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Abstract: In recent times, the prevalence of chatbot technology has notably increased, particularly
in the realm of medical assistants. However, there is a noticeable absence of medical chatbots that
cater to the Hungarian language. Consequently, Hungarian-speaking people currently lack access to
an automated system capable of providing assistance with their health-related inquiries or issues.
Our research aims to establish a competent medical chatbot assistant that is accessible through both a
website and a mobile app. It is crucial to highlight that the project’s objective extends beyond mere
linguistic localization; our goal is to develop an official and effectively functioning Hungarian chatbot.
The assistant’s task is to answer medical questions, provide health advice, and inform users about
health problems and treatments. The chatbot should be able to recognize and interpret user-provided
text input and offer accurate and relevant responses using specific algorithms. In our work, we put a
lot of emphasis on having steady input so that it can detect all the diseases that the patient is dealing
with. Our database consisted of sentences and phrases that a user would type into a chatbot. We
assigned health problems to these and then assigned the categories to the corresponding cure. Within
the research, we developed a website and mobile app, so that users can easily use the assistant. The
app plays a particularly important role for users because it allows them to use the assistant anytime
and anywhere, taking advantage of the portability of mobile devices. At the current stage of our
research, the precision and validation accuracy of the system is greater than 90%, according to the
selected test methods.

Keywords: medical assistant; chatbot; health; Hungarian

1. Introduction
1.1. Medical Chatbot Assistants

Medical chatbot assistants are a new way to help the field of medicine and its devel-
opment [1–5]. Usually, they can be accessed and used via a website or through a mobile
application. These solutions use artificial intelligence (AI) in the background to provide the
right answers to user questions. Nowadays, many branches of information technology are
involved in healthcare, so it is not surprising that the use of medical chatbot assistants has
started to spread. Numerous medical chatbots have been developed, each with their own
advantages. Despite their widespread adoption elsewhere, the utilization of such tools
is not yet prevalent in Hungary. Furthermore, the absence of a medical chatbot capable
of communicating in Hungarian underscores the need for our initiative. Our future aim
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is to create an official and seamlessly functioning medical chatbot that facilitates continu-
ous communication. In this article, we present our first results of this research objective
by introducing the AI-related solutions developed when a small text corpus is available.
From the perspective of the operation of solutions, users who enter their symptoms should
receive prompt advice and answers through this platform. The use of chatbots can have a
number of positive impacts on healthcare [6]. One of the most important benefits is that
they reduce the workload of healthcare professionals [7–10]. This will help the overall
efficiency of healthcare facilities in the long run. Another very important advantage is that
a chatbot can provide an immediate answer to patient questions and concerns, so that they
can get help at any time of the day.

1.2. Natural Language Processing

Natural language processing (NLP) [11–15] is a subset of AI solutions dedicated to
exploring the interaction between human language and computers. It employs various
methods to comprehend and interpret text, with the aim of generating written content
indistinguishable from human-authored pieces. The breadth of tasks in NLP includes
tokenization and named entity recognition, which involve breaking down text into smaller
units, such as words or sentences, known as tokens, facilitating further analysis and
processing [16–20]. Assigning grammatical tags to words aids in understanding their roles
in a sentence, enabling the identification and interpretation of their grammatical properties.
NLP employs a blend of rule-based approaches, statistical models, and machine learning
algorithms. In essence, NLP is the automated analysis and representation of human
language for computers, using theoretically grounded computational techniques [21].

1.3. Challenges in Developing Hungarian-Language AI Tools

The development of AI tools for the Hungarian language presents unique challenges
that extend beyond the typical complexities encountered in more commonly supported
languages. The primary difficulties are twofold: linguistic complexity and resource scarcity.

Hungarian is an agglutinative language with a complex morphological structure,
making it challenging for natural language processing (NLP) [22]. It requires sophisticated
algorithms to parse sentences accurately due to its rich inflection and morpheme complexity.
Additionally, Hungarian suffers from a lack of large, annotated datasets necessary for
training AI models, which hampers the development of effective tools for tasks like speech
recognition and machine translation. This resource scarcity results in less reliable and
lower-performing AI applications for the language [23].

