features are discriminative and generalized enough
to separate new classes, so the query (test) sample can be well classified by its nearest
neighbors. Besides, a more generally used non-parametric method for multi-shot FSL is the
nearest neighbor classifier (NNC) baseline [12,27], where the weights of the target classifier
can be regarded as class prototypes [9]. Each prototype is computed using the averaged
features of the corresponding support class as follows,

pk =
1

|Sk| ∑
(x,y=k)∈Sk

F(x) . (4)

For a query image xq ∈ Q, the NNC assigns it to the label of the closest support class
with a similarity metric sim(·, ·) on the representation space,

ŷq = arg max
j∈{1,...,N}

sim
(

F(xq), pj
)

. (5)

4. Approach

In this section, we elaborate on our approach to addressing multi-source cross-domain
few-shot learning, which includes two learning stages: (1) learning multi-source repre-
sentations and (2) adapting them to the few-shot task. Particularly, in the adaptation
procedure, the objective is to adapt the pre-trained representations to be task-specific and
discriminative enough for identifying novel classes.

4.1. Multi-Source Representation Learning

Given the multiple source datasets {Db}B
b=1, we first present our framework for

training multi-source representations, aiming to effectively extract the diverse semantic
information. Typically, a simple way to obtain multi-domain representations is to train
a separate feature extractor for each source domain [57]. However, when the number of
domains is large, adapting and deploying a lot of models would be impractical. Besides,
another baseline (presented in Section 3.2), training a single-task network with the merged
source data, can be parameter-efficient but suppress feature diversity. What is worse, the
potential interference across different domains may impede regular training [58].

To reduce the computational cost and model size, we achieve efficient domain-specific
representations by a multi-head structure, where the multiple source datasets share a
backbone network, with the assumption that low-level features are generalizable across
different domains and tasks [5]. Concretely, the multi-head representations have multiple
projection layers, each of which corresponds to a different domain and is used to map shared
features into the space of that domain. The learning framework is depicted in Figure 2.
Besides the original B domains, we also create a universal domain on all merged source
data DJ presented in Section 3.2 and further define the number of feature representations
as D = B + 1.

Inspired by the previous study [59], we instantiate each projection layer with a low-
rank bilinear pooling (LBP) structure, since it has been proven to improve feature discrimi-
nation for the single-source FSL. Assuming the feature maps outputted by a shared CNN
backbone are fϕ(x) ∈ Rh×w×c, we add parallel low-rank bilinear (LBP) layers [60,61] at
the end of the shared backbone fϕ(x) as can be seen in Figure 2. Denoting the D domain-
specific LBP layers as {Pθi}

D
i=1, we can obtain a feature representation set as {Fi(·)}D

i=1 for
D domains,
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Fi(x) = Pθi ◦ fϕ(x) =
hw

∑
l=1

PT
i,1 fϕ(x)l ⊙ PT

i,2 fϕ(x)l , (6)

where Pi,1 ∈ Rc×d and Pi,2 ∈ Rc×d are two projection matrices for Pθi at the i-th domain,
and subscript l represents the spatial index among h ∗ w. As shown in Figure 3, the detailed
architecture of LBP in our implementation consists of two parallel 1 × 1 convolutions with
c channels followed by a Hadamard product and a global average pooling operation. The
feature dimension can be manually set to d.

Domain-specific 
representations

Domain-specific
predictions

J𝑠𝑠𝑠𝑠

Shared
backbone

+

...
𝑃𝑃𝜃𝜃𝐽𝐽 𝐶𝐶𝐽𝐽 J𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

L𝐶𝐶𝐶𝐶

Shared
features

L𝐶𝐶𝐶𝐶Domain1
ImageNet ...

𝑃𝑃𝜃𝜃1 𝐶𝐶1𝑓𝑓𝛷𝛷

Domain2
CIFAR ...

𝑃𝑃𝜃𝜃2 𝐶𝐶2
L𝐶𝐶𝐶𝐶𝑓𝑓𝛷𝛷

Domain3
CUB ...

𝑃𝑃𝜃𝜃3 𝐶𝐶3
L𝐶𝐶𝐶𝐶𝑓𝑓𝛷𝛷

Domain4
Caltech256 ...

𝑃𝑃𝜃𝜃4 𝐶𝐶4
L𝐶𝐶𝐶𝐶𝑓𝑓𝛷𝛷

Domian5
DTD ...

𝑃𝑃𝜃𝜃5 𝐶𝐶5
L𝐶𝐶𝐶𝐶𝑓𝑓𝛷𝛷

Figure 2. Multi-source representations learning from multiple source datasets. The structure of
representations contains a shared CNN backbone fϕ and the multi-head projection layers {Pθi}D

i=1,
which consists of a feature set {Fi(x)}D

i=1. We train the representations by taking entropy loss on
the multi-head classification tasks. The five input images correspond to the five source datasets of
BSCD-FSL [21]. Best viewed in color.

1×1 Conv

1×1 Conv

GAP

LBP

𝑃𝑃1

𝑃𝑃2

Figure 3. Structure of Low-rank bilinear pooling layer. This is used as the projection layer for
achieving domain specialization. GAP denotes global average pooling.

We train the multi-source representations by using regular supervised training with
in-domain classification, which is performed on each representation head. Concretely, the
cosine classifiers [62,63] are used as the classification layers, denoted as C = {Ci(·; Wi)}D

i=1,
where Wi = [w1, . . . , wNi ] are the d-dimensional classification weight vectors for the Ni
classes in the i-th domain. The classifier Ci(·; Wi) produces the normalized classification
score (probability) for the j-th class



Information 2024, 15, 293 9 of 28

Cj
i (Fi(x); Wi) = softmaxj[γ sim(F(x), wi)] , (7)

where the cosine similarity sim(x, y) = xTy
∥x∥2∥y∥2

is defined as the dot product between the
two ℓ2 normalized vectors, and γ is a regular associated scalar. In summary, the pre-training
procedure minimizes the multi-domain classification losses. For clarity, we re-denote an
image example in the joint dataset as (x, yO, yJ , yD) ∼ DJ , where yO, yJ , yD are its original-
domain class label, joint-domain class label, and domain index label, respectively. The
end-to-end training objective in a multi-task setting is as follows,

Jsp =
B

∑
b=1

1[yD=b] ∗ LCE(Cb ◦ Fb(x), yO) , (8)

Jjoint = LCE(CJ ◦ FJ(x), yJ) , (9)

F = arg min
F,C

E
(x,yO ,yJ ,yD)∼DJ

[Jsp + Jjoint] , (10)

where LCE is the cross-entropy function, and 1 ∈ {0, 1} is a domain indicator function that
returns 1 if its argument is true and 0 otherwise.

During network training with mini-batch SGD, the back-propagated gradients ac-
cumulated from the multiple tasks on the shared parameters may be too large to ensure
proper end-by-end optimization. To stabilize the training process, we adopt a simple
gradient scaling mechanism. To be specific, when the losses are backpropagated to the
shared features, the cumulative gradients from the multi-head branches are averaged. In
this way, the magnitude of gradients for domain-shared parameters (the CNN backbone)
and domain-specific parameters (the projection and classification heads) can be balanced
for proper end-to-end training.

In summary, our framework can be trained end-to-end and be built upon any CNN
backbone, which is parameter-efficient and simple to implement. The joint training regime
ensures that the shared low-level features are general and that multi-head projections are
fully responsible for domain specialization. Thus, the produced representations can be
universal enough to support further generalization to vastly different few-shot recogni-
tion tasks.