In response to these challenges, our research has been focused on creating robust AI
tools specifically designed for the Hungarian language. One of the major contributions
of this study is the development of a specialized morphological analyzer that tackles the
complex inflection characteristic of Hungarian. We have also constructed a comprehensive
dataset from the ground up. This dataset is annotated to assist in training our models,
enabling them to process Hungarian with higher accuracy and efficiency [24].

The paper is organized to guide the reader through the entire research process and
its implications methodically. Following this introduction, Section 2 reviews related work,
shedding light on existing efforts and situating our contributions within the broader
academic landscape. Section 3 delves into the methodology, detailing the steps taken in
data collection and model training. Section 4 presents our results, offering a critical analysis
of the effectiveness of our solutions. Section 5 discusses potential avenues for future
research and the expected impact of our work on the development of Hungarian-language
AI tools. The paper concludes with a summary of our findings and reflections on the future
potential of AI applications in processing agglutinative languages like Hungarian.
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2. Related Works
2.1. Medical Chatbots

Ada Health is a healthcare technology company that uses AI to help people monitor
their health, but also to help them make lifestyle changes [25]. Ada Health can be down-
loaded to mobile phones, where it will diagnose you if you write down your complaints.
It can also remember previous diseases and predispositions, which is a very important
feature because it gives you more accurate conclusions. In the app, you can ask questions,
register symptoms, and get information about your health status. Ada Health is able to
ask users detailed questions in order to give a more accurate diagnosis. Ada Health also
looks at test results, patient history, and general health to help people understand the
possible causes of their illnesses. This application works with a large number of health
institutions. This gives them access to official medical information and advice. A study
involving 378 patients compared the safety of Ada’s emergency advisory system with the
Manchester Triage System (MTS) in hospital emergency care [26]. Ada showed a high
safety rate in all medical specialties in the emergency department (94.7%), with a particular
focus on internal medicine, orthopedics and traumatology, and neurology. Over 43% of
patients in the lowest three categories of MTS could have sought less urgent care safely,
such as visiting their general practitioner or treating their symptoms at home. With Ada,
the workload in emergency departments can be reduced by directing patients who need
care to less urgent care at home.

A similar study by Lee and Kang [27] addressed this topic during the COVID-19
epidemic. Given that patients were reluctant to leave their homes and avoided contact by
default, they wanted to create a medical chatbot to help patients without having to leave
their homes. In terms of data collection, the study used a web-based healthcare platform,
the HiDoc, which allowed users to anonymously describe their symptoms. For the dataset,
the titles of the posts were collected and presented in a one-sentence format. Data cleaning
included eliminating duplicate and missing data, excluding ambiguous sentences, and
correcting mislabeled cases, demonstrating a rigorous approach to ensure data quality.
Improvements in telemedicine and the proliferation of digital platforms have been ac-
companied by a reduction in face-to-face interactions between patients and healthcare
providers, which became particularly important during the COVID-19 pandemic [27].

Diabot, presented in [28], is a generic and diabetes-specific version of a chatbot that
uses NLP techniques based on health data. Diabot interacts with patients and generates
specific predictions using the Pima Indian diabetes dataset. The study gives importance
to ensemble learning, which combines weak models to create a balanced and accurate
model. The ensemble model shows good accuracy in predicting both general health and
diabetes. Diabot successfully interacts with all patients and the methods used are incentives
for further investigation of ensemble learning. The paper highlights Diabot’s simple user
interface provided by React UI and compares in detail the performance of different machine
learning algorithms [28].

Another relevant example to our research is the so-called Medical ChatBot presented
in [1]. The authors have specifically used support vector machine (SVM) technology in their
research and compared it with different methods. They chose SVM because of its ability to
detect more complex relationships than other classification models. They included various
data sources in the training and testing processes, using a 60–40% split between training
and testing data [1].

Table 1 provides a succinct comparison of these different chatbots based on key
performance and operational metrics, illustrating their effectiveness and user experience.
As can be observed, the AI that performs best is the one that can be used on a smartphone.
However, Ada also achieves better performance for specific diseases, but its overall accuracy
is lower compared to other chatbots.
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Table 1. Comparison of medical chatbots in recent literature.

Reference Functionality Accuracy Interface Integration Support

[25] Diagnostic support 0.7 User-friendly Healthcare data
[28] Predictive diagnostics 0.86 User-friendly NLU
[27] Specialty matching 0.96 Smartphones Healthcare data system
[1] Query processing 0.95 User-friendly API integration

2.2. Ethical Implications

In recent developments within the realm of AI chatbots, significant attention has been
directed towards understanding their ethical implications, particularly in sectors such
as education and research. A study by Kooli [29] provides a comprehensive analysis of
the challenges and ethical considerations inherent in the deployment of chatbots. This
paper highlights issues such as data privacy, informed consent, and the potential for
bias, offering solutions to mitigate these risks. Such contemporary analyses not only
add to our understanding of the ethical landscape surrounding AI technologies but also
underscores the critical need for frameworks that ensure responsible AI usage. This
perspective is particularly pertinent to our research as it aligns with our investigation
into the implications of AI-driven communication tools in medical settings, where ethical
considerations are paramount.

Another study on AI ethics in healthcare [30] offers an in-depth analysis of the ethical
and regulatory challenges associated with deploying artificial intelligence (AI) technologies
in healthcare settings. It focuses on how AI technologies intersect with privacy and data
protection issues, particularly under the stringent regulations of the European General Data
Protection Regulation (GDPR). The review highlights the critical importance of compliance
with GDPR for AI applications in healthcare, detailing the implications for patient data
privacy, consent, and security. The paper also discusses the broader ethical considera-
tions, such as bias, transparency, and the accountability of AI systems in clinical settings.
Through its comprehensive analysis, the article aims to inform developers about the essen-
tial guidelines and practices for integrating AI into healthcare responsibly, ensuring that
these innovations benefit patients while safeguarding their personal information and rights.

3. Data Collection

Collecting and organizing health data is always a challenge, especially in the field of
medical technologies where data quality is a crucial aspect. Today, health information is
critical for the prevention and treatment of diseases. The data for this investigation under-
went meticulous curation to ensure quality, originating from databases housing various
categorized complaints (e.g., [31–33]), presented in JSON format [34]. Further chatbot JSON
dataset examples are indicated in [35,36]. The initial dataset was processed and translated
from English to Hungarian. Subsequently, we extracted relevant information from health-
care databases to complement our dataset. From this comprehensive dataset, we conducted
further preprocessing steps to create our own dataset tailored to the specific needs of
our research [37,38]. We systematically curated our dataset with a rigorous emphasis on
diversity, encompassing a broad spectrum of areas, including many prevalent diseases
commonly encountered in everyday life. This meticulous approach involved gathering
information to establish a well-rounded and inclusive foundation. By incorporating a
comprehensive array of diseases that are commonplace in daily experiences, we aimed
to enhance the robustness and applicability of our dataset. This strategy strengthened
its capacity for meaningful insights and analysis across a wide range of health-related
scenarios. We amassed a comprehensive dataset comprising 36 diseases, with uniform data
amounts across all classes. This approach ensured parity in the quantity of information
available for each disease category, thereby facilitating an equitable assessment of the chat-
bot’s performance in disease detection. The uniformity in data distribution among classes
was designed to mitigate potential biases and enhance the model’s ability to generalize
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effectively across the diverse spectrum of diseases under consideration [39,40]. First of all,
we collected textual data that a user would give to a chatbot, i.e., data about symptoms
and complaints. Then, we assigned them to the disease they belong to. The final step was
to compile the correct cures and treatments for the diseases in a dictionary and collect
what the chatbot could answer in these scenarios. In the future, our aim is to expand this
database so that as many diseases as possible can be identified and resolved. We would
like to collect more sentences for existing diseases and add more diseases to the current
database. Health data collection and analysis are always a dynamic process and such
projects require a long-term commitment.