4.2. Adapting Representations on Few-Shot Data

After obtaining a set of feature representations {Fi(·)}D
i=1, we further conduct model

adaptation, aiming to generalize the pre-trained representations to address the few-shot
task, which only provides a small support set. To achieve this goal, we identify instance
discrimination and class discrimination as two crucial factors for improving model general-
ization. Accordingly, we propose two contrastive learning objectives, which are performed
on each domain-specific head. Different from the previous method [34], which uses con-
trastive learning on the source data to improve feature transferability in the first stage,
our method conducts model adaptation by enhancing contrast across few-shot data, thus
directly making the pre-trained features more specific and discriminative to the target task.
As the adaptation procedure is conducted on each independent representation head F(·; θi),
we omit the domain index in the following notations for clarity. The adaptation procedure
is depicted in Figure 4.
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Figure 4. Adapting representations for recognizing previously unseen categories. The adaptation is
performed on each representation head. Best viewed in color.

4.2.1. Parametric Instance Discrimination

Unlike most self-supervised contrastive losses, which use complex data augmentation
to construct positive pairs from the same instance to achieve instance discrimination, we
propose a parametric module, namely instance parametric proxy (IPP). It is functionally
similar to a memory bank storing instance features for instance classification [50,52], but
different in that our IPP is learnable and updated by gradient descent. For an N-way
K-shot task that provides a support set S = {Si}N

i=1, |Si| = K, we denote the weights of
the IPP as V = {vi}N∗K

i=1 , vi ∈ Rd, each of which corresponds to a support instance and
can be initialized by original support features. For each iteration of model adaptation, let
i ∈ I ≡ {1, . . . , N ∗ K} be the index of an arbitrary transformed sample from the original
support image, and A(i) be the negative index set of the sample xi. Then, we perform
contrastive learning by enforcing each instance xi to be close to its proxy vi and far from
its negative samples indexed from A(i) in the feature space. Our parametric instance
discrimination (PID) loss modified from info-NCE [51] is as follows:

LPID(S ; ϕ, θ, V) =
1
|I| ∑

i∈I
− log P̂i,p , (11)

P̂i,p =
E(F(xi),vi)

E(F(xi),vi) + ∑
a∈A(i)

[E(F(xi),va) +E(F(xi),F(xa))]
, (12)

where E(w1,w2) = exp(sim(w1, w2)/τ) and τ is a regular temperature parameter. Unlike un-
supervised contrastive learning [52,53] makes an anchor instance discriminate from all other
instances; the negative index set in Equation (12) is defined as A(i) ≡ {a ∈ I : ya ̸= yi},
which means the negative pairs between same-class instances would be filtered by the
category labels. As a result, |A(i)| = (N − 1) ∗ K for the N-shot K-shot task specifically.
Thus, this supervised objective is more effective in reducing instance variations, benefiting
from avoiding negative contrast between same-class features. During adaptation, this
contrastive loss is jointly minimized with respect to the IPP and the parameters of feature
representation by SGD.
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4.2.2. Class Feature Discrimination

While instance discrimination loss can enhance instance invariance for improving
generalization, it only loosely ensures intra-class compactness [54], which is a key capability
to cluster same-class features. To make the representations more discriminative to the
target task, we enforce intra-class feature invariance while also keeping the separation
of between-class features. Given the arbitrary transformed support samples indexed by
i ∈ I ≡ {1...N ∗ K}, let A(i) and P(i) for sample xi be the negative and positive index sets,
respectively. Here, P(i) ≡ {p ∈ I : yp = yi} \ {i} and |P(i)| = K − 1 for the K-shot task
specifically. Then our class feature discrimination (CFD) targets minimizing the supervised
contrastive loss as follows,

LCFD(S ; ϕ, θ) =
1
|I| ∑

i∈I

1
|P(i)| ∑

p∈P(i)
− log P̂i,c , (13)

P̂i,c =
E(F(xi),F(xp))

E(F(xi),F(xp)) + ∑
a∈A(i)

E(F(xi),F(xa))
. (14)

With the complementary supervision of Equations (11) and (13), not only the inter-
class feature differences can be enlarged but also the intra-instance and intra-class feature
variations can be reduced.

4.2.3. Prototypical Classification

The two contrastive objectives can enhance model discrimination at the feature level,
thus improving accuracy for the direct NNC baseline. However, previous literature find-
ings [14,64] also indicate that training linear classifiers on the frozen feature extractor can
outperform NCC, as they can learn better class boundaries by exploiting overall support
examples instead of only calculating class centers. A natural approach is to build a linear
classifier from scratch as presented FT baseline in Section 3.2. Here, we propose to implicitly
conduct classification by repurposing the IPP without rebuilding a parametric layer. It is
also beneficial to avoid over-parameterization in the low-data regime. In each iteration,
we first calculate the class prototypes by averaging the instance proxies belonging to the
same class:

pk =
1
K ∑

(vi∼V,yi=k)
vi, k = 1 , . . . , N . (15)

For a support sample xi, the posterior probability P̂s belonging to the support class k
is as follows

P̂s(y = k|xi) =
exp(sim(F(xi), pk))

∑j exp
(
sim

(
F(xi), pj

)) . (16)

The prototypical classification loss based on cross-entropy between the predictions
and the support labels is as follows

LPC(S ; ϕ, θ, V) = ∑
(xi ,yi)∈S

− log P̂s(y = yi|xi) . (17)

This regularization can encourage the model to learn more comprehensive features
by enforcing accurate prediction with natural cross-entropy. It turns out to be particularly
effective and leads to significant performance boosts, which can be attributed to improve-
ments in the quality of the adapted features and more representative class prototypes
induced by IPP.
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4.2.4. Implementation of Total Adaptation Loss

Finally, the few-shot adaptation is conducted by minimizing the three combined losses
on the support set:

Ltotal(S ; ϕ, θ, V) = LPID + λ1 ∗ LCFD + λ2 ∗ LPC, (18)

where the λ1 and λ2 are two regular trade-off parameters.
We conduct two adaptation strategies: (1) LAMR: adapting the projection layers

and leaving the backbone frozen. This adaptation is independently performed on each
representation head with the shared features extracted, which typically allows for rapid
adaptation. (2) LAMR++: adapting both the projection layers and the shared backbone.

4.2.5. Query Prediction

With the proposed adaptation, we can transfer the pre-trained representations to
task-specific ones, denoted as {F(·; θ̂i)}D

i=1. We can build the nearest neighbor classifier
(NNC) [9] by each adapted IPP. For the i-th domain, the induced prototypes of NCC
computed by Equation (15) are denoted as { p̂i

j}N
j=1. For a query image xq ∈ Q, the similarity

to the class j on the i-th representation is computed as sim(F(xq; θ̂i), p̂i
j). The final prediction

is based on the aggregation of class similarity across all the representation heads, as follows:

ŷq = arg max
j∈{1,...,N}

D

∑
i=1

sim(F(xq; θ̂i), p̂i
j) (19)

4.3. Extension to Single-Source FSL

We can make our multi-source framework applicable to the single-source FSL by
dividing the source dataset into sub-domains, each of which contains some unique classes.
We propose the following two splitting methods.

1. Random splitting. The original classes are equally randomly split into sub-datasets.
2. Clustering splitting. One natural class splitting choice would be K-means clustering

on class prototypes computed over image features, with a representation pre-trained
on the full classes. However, K-means may result in unbalanced partitions. Inspired
by the previous method [65], we iteratively split each current dataset in half along the
principal component computed over the class prototypes. For splitting N iterations,
the original dataset can be divided into 2N subsets, each of which can be regarded as
a distinct domain and is composed of classes that are closer to each other.

With the split sub-domains on a fixed training data budget, our framework can indeed
encourage more diverse representations, which can be further adapted to the FSL task and
produce an ensemble of NNC classifiers. However, it typically worsens the performance
of the individual classifier on average but makes the ensemble prediction more accurate.
This modification turns out to be particularly effective when the number of partitions is
appropriate, as illustrated in the experimental section. For the extreme case where there
is only one class per domain, the representation cannot be trained without supervision.
Therefore, we can expect that there may exist an optimal number of partitions for a dataset.
We can choose the hyperparameter based on the performance of the validation set.