As illustrated in Figure 1, the distribution of sentences in our dataset is categorized by
disease. This visualization aids in comprehending the breadth and depth of our textual
data, which spans across various medical conditions, providing a solid foundation for the
AI to learn from real-world examples. The figure shows the extensive coverage of diseases,
highlighting the comprehensive nature of our dataset. Figure 1 shows the collected text
database where the horizontal axis shows the 36 diseases collected and the vertical axis
shows the medically accurate sentences collected, describing the diseases in context.

Figure 1. Sentence distributions categorised by disease.

4. Dataset

The dataset presented in the following is a unique and important resource in the
field of disease diagnostics, which we have collected ourselves as part of a project that is
still in progress. The data include symptoms related to 36 different diseases, with each
complaint being associated with a disease. The data are available in a structured format,
in a CSV file, where the first column contains the complaints and the second column
contains the associated diseases. The dataset contains a total of 1500 records describing in
detail the symptoms of each disease. The data collection process is a meticulous and time-
consuming task that involves thorough examination and verification of each complaint–
disease association. As our project is still in progress, we have dedicated our efforts to
ensuring the accuracy and reliability of the existing 1500 records. This commitment to
precision and thoroughness in data collection naturally limits the speed at which we can
expand our dataset. We are actively working towards acquiring additional data to enhance
the dataset. Furthermore, as our research project is still in progress, we are continuously
gathering additional data to enhance the richness and diversity of the dataset. We anticipate
that future iterations will include a more extensive range of symptoms and diseases.
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Table 2 presents a detailed view of the symptom–disease associations utilized in our
research. This table is fundamental for understanding how symptoms are directly linked to
specific diseases, which supports the development of our AI model’s diagnostic accuracy.
For instance, the association of ‘inflamed eyes’ with ‘conjunctivitis’ provides a direct insight
into the practical application of our dataset in medical diagnostics.

Table 2. Some examples from the symptom–disease association table.

Symptom Disease

My eyes are inflamed. Conjunctivitis
I feel tired and irritable during the day. Insomnia
Warm, red skin over the affected joint. Arthritis

Throbbing in the neck or ears. High blood pressure

The dataset quality, particularly the issues of balance and semantic clarity, is a crucial
factor and it is important to consider how it impacts machine learning (ML) and deep
learning (DL) models. Imbalanced datasets can skew model training, leading to biased
outputs and poor generalization to real-world scenarios. Similarly, semantically sloppy
datasets, where the data are noisy or inconsistently labeled, can confuse models and
degrade their performance. The reference paper, “An alternative approach to dimension
reduction for Pareto distributed data: a case study” [41], offers insights that could be
relevant to addressing these challenges in the context of Hungarian language processing.
Although the paper primarily focuses on dimension reduction for Pareto-distributed data,
its methodologies and findings could be adapted to improve the handling of unbalanced
and semantically inconsistent datasets in NLP tasks.

Specifically, the authors’ approach to dimension reduction, which prioritizes pre-
serving significant variance in highly skewed distributions, could inform techniques for
managing datasets where certain linguistic features or labels are disproportionately rep-
resented. By integrating such dimensionality reduction techniques, researchers might
better manage and interpret large, complex datasets, leading to more robust AI models for
languages like Hungarian, whih face data scarcity and quality issues.

5. Methods
5.1. Long Short-Term Memory

Long Short-Term Memory (LSTM) [42–44] is a specialized deep learning technique
designed for analyzing sequential data, addressing issues found in conventional recurrent
neural networks (RNNs) [45–47] and other machine learning algorithms. It was proposed
by Hochreiter and Schmidhuber [48] to overcome the gradient vanishing problem and
enhance the effectiveness of RNNs [49–53]. LSTM enables the retention and utilization
of long-term information in a network. There exist four primary elements in this context:
the input gate, the forget gate, the introduction of new information, and the output gate.
These components play a crucial role in transferring information from one point to another
and in retaining and storing past information. The forget gate assesses the degree to
which preceding information should be disregarded in the cell state. Meanwhile, the input
gate determines how much the cell state should be refreshed with the latest information.
The new information outlines the extent to which the cell state should be updated with the
current input. Lastly, the output gate dictates the degree to which the cell state should be
utilized in generating the output layer.

LSTM is a special version of recurrent neural networks (RNNs) and can detect long-
term relationships in text. Therefore, LSTM models are the ideal choice when a chatbot
needs to process text data and understand it. For chatbots, the incoming text messages are
often sequential and LSTMs can help them to easily process and respond to them. LSTM
models can be easily fine-tuned and customized to the specific application. This allowed our
chatbot to perform 36 different classification tasks, in our case, for diseases. The more data
they are provided with, the better answers they can generate. Furthermore, LSTM models
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can be used to describe the grammar and complexity of linguistic and semantic language.
Furthermore, these models can preserve and handle long-term textual contexts. This
enables chatbots to better understand and interpret the requests and responses provided
by their users [54–56].

In developing the medical assistant chatbot, our research team preferred to use LSTM
models. Although BERT (Bidirectional Encoder Representations from Transformers) models
are highly efficient in natural language processing, our choice of LSTM is justified by
a number of factors. First, LSTM models can handle smaller datasets more efficiently.
In the present case, since the amount of available medical data was limited, the ease of
adaptability and less rigorous demands on the pre-learned data offered by LSTM were
necessary. Second, medical texts often contain long-term dependencies that can be key
to making correct diagnoses and treatment plans. LSTM models can efficiently handle
and memorize these long-term relationships, providing an advantage over BERT [57–59]
models. A third reason for choosing LSTM models is the ease of implementation and fine-
tuning. While fine-tuning a BERT model often requires complex procedures and significant
resources, LSTM models are more flexible and can be more easily fine-tuned on smaller
datasets with minimal prior expert knowledge.

5.1.1. Composition

First, we created a tokenizer object. A tokenizer is a tool that helps tokenize words.
This is important because machine learning models need to use numbers as input and
convert words into numbers. First, we called the fit_on_texts() method on our input data.
This method initializes the dictionary, which is an empty dictionary of words and their
corresponding numbers pairs. The method counts the number of occurrences of each
word in the processed text. This helps to determine the importance of the words in the
subsequent processing. After the tokenizer object was trained, the texts_to_sequences()
method was used to tokenize the input texts. Machine learning models generally require
input of the same length. We used the pad_sequences() method to tokenize sequences
with the same length, adding zeros to shorter sequences. This way, all input sequences
contained the same number of elements. Finally, vocab_size was determined using the
trained tokenizer. The tokenizer.word_index contains a dictionary, where the numbers
assigned to the words are stored.

5.1.2. Layers

The very first layer, as shown in Figure 2, is an embedding layer [60–62], which is a
layer in neural networks that transforms the input data into a form that is easy to manage
and can be efficiently handled in the network. In text processing, for a language model, it
transforms words into vectors that represent those words in a field. In this layer, we first
had to define the input dimension. In our case, this input dimension was a value also called
“vocabulary size”. The vocabulary size is equal to the total number of different individual
words in a given dataset. The next parameter that had to be defined was output_dim. This
gives the dimension of the output vectors. In our case, it was 100, so the output vector was
a 100-dimensional vector representing the input words. The output dim setting played
an important role in the embedding layer performance and model efficiency. In general,
output vectors with higher dimensions contain more information, but the model becomes
more complex and requires more computational resources.

The next layer is an LSTM, where the number of hidden neurons was set to 128. The
return_sequences parameter was set to true, indicating that the LSTM layer returns the full
length of the sequence at each time step, not just the last output of the last time point. This
is important because this data are passed to additional LSTM layers. Finally, we specified a
dropout of 0.4. A dropout is a technique that helps avoid overfitting [63] the model.