5. Experiments and Results
5.1. Benchmark Datasets
5.1.1. Broader Study of Cross-Domain Few-Shot Learning (BSCD-FSL)

We mainly evaluate our approach on the recently proposed cross-domain benchmark
BSCD-FSL [21], which provides few-shot evaluation protocols in both single- and multi-
source settings. Figure 5 shows examples of source and target images. For the multi-source
setting, training datasets contain mini-ImageNet [8], CUB [66], CIFAR100 [67], DTD [68],
and Caltech256 [69]. All the source domains belong to colored natural images. For the
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single-source setting, only mini-ImageNet is used. The testing domain covers a spectrum of
image types, including CropDiseases [70], EuroSAT [23], ISIC2018 [24,25], and ChestX [26]
datasets. Concretely, they are images of plant diseases, remote sensing images, dermoscopy
images of skin lesions, and chest X-ray images, each of which corresponds to a different
level of similarity to natural images. Compared to previous benchmarks [13,22], this
provides more diverse specialized recognition scenarios for evaluating cross-domain FSL.

Source Domains Target Domains
(Unseen Classes)

CropDiseases EuroSAT ISIC ChestX

mini-ImageNet

CIFAR100

CUB

Caltech256

DTD

Decreasing  similarity to source

Perspective

Natural Images

Color

Perspective

Natural Images

Color

No Perspective

Natural Images

Color

No Perspective

Medical Images

Color

No Perspective

Medical Images

Grayscale

Figure 5. Image examples of datasets in the Broader Study of Cross-Domain Few-Shot Learning
(BSCD-FSL) benchmark. Five training datasets are mini-ImageNet, CUB, CIFAR100, DTD, and
Caltech256. Four testing domains are CropDiseases, EuroSAT, ISIC2018, and ChestX.

5.1.2. Mini-Imagenet

For conventional (in-domain) few-shot learning, we evaluate the most commonly used
mini-ImageNet [8] dataset, which is derived from the ImageNet dataset [3] and consists of
60,000 color natural images of size 84× 84 that belong to 100 classes, each with 600 examples.
The mini-ImageNet was first proposed in [10]. We use the common follow-up setting [8]
where the dataset is divided into 64 base classes, 16 validation classes, and 20 novel classes.
To make this dataset applicable to our framework, the proposed splitting methods in
Section 4.3 are performed on the 64 base classes, and the optimal hyperparameters are
selected by the validation set.

5.2. Implementation Details
5.2.1. Network Architecture

We use ResNet12 [20,64], a derivative of residual networks [2] particularly designed for
few-shot learning, as the feature extraction backbone fϕ(·) to produce the shared features
in all experiments. The detailed structure of ResNet12 is shown in Figure 6. ResNet12
has four residual blocks, and each block is made up of three convolutional layers and
one 2 × 2 max-pooling layer with stride 2. Each convolutional layer has a 3 × 3 kernel,
followed by batch normalization and leaky ReLU of 0.1. The four blocks output feature
maps with 64/160/320/640 channels, respectively. The number of parameters of ResNet12
is approximately 12.4M. For the 3 × 84 × 84 input image size, the output feature maps have
a size of 640 × 5 × 5. The low-rank bilinear pooling (LBP) layer utilizes two parallel 1 × 1
convolutional layers. We set its feature dimension d as 640 equal to the output channels of
the ResNet12 backbone. The number of parameters of the LBP is approximately 0.8 M.
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ResNet-12

ResNet Block-1,N=64
64x42x42

ResNet Block-2,N=160
160x21x21

ResNet Block-3,N=320
320x10x10

ResNet Block-4,N=640
640x5x5

images
3x84x84 Input

3x3 Conv, N channels,
BN, Leaky ReLU
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BN, Leaky ReLU
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Leaky ReLU
2x2 max pooling

Output

1x1 Conv, N channels,
BN

ResNet Block, N channels
image

feature maps
640x5x5

Figure 6. The detailed structure of ResNet12. It contains four residual blocks, each of which is made
up of three {3 × 3 convolution (Conv), batch normalization (BN), Leaky ReLU of 0.1} and one 2 × 2
max-pooling layer.

5.2.2. Training Details

Our codebase is developed on the few-shot learning framework with Pytorch in [21].
In the meta-training stage, we use the SGD optimizer with the Nesterov momentum 0.9
and a weight decay of 1 × e−4 is applied to all the model parameters. We train 140 epochs
totally on both single- and multi-source learning, with the learning rate initialized by 0.1
and dropped to 0.01 at the 100 epoch similar to [12]. Conventional data augmentations,
including random resize and crop, horizontal flip, and color jittering are applied to the
source training images. In the meta-testing stage, we conduct model adaptation on the
few-shot data. For the method LAMR, only the domain-specific layers are fine-tuned. For
the method LAMR++, both the pre-trained backbone and the domain-specific layers are
fine-tuned. Concretely, we use an SDG optimizer with 100 epochs fine-tuned on few-shot
data (support set). The trade-off parameters λ1 and λ2 are simply set to 1. The metric scalar
γ (or temperature parameter τ) in the cosine similarity is set to 20 (or 0.05) in all equations.

5.2.3. Evaluation Protocol

For the BSCD-FSL benchmark, we evaluate 5-way few-shot performance varying
the shot in {5, 20, 50} over the 600 tasks following the previous evaluation protocol [21].
For the mini-ImageNet benchmark, we evaluate 5-way 1-shot and 5-shot generalization
performance over 2000 tasks on the novel set as in [18,41]. Each few-shot task contains
15 queries per class. We report the average accuracy with a corresponding 95% confidence
interval over all tasks for all experiments. In particular, we apply consistent sampling to
make a fair comparison rigorously, where the sampling of testing few-shot tasks follows
a deterministic order by numpy with a fixed seed. It makes our ablation studies and
comparisons more convincing.

5.3. Results on Multi-Source FSL

We present the results of our method in the multi-source FSL setting, where five
semantically different datasets can be used for pre-training.
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The following multi-domain learning methods are compared:

• Union-CC [62]: A baseline method trains a single feature extractor on the union of all
training data with the cosine classifier and tests it with the NNC classifier.

• Ensemble: A baseline method trains separate feature extractors on each dataset and
tests with the average prediction of the NCC classifiers built on them.

• All-EMDs [21]: A method concatenates the feature vectors of all layers of all the
separate feature extractors for training a linear classifier.

• IMS-f [21]: A greedy selection method iteratively searches for the best subset of
features on all layers of all the separate feature extractors for a given few-shot task.
Then, the feature vectors in the set are concatenated for training a linear classifier.

• FiLM-pf [35]: Multiple representations are trained on a parameter-efficient backbone,
in which parallel domain-specific FiLM [36] layers are inserted after each batch nor-
malization layer. The multiple representations are tested with the average prediction
of NCC classifiers built on them.

• SUR [27]: A feature selection method performs a linear combination of domain-specific
representations on the FiLM-pf.

• URL [29]: A single feature extractor is distilled from the separate multi-domain net-
works and tested with the NNC classifier.

• URL+Ad [29]: An adaptation method attaches a pre-classifier feature mapping (a linear
layer) to the URL and optimizes it with the few-shot data.

• TSA [40]: An adaptation method attaches residual adapters to each convolution layer
of a pre-trained model (here is URL [29]) and a pre-classifier feature mapping on the
pre-trained model and optimizes them from scratch with the few-shot data.

Table 1 reports the detailed results on the four target datasets. Figure 7 summarizes
the result comparison across different methods according to the average accuracy across
all shot levels and datasets in the benchmark. We can observe that the proposed LAMR
demonstrates a clear promise to set a new state of the art in all experimental settings, as it
can consistently precede both previous methods and the baseline methods, as shown in
Table 1. Concretely, Ensemble, All-EBDs, and IMS-f use the multi-domain features built on
the fully separated feature extractors, which is inefficient and impractical when deployed
to target domains. In addition, FiLM-pf and SUR built on a parameter-efficient backbone
are also computationally expensive, as they still require multiple forward passes to obtain
the multi-domain features. In contrast to these methods, our multi-head network is both
parameter-efficient and computation-efficient. Instead of using an ensemble of multiple
feature representations, URL learns a single network by knowledge distillation from the
ensemble of separate multi-domain networks. The distilled single network shows better
generalization ability compared to the Ensemble and Union-CC but still underperforms
compared to other methods if directly using its features. However, when making further
adaptations to the URL, results can be significantly improved. Concretely, URL+Ad simply
employs a linear layer on the top of the URL to make feature adaptation, which results in
an average improvement of 2.7%. TSA conducts a deeper adaptation, which can provide an
average improvement of 3.9% over the URL. Besides, our proposed adaptation method is a
combination of fine-tuning losses, which is also orthogonal to methods like TSA that make
network adaptation by incrementally learning some new parametric modules. Last, our
LAMR, which only fine-tunes the projection layers, consistently performs better than the
TAS in all settings shown in Table 1. With the backbone being further adapted, our method
LAMR++ can achieve consistent performance gains. Particularly on the ISIC dataset, our
LAMR++ can produce improvements of 3.7%, 3.2%, and 3.4% over our shallower adap-
tation method (LAMR) in {5/20/50}-shot settings, respectively. It is generally considered
important to adapt both shallow and deep layers in a neural network for successfully
addressing cross-domain few-shot learning.
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Table 1. The results of multi-source few-shot learning on the BSCD-FSL benchmark. Best results are
marked in bold.

Methods ChestX ISIC
5-Way 5-Shot 5-Way 20-Shot 5-Way 50-Shot 5-Way 5-Shot 5-Way 20-Shot 5-Way 50-Shot

Union-CC [62] 26.08 ± 0.41 31.14 ± 0.43 33.54 ± 0.45 43.35 ± 0.55 51.71 ± 0.58 54.34 ± 0.53
Ensemble 26.45 ± 0.44 30.81 ± 0.45 33.47 ± 0.46 44.49 ± 0.57 52.49 ± 0.56 55.06 ± 0.54

All-EBDs [21] 26.74 ± 0.42 32.77 ± 0.47 38.07 ± 0.50 46.86 ± 0.60 58.57 ± 0.59 66.04 ± 0.56
IMS-f [21] 25.50 ± 0.45 31.49 ± 0.47 36.40 ± 0.50 45.84 ± 0.62 61.50 ± 0.58 68.64 ± 0.53

FiLM-pf [35] 26.79 ± 0.45 30.91 ± 0.45 33.80 ± 0.47 47.06 ± 0.56 55.43 ± 0.56 57.73 ± 0.53
SUR [27] 26.81 ± 0.46 30.98 ± 0.45 33.85 ± 0.46 47.37 ± 0.56 55.59 ± 0.59 57.92 ± 0.53
URL [29] 26.49 ± 0.45 30.40 ± 0.44 33.75 ± 0.46 46.00 ± 0.58 53.87 ± 0.58 56.32 ± 0.54

URL+Ad [29] 26.68 ± 0.44 31.41 ± 0.44 36.41 ± 0.45 48.10 ± 0.60 58.84 ± 0.63 64.16 ± 0.58
TSA [40] 27.04 ± 0.43 33.31 ± 0.47 37.15 ± 0.48 49.40 ± 0.61 62.34 ± 0.60 67.73 ± 0.56
LAMR 27.37 ± 0.41 34.16 ± 0.48 39.21 ± 0.51 52.58 ± 0.61 65.33 ± 0.55 70.52 ± 0.53

LAMR++ 28.38 ± 0.45 36.77 ± 0.50 42.22 ± 0.54 56.26 ± 0.66 68.52 ± 0.55 73.89 ± 0.52

Methods EuroSAT CropDiseases
5-Way 5-Shot 5-Way 20-Shot 5-Way 50-Shot 5-Way 5-Shot 5-Way 20-Shot 5-Way 50-Shot

Union-CC [62] 81.01 ± 0.56 86.05 ± 0.48 87.30 ± 0.41 90.22 ± 0.54 93.97 ± 0.36 95.09 ± 0.32
Ensemble 84.03 ± 0.58 88.10 ± 0.49 88.44 ± 0.48 91.89 ± 0.51 95.04 ± 0.37 96.06 ± 0.30

All-EBDs [21] 81.29 ± 0.62 89.90 ± 0.41 92.76 ± 0.34 90.82 ± 0.48 96.64 ± 0.25 98.14 ± 0.18
IMS-f [21] 83.56 ± 0.59 91.22 ± 0.38 93.85 ± 0.30 90.66 ± 0.48 97.18 ± 0.24 98.43 ± 0.16

FiLM-pf [35] 83.93 ± 0.58 87.82 ± 0.51 87.94 ± 0.48 93.73 ± 0.46 96.18 ± 0.32 97.26 ± 0.25
SUR [27] 84.35 ± 0.59 88.32 ± 0.50 88.42 ± 0.49 93.72 ± 0.46 96.16 ± 0.33 97.26 ± 0.25
URL [29] 83.74 ± 0.58 88.52 ± 0.48 89.13 ± 0.45 92.13 ± 0.50 95.18 ± 0.36 96.21 ± 0.27

URL+Ad [29] 84.57 ± 0.55 91.66 ± 0.36 93.66 ± 0.31 93.12 ± 0.44 97.23 ± 0.24 98.51 ± 0.15
TSA [40] 85.10 ± 0.55 92.25 ± 0.34 94.24 ± 0.29 93.53 ± 0.44 97.58 ± 0.22 98.81 ± 0.13
LAMR 86.92 ± 0.47 93.65 ± 0.29 95.42 ± 0.23 94.61 ± 0.39 98.26 ± 0.18 99.12 ± 0.11

LAMR++ 87.38 ± 0.47 94.40 ± 0.26 96.31 ± 0.21 94.84 ± 0.39 98.57 ± 0.16 99.30 ± 0.10

Overall, we can clearly observe that our methods (LAMR & LAMR++) have absolute
superiority over other methods. Concretely, LAMR++ achieves an average classification
accuracy of 73.07% across all datasets and shot levels, which outperforms the TSA by 3.2%.

Figure 7. Overall performance comparison across different methods in the multi-source setting of
BSCD-FSL benchmark.
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5.4. Results on Single-Source FSL
5.4.1. Validating Splitting Strategy for Single-Source FSL

We first investigate the effects of different splitting methods and splitting numbers for
single-source FSL. As previously demonstrated in Section 4.3, there may exist a trade-off
partition number for achieving the optimal generalization performance. The evaluation
is conducted on the validation set of mini-ImageNet, with consistently sampled 200 tasks.
We evaluate the two proposed splitting methods, random splitting and clustering splitting,
with the splitting number varying in {1, 2, 4, 8, 16}. For the random splitting method, we
perform three trials based on different random split classes and report the mean of the
three runs. It is worth noting that the results across different trials have a low variance, as
the variation between each two random trials is within 1%. The plots of five-way one-shot
and five-shot validation accuracy are shown in Figure 8. The one splitting (or root point)
refers to the strong FSL baseline, namely CC [62,63], trained with the original dataset
without splitting.

(a) 5-way 1-shot validation accuracy on mini-ImageNet (b) 5-way 5-shot validation accuracy on mini-ImageNet

Figure 8. Validation accuracy varying splitting strategies and numbers of partitioned sub-domains
on mini-ImageNet. (a) Five-way one-shot validation performance (b) 5-way 5-shot validation per-
formance. We can observe that the best performance is achieved at 2 splitting for both 1-shot and
5-shot settings, which is also a trade-off between the number of split domains and classes (or data)
per domain for a fixed data budget on the mini-ImageNet benchmark.