Then, a BatchNormalization layer [64] is deployed. Its purpose is to stabilize and
accelerate neural network learning, especially for deep networks. A BatchNormalization
normalizes the inputs of each layer of the neural network, it transforms them in such a way
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that the mean becomes 0 and the variance becomes 1. This helps to distinguish between
data scaling differences and also stabilizes the distribution of the data. A BatchNormaliza-
tion layer allows the normalization of current outputs not only for an entire dataset (all
examples), but within a minibatch (small set of examples). This means that it uses a separate
mean and standard deviation for each minibatch [65,66]. This contributes to the stability
of the model calculations. After normalizing the actual input data, it applies weights and
offsets to the original data so that the network can learn optimal transformations. By using
small minibatches, this layer makes the network somewhat stochastic, which can facilitate
regularization and avoid overfitting. We then repeated the LSTM and BatchNormalization
layers twice with the same parameters [67].

batch_normalization_2 input: (None, 11, 128)
BatchNormalization output: (None, 11, 128)

lstm_2 input: (None, 11, 128)
LSTM output: (None, 11, 128)

batch_normalization_1 input: (None, 11, 128)
BatchNormalization output: (None, 11, 128)

lstm_1 input: (None, 11, 128)
LSTM output: (None, 11, 128)

batch_normalization input: (None, 11, 128)
BatchNormalization output: (None, 11, 128)

lstm input: (None, 11, 100)
LSTM output: (None, 11, 128)

embedding input: (None, 11)
Embedding output: (None, 11, 100)

embedding_input input: (None, 11)
inputLayer output: (None, 11)

?

?

?

?

?

?

?

Figure 2. The structure of the LSTM model, part 1.

A GlobalAveragePooling1D layer [68,69] is applied after the last LSTM layer, as shown
in Figure 3. GlobalAveragePooling1D is designed to convert the output of 2D layers into a
simple vector. The “1D” indicates that this method is one-dimensional, i.e., a time series
or text dimensions. This layer averages the output time series and returns a single vector
containing the averaged values. By averaging the long time series, the GlobalAveragePool-
ing1D layer can produce a small dimension representation of the input texts. This makes
the network input length independent [70]. Then, in the next step, a Dense layer [71] with
64 neurons is added and a ReLU [72,73] activation function. This is followed by a Dropout
layer [74] with a rate of 0.4. These two layers were repeated a second time in the model
structure. The last layer is a SoftMax activation [75,76] layer with 36 neurons, because this
is a classification task with 36 different diseases.
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Activation output: (None, 36)
activation input: (None, 36)

dense_2 input: (None, 64)
Dense output: (None, 36)

dropout_1 input: (None, 64)
Dropout output: (None, 64)

dense_1 input: (None, 64)
Dense output: (None, 64)

dropout input: (None, 64)
Dropout output: (None, 64)

dense input: (None, 128)
Dense output: (None, 64)

global_average_pooling1d input: (None, 11, 128)
GlobalAveragePooling1D output: (None, 128)

?

?

?

?

?

?

Figure 3. The structure of the LSTM model, part 2.

5.1.3. Optimization and Loss Function

Adam optimization [77] was applied to the LSTM model. Adam is one of the op-
timization algorithms in machine learning, which is mainly used for neural networks.
Adam is an acronym that stands for Adaptive Moment Estimation, and derives its name
from the fact that the algorithm adapts the learning rate to each weight separately. Adam
initializes the weights and a moving average for each of the weights and the square of the
weights. These values are set to zero or other initial values. The algorithm uses a minimum
size (minibatch) of the training data and then calculates the error and Adam updates the
moving averages of the weights and the gradients. This allows the learning rate to vary for
each weight separately, which can result in more efficient learning. The algorithm updates
the weights according to the learning rate and gradient and then returns to minibatch
processing again [78]. For this model, categorical cross-entropy was used [79]. This is a cost
function in machine learning that most often is used in classification tasks where classes
are categorical or discrete. The input model generates probabilities for all possible classes
based on the input data. These probabilities are obtained as the output of the SoftMax [80]
activation layer and add up to 1 for all inputs. The real class labels encode which class is
the correct one, and categorical cross-entropy compares the estimated probabilities with the
real class labels. Categorical cross-entropy is a scalar function that reflects how much the
probability distribution of the model differs from the real label distribution. The smaller the
value, the better the model fits the real classes. Gradient descent algorithms (such as Adam
or Stochastic Gradient Descent) tend to minimize the categorical cross-entropy function
during the training of the model [81].