First, it is of interest that the random splitting method achieves better performance
than the clustering splitting method. A possible explanation for this phenomenon is that
randomly split sub-domains include more heterogeneous classes, which can yield more
discriminative representations and better average performance in the ensemble. Second,
we can observe that the best number of splitting for both methods on mini-ImageNet is 2. It
also indicates our multi-source framework can improve single-source FSL with a fixed data
budget. Third, we can find that when the split sub-domains (greater than 4) become too
large, the accuracy is seriously decreased, since there are too many limited classes and data
to enable meaningful representation learning in each sub-domain.

5.4.2. Results on Mini-ImageNet

We further evaluate our LAMR trained on the “fake multi-domain” which is parti-
tioned by the optimal splitting strategy validated in Figure 8. We report the results on the
mini-ImageNet test set and compare them with the prior methods that focus on learning
or adapting a good representation in Table 2. We make comparisons as follows. (1) First,
we compare our method with the approaches [12–14,62,71] that directly rely on a good
pre-trained representation learning. They all perform few-shot classification on the frozen
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representation by building a target classifier with NNC [12,62,71] or FT [13,14] baselines,
but differ in the way the feature extractor is learned. Concretely, the CC [62] is our base-
line model, whose deep representation is trained on a cosine classifier. Neg-Cosine [71]
enhances CC representation by employing a negative margin into the softmax loss. Other
methods [12–14] would rather use natural linear classifiers to minimize the cross-entropy
loss for obtaining the representation, and the Meta-Baseline [12] further improves the pre-
trained feature extractor followed by a meta-training stage. All the methods mentioned
above are competitive with meta-learning-based methods [9,64], and beneficial from a
good embedding. However, our LAMR shows significant superiority over the CC-based
methods [62,71] as well as other methods [12–14]. For example, LAMR can outperform
Embed-Distill [14] by 1.9% and 1.8% in 5-shot and 1-shot settings, respectively. Besides, our
method is also orthogonal with those methods [9,12,13,62,71], as their learning algorithms
can also be used for pre-training our multi-head representation framework.

Table 2. Comparison to previous methods on mini-ImageNet. Our LAMR is trained following the
optimal splitting strategy selected by the validation set, which can fairly compare with other methods
under a same training data budget. All methods use ResNets as the feature backbone. The best result
in each setting is marked in bold.

Type Method Backbone 5-Way 1-Shot 5-Way 5-Shot

ProtoNet [9] by [64] ResNet12 59.25 ± 0.64 75.60 ± 0.48
MetaOptNet [64] ResNet12 62.64 ± 0.62 78.63 ± 0.46
CC [62] by [37] ResNet12 58.61 ± 0.18 76.40 ± 0.13

w/o Adapt baseline [13] ResNet18 51.75 ± 0.80 74.27 ± 0.63
Neg-Cosine [71] ResNet12 63.85 ± 0.81 81.57 ± 0.56
Embed-Distill [14] ResNet12 64.82 ± 0.60 82.14 ± 0.43
Meta-Baseline [12] ResNet12 63.17 ± 0.23 79.26 ± 0.17
Robust20 [57] ResNet18 63.95 ± 0.42 81.59 ± 0.42

TADAM [20] ResNet12 58.50 ± 0.30 76.70 ± 0.30
Centroid-Align [19] ResNet18 59.88 ± 0.67 80.35 ± 0.73
Implant [37] ResNet12 62.53 ± 0.19 79.77 ± 0.19

w/ Adapt DC+SUR [27] ResNet12 63.13 ± 0.63 80.04 ± 0.41
Free-Lunch [72] ResNet12 64.73 ± 0.44 81.15 ± 0.42
H-OT [73] ResNet12 65.63 ± 0.32 82.87 ± 0.43

LAMR (ours) ResNet12 65.73 ± 0.43 83.37 ± 0.29
LAMR++ (ours) ResNet12 65.90 ± 0.43 83.84 ± 0.29

(2) Second, we further compare our LAMR with the methods [19,20,27,37,72,73] that
perform feature adaptation when employed to target few-shot tasks. TADAM [20] employs
a task embedding network (TEN) block that generates scaling and shift vectors for each
batch normalization layer, adapting the network to be task-specific. However, learning
an accurate auxiliary network may be a challenging task, especially when target data are
limited and the domain shift is significant. Centroid-Align [19] first selects a set of task-
relevant categories from source data and conducts feature alignment between the selected
source data and target few-shot data for network adaptation. Free-Lunch [72] proposes to
calibrate the distribution of the novel samples using the statistics of selected base classes
that are considered task-relevant. H-OT [73] further develops a novel hierarchical optimal
transport framework to achieve adaptive distribution calibration. Unlike methods [19,72,73]
that perform adaptation by leveraging the base data [19] or their statistics [72,73], our
method provides a more effective adaptation scheme that directly optimizes the pre-
trained representations with the limited target data without re-accessing the source data.
Besides, our methods also achieve on par with or better performance than them. For
example, our LAMR++ outperforms H-OT by 0.27% and 0.97% in 1-shot and 5-shot settings,
respectively. Instead of adjusting the pre-trained parameters, Implant [37] adds and learns
new convolutional filters upon the frozen CNN layers. Our LAMR++ is also orthogonal
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to it and performs significantly better than it by 3.4% and 4.1% in 1-shot and 5-shot
settings, respectively.

(3) Third, we compare LAMR with an ensemble-based method, Robust-20 [57], which
trains an ensemble of 20 ResNets promoted by cooperation and diversity regularization.
Our approach is more efficient for building an ensemble of multiple representations and
also significantly outperforms it, with notable absolute accuracy improvements of 2.0%
and 2.3% for 1-shot and 5-shot settings, respectively.

It is observed that adapting the backbone (by LAMR++) only slightly helps few-
shot transfer for this benchmark dataset, whereas the improvement is more pronounced
for cross-domain few-shot learning. It may also indicate that deeper adaptation is more
necessary when the domain distribution shift increases.

5.4.3. Results on BSCD-FSL

We further report the results of single-source cross-domain FSL on the four specific
domains of BSCD-FSL and compare them with the prior approaches in Table 3. Concretely,
the Linear and Mean-centroid denote FT and NNC baselines, respectively, presented in
Section 3.2. The Ft-CC denotes fine-tuning a cosine classifier based on the frozen feature
extractor. It is obvious that the proposed approach can surpass all three transfer learning
baselines by a large margin. For instance, LAMR performs better than the Linear by 5.4%,
4.6%, and 3.1% in {5/20/50}-shot settings, respectively. Similar to the observation in the
multi-source FSL, LAMR++ also yields notable and consistent improvements over LAMR.
Particularly on the ISIC dataset, LAMR++ can produce improvements of 5.5%, 5.8%, and
5.2% over our LAMR in {5/20/50}-shot settings, respectively.

Besides, we also make comparisons with other state-of-the-art methods [32,38,39,74]. LDP-
net [32] imposes local-global feature consistency of prototypical networks by knowledge
distillation, which improves the cross-domain generalization of the learned features. How-
ever, due to a lack of feature adaptation, LDP-net is typically inferior to other adaptation
methods [38,39,74] and ours, especially for 20/50-shot settings. For example, on the ISIC
dataset, LAMR++ performs significantly better than LDP-net by 6.0%, 9.8%, and 9.9% in
{5/20/50}-shot settings, respectively.

Other methods [38,39,74] conduct domain-specific feature adaptation for tackling
the large domain shift. Particularly, FN [38] adapts the feature extractor by fine-tuning
its scaling and shifting parameters of batch normalization on few-shot data. We can
observe that the FN is inferior to the transfer learning baselines in several cases of 5-shot
settings. A possible interpretation for this phenomenon is that, with too limited data
and extreme domain shift, optimizing the BN parameters accurately may be particularly
hard. ConFeSS [39] proposes to learn a task-specific feature masking module that can
produce refined features for further fine-tuning a target classifier and the feature extractor.
NSAE [74] pretrains and fine-tunes the network with an additional auto-encoder to improve
the model generalization, which implicitly augments the support data. Unlike ConFeSS [39]
and NSAE [74], which leverage auxiliary modules for model adaptation, our approach is
more efficient by directly optimizing the target model. Finally, we can also observe that
our approach can achieve the highest accuracy among all the methods and experimental
settings, except for one case in 5-way 5-shot EuroSAT where ConFeSS slightly outperforms
our LAMR++ by 0.03%. But in 5-way 20-shot and 50-shot EuroSAT, our LAMR++ can
achieve significant performance gains of 2.6% and 3.1% over it, respectively.
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Table 3. The results of single-source few-shot learning on the BSCD-FSL benchmark. The best result
in each setting is marked in bold.

Methods ChestX ISIC
5-Way 5-Shot 5-Way 20-Shot 5-Way 50-Shot 5-Way 5-Shot 5-Way 20-Shot 5-Way 50-Shot

ProtoNet 1 [9] 24.05 ± 1.01 28.21 ± 1.15 29.32 ± 1.12 39.57 ± 0.57 49.50 ± 0.55 51.99 ± 0.52
Linear 1 [13] 25.97 ± 0.41 31.32 ± 0.45 35.49 ± 0.45 48.11 ± 0.64 59.31 ± 0.48 66.48 ± 0.56

Mean-centroid 1 [75] 26.31 ± 0.42 30.41 ± 0.46 34.68 ± 0.46 47.16 ± 0.54 56.40 ± 0.53 61.57 ± 0.66
Ft-CC 1 [62] 26.95 ± 0.44 32.07 ± 0.55 34.76 ± 0.55 48.01 ± 0.49 58.13 ± 0.48 62.03 ± 0.52

FN [38] 25.78 ± 0.42 31.88 ± 0.46 34.81 ± 0.49 45.34 ± 0.60 58.92 ± 0.57 65.90 ± 0.58
ConFeSS [39] 27.09 ± 0.24 33.57 ± 0.31 39.02 ± 0.12 48.85 ± 0.29 60.10 ± 0.33 65.34 ± 0.45

NSAE [74] 27.10 ± 0.44 35.20 ± 0.48 38.95 ± 0.70 54.05 ± 0.63 66.17 ± 0.59 71.32 ± 0.61
LDP-net 2 [32] 27.30 ± 0.43 34.03 ± 0.49 37.58 ± 0.48 48.15 ± 0.60 58.47 ± 0.56 64.20 ± 0.55

LAMR 27.66 ± 0.44 33.82 ± 0.50 38.92 ± 0.50 48.66 ± 0.60 62.38 ± 0.60 68.92 ± 0.56
LAMR++ 28.86 ± 0.45 35.86 ± 0.50 41.36 ± 0.56 54.11 ± 0.62 68.22 ± 0.57 74.12 ± 0.54

Methods EuroSAT CropDiseases
5-Way 5-Shot 5-Way 20-Shot 5-Way 50-Shot 5-Way 5-Shot 5-Way 20-Shot 5-Way 50-Shot

ProtoNet 1 [9] 73.29 ± 0.71 82.27 ± 0.57 80.48 ± 0.57 79.72 ± 0.67 88.15 ± 0.51 90.81 ± 0.43
Linear 1 [13] 79.08 ± 0.61 87.64 ± 0.47 91.34 ± 0.37 89.25 ± 0.51 95.51 ± 0.31 97.68 ± 0.21

Mean-centroid 1 [75] 82.21 ± 0.49 87.62 ± 0.34 88.24 ± 0.29 87.61 ± 0.47 93.87 ± 0.68 94.77 ± 0.34
Ft-CC 1 [62] 81.37 ± 1.54 86.83 ± 0.43 88.83 ± 0.38 89.15 ± 0.51 93.96 ± 0.46 94.27 ± 0.41

FN [38] 80.03 ± 0.70 88.94 ± 0.46 92.34 ± 0.36 91.11 ± 0.49 96.62 ± 0.26 98.27 ± 0.17
ConFeSS [39] 84.65 ± 0.38 90.40 ± 0.24 92.66 ± 0.36 88.88 ± 0.51 95.34 ± 0.48 97.56 ± 0.43

NSAE [74] 83.96 ± 0.57 92.38 ± 0.33 95.42 ± 0.34 93.14 ± 0.47 98.30 ± 0.19 99.25 ± 0.14
LDP-net 2 [32] 81.50 ± 0.65 88.15 ± 0.48 90.75 ± 0.41 89.00 ± 0.51 95.49 ± 0.29 97.28 ± 0.20

LAMR 84.46 ± 0.55 92.21 ± 0.33 94.46 ± 0.27 94.15 ± 0.39 98.19 ± 0.17 99.16 ± 0.11
LAMR++ 84.62 ± 0.55 93.08 ± 0.31 95.75 ± 0.23 94.30 ± 0.38 98.39 ± 0.16 99.26 ± 0.11

1 the results from [21]. 2 reproduced results based the official released code [32] and their trained model.

6. Ablation Study and Analysis

We also conduct the ablation study based on the BSCD-FSL benchmark, as its target
domains include a vast array of different specific recognition scenarios.

6.1. Effect of Multi-Domain Learning Framework

We first explore how our multi-source framework benefits feature transferability.
We compare our framework with two baseline models: (1) Single-source: The feature
representation is trained on one source dataset (that is mini-ImageNet). (2) Merged-multi-
sources: The feature representation is trained by one task that classifies merged classes
from all source datasets, as presented in Section 3. We validate the transferability of these
representations based on the NNC baseline directly, and the results are reported in Table 4.
We observe that the representation trained with Merged-multi-sources does better than the
representation trained with Sigle-source in most cases. This is because the multi-source
could provide a substantial amount of training data. Compared to Merged-multi-sources,
our multi-source framework achieves much higher accuracy in most settings. Only for the
ChestX, we see our framework is slightly underperforming within 1%. We conjecture that
because the distribution of this target domain does not match any of the train distributions,
thus robust knowledge transfer can not be ensured. However, the overall performance still
demonstrates the benefit of using our multi-source representations rather than using one
representation learned on the combined source dataset.
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Table 4. Comparing transferability of feature representations trained by different models. The best
result in each setting is marked in bold.

Methods ChestX ISIC
5-Way 5-Shot 5-Way 20-Shot 5-Way 50-Shot 5-Way 5-Shot 5-Way 20-Shot 5-Way 50-Shot

Single-source 25.90 ± 0.41 30.16 ± 0.45 32.76 ± 0.45 43.84 ± 0.55 51.98 ± 0.57 54.34 ± 0.53
Merged-multi-sources 26.08 ± 0.41 31.14 ± 0.43 33.54 ± 0.45 43.35 ± 0.55 51.71 ± 0.58 54.34 ± 0.53

Our Framework 25.96 ± 0.44 30.21 ± 0.43 32.58 ± 0.43 48.61 ± 0.60 58.13 ± 0.59 60.54 ± 0.57

Methods EuroSAT CropDiseases
5-Way 5-Shot 5-Way 20-Shot 5-Way 50-Shot 5-Way 5-Shot 5-Way 20-Shot 5-Way 50-Shot

Single-source 78.64 ± 0.61 84.05 ± 0.54 85.03 ± 0.48 88.27 ± 0.59 92.57 ± 0.44 94.19 ± 0.34
Merged-multi-sources 81.01 ± 0.56 86.05 ± 0.48 87.30 ± 0.41 90.22 ± 0.54 93.97 ± 0.36 95.09 ± 0.32

Our Framework 84.76 ± 0.51 89.36 ± 0.41 89.88 ± 0.39 91.89 ± 0.50 95.22 ± 0.33 96.03 ± 0.27

6.2. Significance of Few-Shot Adaptation

In order to understand what enables good representation adaptation over few-shot
data, we systematically study the effect of all components in our adaptation loss, i.e., PID,
CFD, PC with respect to Equations (11), (13) and (17). Table 5 shows the detailed results
for all 24 settings that vary in two source types, four target domains, and three shot levels.
We can make the following observations: (1) Applying any one of PID, CFD, or PC can
lead to consistent performance gains in all 24 experimental settings. (2) With the combined
supervision of PID and CFD, the results can be better than when only PID or CFD is used
in 16 out of 24 settings. (3) Incorporating all three components can lead to the best result in
17 out of 24 settings. Particularly for the ISIC dataset with 50 examples per class available,
the overall performance improves by up to 10.0% and 15.8% in multi- and single-source
settings, respectively. It also verifies that our adaptation strategy is advantageous for
dealing with the domain shift problem in few-shot learning. (4) The overall performance
gains are more significant when more data are available. For example on the ChestX dataset,
our adaptation method can yield improvements of {1.4%,4.0%,6.6%} over the baseline in
{5/20/50}-shot settings, respectively. This also indicates that when suffering from extreme
domain bias, such as in the medical domain, recognition requires more data to ensure
good adaptation.

Table 5. Ablation study on 5-way K-shot performance by validating three components of the adapta-
tion objective, including PID (parametric instance discrimination), CFD (class feature discrimination),
and PC (prototypical classification). The best result in each setting is marked in bold.

Multi-Source FSL Single-Source FSL
K-Shot PID CFD PC ChestX ISIC EuroSAT CropDiseases ChestX ISIC EuroSAT CropDiseases

5

25.96 ± 0.44 48.61 ± 0.60 84.76 ± 0.51 91.89 ± 0.50 26.12 ± 0.42 42.96 ± 0.56 80.10 ± 0.62 89.38 ± 0.55
✓ 26.89 ± 0.45 50.61 ± 0.61 85.06 ± 0.51 92.64 ± 0.44 26.96 ± 0.43 45.12 ± 0.56 81.33 ± 0.61 91.72 ± 0.48

✓ 26.84 ± 0.41 51.92 ± 0.63 87.12 ± 0.47 94.51 ± 0.40 26.96 ± 0.44 48.22 ± 0.61 84.36 ± 0.55 93.94 ± 0.41
✓ 27.06 ± 0.42 52.14 ± 0.61 86.42 ± 0.48 94.20 ± 0.41 27.49 ± 0.43 47.78 ± 0.59 83.50 ± 0.57 93.40 ± 0.43

✓ ✓ 27.17 ± 0.42 52.12 ± 0.61 86.50 ± 0.48 94.19 ± 0.41 27.43 ± 0.42 47.90 ± 0.59 83.54 ± 0.56 93.48 ± 0.42
✓ ✓ 27.39 ± 0.42 52.43 ± 0.61 86.91 ± 0.47 94.62 ± 0.39 27.56 ± 0.44 48.54 ± 0.59 84.42 ± 0.55 94.15 ± 0.39

✓ ✓ 27.35 ± 0.46 52.53 ± 0.64 86.77 ± 0.47 94.48 ± 0.38 27.55 ± 0.44 48.59 ± 0.59 84.32 ± 0.55 94.05 ± 0.40
✓ ✓ ✓ 27.37 ± 0.41 52.58 ± 0.61 86.92 ± 0.47 94.61 ± 0.39 27.66 ± 0.44 48.66 ± 0.60 84.46 ± 0.55 94.15 ± 0.39

20

30.21 ± 0.43 58.13 ± 0.59 89.36 ± 0.41 95.22 ± 0.33 30.92 ± 0.43 50.41 ± 0.57 84.78 ± 0.53 93.73 ± 0.40
✓ 31.60 ± 0.46 58.87 ± 0.58 89.87 ± 0.40 95.83 ± 0.27 32.22 ± 0.45 53.49 ± 0.56 86.45 ± 0.51 95.42 ± 0.33

✓ 30.95 ± 0.43 63.90 ± 0.60 93.65 ± 0.29 98.24 ± 0.18 31.32 ± 0.44 61.09 ± 0.64 91.99 ± 0.34 98.01 ± 0.18
✓ 33.45 ± 0.46 63.96 ± 0.57 92.97 ± 0.31 97.83 ± 0.20 33.20 ± 0.48 61.09 ± 0.59 91.49 ± 0.36 97.80 ± 0.19

✓ ✓ 33.33 ± 0.48 64.01 ± 0.56 92.99 ± 0.31 97.84 ± 0.20 33.33 ± 0.48 61.16 ± 0.59 91.46 ± 0.36 97.78 ± 0.19
✓ ✓ 33.64 ± 0.47 65.19 ± 0.57 93.60 ± 0.29 98.26 ± 0.18 33.64 ± 0.47 62.13 ± 0.61 92.18 ± 0.33 98.20 ± 0.17

✓ ✓ 34.26 ± 0.49 64.69 ± 0.56 93.52 ± 0.28 98.15 ± 0.16 34.06 ± 0.49 62.29 ± 0.60 92.21 ± 0.34 98.07 ± 0.18
✓ ✓ ✓ 34.16 ± 0.48 65.33 ± 0.55 93.65 ± 0.29 98.26 ± 0.18 33.82 ± 0.50 62.38 ± 0.60 92.21 ± 0.33 98.19 ± 0.17

50

32.58 ± 0.43 60.54 ± 0.57 89.88 ± 0.39 96.03 ± 0.27 33.87 ± 0.46 53.15 ± 0.54 85.71 ± 0.50 95.06 ± 0.30
✓ 34.69 ± 0.47 61.18 ± 0.54 90.63 ± 0.38 96.69 ± 0.23 36.01 ± 0.46 56.70 ± 0.55 87.80 ± 0.45 96.67 ± 0.24

✓ 33.47 ± 0.43 68.51 ± 0.68 95.48 ± 0.23 99.19 ± 0.11 34.53 ± 0.44 63.74 ± 0.77 94.26 ± 0.28 99.11 ± 0.11
✓ 36.59 ± 0.48 66.46 ± 0.56 94.37 ± 0.26 98.50 ± 0.16 38.50 ± 0.50 66.56 ± 0.56 93.86 ± 0.28 98.77 ± 0.13

✓ ✓ 37.61 ± 0.49 67.05 ± 0.55 94.47 ± 0.26 98.56 ± 0.15 38.44 ± 0.51 67.20 ± 0.55 93.88 ± 0.28 98.84 ± 0.13
✓ ✓ 34.91 ± 0.48 69.40 ± 0.58 95.45 ± 0.23 99.10 ± 0.12 37.24 ± 0.47 67.71 ± 0.60 94.44 ± 0.27 99.16 ± 0.11

✓ ✓ 37.97 ± 0.52 69.08 ± 0.55 95.23 ± 0.23 99.03 ± 0.10 39.07 ± 0.48 68.43 ± 0.56 94.44 ± 0.26 99.09 ± 0.11
✓ ✓ ✓ 39.21 ± 0.51 70.52 ± 0.53 95.42 ± 0.23 99.12 ± 0.11 38.92 ± 0.50 68.92 ± 0.56 94.46 ± 0.27 99.16 ± 0.11
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To better evaluate the effectiveness of each isolated component and different combina-
tions of the three components towards performance in cross-domain few-shot transfer, we
further compute the average accuracy across different datasets and shot levels and rank
them in Figure 9. We can observe that the rank of isolated performance gains of using
PID, CFD, or PC is {PC > CFD > PID} for both multi-source and single-source FSL. The
full adaptation can achieve the best mean accuracy in both multi-source and single-source
settings. Overall, the adaptation provides an average improvement of 4.5% and 6.4% for
multi-source FSL and single-source FSL, respectively.

(a) Mean accuracy on Multi-source FSL (b) Mean accuracy on Single-source FSL

Figure 9. Evaluating the effectiveness of each isolated component and different combinations of
the three components (PID, CFD, and PC) towards performance in cross-domain few-shot transfer.
(a) Mean accuracy across different datasets and shot levels for multi-source FSL. (b) Mean accuracy
across different datasets and shot levels for single-source FSL. We can observe that the full adaptation
can achieve the best mean accuracy in both multi-source and single-source settings.

6.3. Effect of Different Classifier Learning

We also compare some variants built on our pre-trained multi-source representations
using different classification modules or fine-tuning regimes:

• Fixed-MSR: Directly leveraging the frozen multi-source representations with NNC
baseline.

• Ft-LC: Fine-tuning a linear classification layer on each frozen representation head.
• Ft-CC: Fine-tuning a cosine classification layer on each frozen representation head.
• Ft-MSR-LC: Fine-tuning both multi-source representations (projection layers) and

following linear classification layers.
• Ft-MSR-CC: Fine-tuning both multi-source representations (projection layers) and

following cosine classification layers.

The results are reported in Table 6. We can observe that: (1) only fine-tuning a classifier
on the frozen representations can obtain performance gains in all settings. Besides, fine-
tuning cosine classifiers (Ft-CC) always outperform linear classifier-based ones (Ft-LC),
which is also consistent with the previous literature findings [13,21]. (2) further adapting
the representations associated with the classifiers (Ft-MSR-LC & Ft-MSR-CC) can also lead
to accuracy boosts.
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Table 6. Quantitative analysis of different classifiers that are incorporated into our pre-trained
multi-source representations during the meta-test stage.

Methods
ChestX ISIC

5-Way 5-Shot 5-Way 20-Shot 5-Way 50-Shot 5-Way 5-Shot 5-Way 20-Shot 5-Way 50-Shot
Fixed-MSR 25.96 ± 0.44 30.20 ± 0.46 32.58 ± 0.46 48.61 ± 0.62 58.13 ± 0.61 60.54 ± 0.57

Ft-LC 25.68 ± 0.44 30.53 ± 0.46 33.64 ± 0.48 51.32 ± 0.63 61.52 ± 0.57 64.18 ± 0.56
Ft-CC 26.75 ± 0.44 32.69 ± 0.48 37.19 ± 0.53 51.51 ± 0.64 63.59 ± 0.57 67.75 ± 0.55

Ft-MSR-LC 26.25 ± 0.45 31.10 ± 0.46 34.26 ± 0.48 51.81 ± 0.62 62.56 ± 0.57 65.07 ± 0.56
Ft-MSR-CC 27.04 ± 0.45 33.31 ± 0.49 38.26 ± 0.52 52.12 ± 0.63 64.52 ± 0.56 70.00 ± 0.53

Methods EuroSAT CropDiseases
5-Way 5-Shot 5-Way 20-Shot 5-Way 50-Shot 5-Way 5-Shot 5-Way 20-Shot 5-Way 50-Shot

Fixed-MSR 84.76 ± 0.51 89.36 ± 0.40 89.88 ± 0.39 91.89 ± 0.47 95.22 ± 0.29 96.03 ± 0.25
Ft-LC 85.28 ± 0.48 91.01 ± 0.35 91.85 ± 0.32 92.85 ± 0.42 96.78 ± 0.22 97.64 ± 0.16
Ft-CC 86.71 ± 0.48 93.08 ± 0.29 94.52 ± 0.25 94.11 ± 0.39 97.93 ± 0.17 98.83 ± 0.11

Ft-MSR-LC 85.82 ± 0.48 91.62 ± 0.33 92.48 ± 0.30 93.51 ± 0.40 97.21 ± 0.20 98.00 ± 0.15
Ft-MSR-CC 86.77 ± 0.48 93.48 ± 0.28 95.09 ± 0.23 94.45 ± 0.38 98.18 ± 0.16 99.09 ± 0.10

6.4. Impressive Visualization

To further qualitatively understand how the adaptation leads to few-shot performance
gains, we visualize feature embeddings of the query images and the class prototypes
by t-SNE [76] in Figure 10, which is computed in a 5-way 5-shot task sampled from the
CropDisease dataset. Figure 10a–f denote the multi-head representations, each of which
shows its feature embeddings before or after the adaptation, respectively. The benefits
of our adaptation method can be attributed to two aspects: (1) The query features of the
same class become more compact, and the class clusters are more separable from each other
after making the adaptation. It also indicates that our LAMR can encourage intra-class
compactness and inter-class divergence, which results in more discriminative features for
classification. (2) The induced class prototypes computed from the adapted instance proxy
are also more representative so the prototypes can be used to classify the query features
well. These observations can also explain the significant performance boosts presented in
the ablation study.

Pretrained  Adapated Pretrained  Adapated

(a) Features on Representation-Head 1

(f) Features on Representation-Head 6(e) Features on Representation-Head 5

(d) Features on Representation-Head 4(c) Features on Representation-Head 3

(b) Features on Representation-Head 2

Figure 10. The t-SNE visualization of the feature distribution on the multi-head representations
before and after making adaptation by our method. (a–f) show the six representation spaces learned
on the BSCD-FSL benchmark. Better viewed in color with zoom-in.
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We further analyze how features are changed with the adaptation by visualizing class
activation maps (CAMs) [77] on a 5-shot task sampled from the CropDisease, which can
also be regarded as a fine-grained recognition task on grape diseases. Comparisons of
regions that the deep CNNs focus on for discrimination before and after the adaptation are
shown in Figure 11. We can make the following observations: (1) For the healthy grape leaf,
visual cues to make predictions do not significantly change before and after the adaptation,
which indicates that the pre-trained features can be generalized enough to recognize such
common natural objects. However, we can still see that the adaptation can make CNN
features more focused on the skeleton and edge of the leaf but less on the background.
(2) For the two grape leaf diseases, our adaptation method can help CNN concentrate on
the most relevant regions with respect to the two specific diseases. In contrast, the CNN
features without the adaptation still focus on the visual cues of the common object, such as
the leaf edge. The change indicates our method can improve discrimination towards the
class-specific visual cues. The ability to steer the task-relevant features verifies the superior
performance of our LAMR.

Healthy grape leaf 

Black measles/Esca
(A grape disease)

Black rot
(A grape disease)

Original
image

Without 
adaptation

With
adaptation

Original
image

Without 
adaptation

With
adaptation

Figure 11. Visualization using the class activation maps (CAMs) to show the regions that deep
networks focus on before and after the adaptation. Image examples from a 5-shot task in the
CropDisease. Better viewed in color.

7. Conclusions and Future Work

In this paper, we investigate a more practical FSL setting, namely multi-source cross-
domain few-shot learning. To tackle the problem, we propose a simple yet effective multi-
source representation framework for learning prior knowledge from multiple datasets,
which enables generalization to a wide range of unseen domains. Further task-specific
adaptation on few-shot data is performed to enhance instance discrimination and class
discrimination by minimizing two contrastive losses on the multi-domain representations.
We empirically demonstrate the superiority of our LAMR over many previous methods and
strong baselines, which achieves state-of-the-art results for cross-domain FSL. We extend
LAMR to single-source FSL by introducing dataset-splitting strategies that equally split
one source dataset into sub-domains. The empirical results show that applying simple
“random splitting” can improve conventional cosine-similarity-based classifiers in FSL with
a fixed single-source data budget. Extensive ablation studies and analyses illustrate that
each component of our method can effectively facilitate few-shot transfer. Our method also
has some limitations, and we could see some promising future directions. First, we conduct
adaptation by either fine-tuning or freezing the full backbone. It would be promising for
future work to seek more flexible adaptation methods that can select a part of layers or
parameters to adjust conditioning on the given task. Second, a study [65] has also shown
that the choice of the source training dataset has a huge impact on the performance of
downstream tasks. We also acknowledge that not every dataset in the multi-source domains
contributes equally to the target task. Further improvements can also be explored for a
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more scalable transfer by considering the similarity between the source and target domains.
It is worth noting that the two limitations may also exist with most other methods that
focus on representation learning on source data or adaptation on few-shot data. Besides,
to our knowledge, multi-source few-shot learning on other fundamental computer vision
applications, such as segmentation and detection has not been explored yet. Developing
new benchmarks for those computer vision problems would also foster future progress in
this field.
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