5.2. Bidirectional Encoder Representations from Transformers

Bidirectional Encoder Representations from Transformers (BERT) [82–84] stands out
as a widely utilized language model crafted by Google Research. Being grounded in the
transformer architecture, BERT diverges from sequential text processing, opting for an
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attention mechanism to discern word relationships. This parallel processing capability
enables transformers to adeptly manage long-term dependencies and comprehend con-
text in a more holistic manner. A pivotal aspect of BERT lies in its bidirectional training
methodology. Unlike previous models that adopted a unidirectional approach, relying
solely on preceding words to predict the next, BERT employs a masked language model ob-
jective in its pre-training. In this process, certain words in the input sentence are randomly
masked, and the model is crafted by predicting these masked words within their contextual
framework. BERT represents a significant advancement in pre-trained language models,
facilitating fine-tuning for diverse tasks such as text classification and question answering.
During fine-tuning, the BERT model engages with a labeled dataset specific to the target
task, incorporating a task-specific output layer. Leveraging the knowledge acquired from
prior tasks, BERT exhibits remarkable performance. Since its inception, various iterations
and enhancements have emerged in the realm of language models.

BERT is a transformer model that is pre-trained on a large text source, after which we
can easily apply it to our own task. Its goal is to build deep, bidirectional representations
of unlabeled text in advance, taking into account left and right context together in each
layer. In this way, the pre-trained BERT model can be fine-tuned with a single additional
output layer, so that it can be created for a variety of tasks, such as question answering
and language inference, without much need for modification. BERT outperforms previous
models in natural language processing tasks. For this reason, it has become very widely
used in the world of artificial intelligence, as well as in academia. These are the reasons
why we chose BERT for our research. The BERT model is capable of syntactic and semantic
analysis of human language, and the results it produces are among the best available.
The BERT model can take into account all the words in a text and link them to other words
in the text. The BERT model is very versatile and can be used for many different tasks. It
has achieved many results, one of many being its performance in the SWAG competition.
BERT has outperformed previous top models, including human-level performance [57].

Choosing a BERT-based model over GPT for our medical assistant chatbot can be justi-
fied for several reasons. BERT is designed for various NLP tasks, including classification,
making it well-suited for our specific use case. Unlike GPT [85–88], which is primarily
focused on generating coherent and contextually relevant text, BERT’s bidirectional archi-
tecture allows it to capture intricate relationships between words and better understand
the context of medical queries. BERT’s pre-training on large corpora helps it grasp nuanced
language patterns, aiding performance in classification tasks with smaller datasets. GPT,
on the other hand, may not be as effective in scenarios with limited labeled examples.
Additionally, BERT’s attention mechanism allows it to focus on relevant parts of the input
sequence, which is crucial for understanding medical terminology and context. BERT’s
fine-tuning capabilities make it adaptable to specific domains, allowing our chatbot to learn
from the limited data available for medical assistance. GPT’s generative nature might not
be as well-suited for fine-tuning on specific tasks with a small dataset.

5.2.1. Composition

We started preparing the data for the model by taking all input complaints and requests
for a specific disease, so that, later, the AI would know what to do to remedy the problem.
The next step was to specify the diseases for which it would stick to the correct solutions.
We also had to adapt the data to the BERT model so that we could use it correctly. We
converted the categorical labels into numerical representations. Each category of input
data was assigned a unique integer. We tokenized them and loaded them into the BERT
model, which allowed us to use them for various natural language processing tasks that
we needed for the chatbot. We used a built-in model, changing the dropout of the hidden
layer from the default 0.1 to 0.2. For the model, we needed the length distribution of the
input data to determine the maximum length of a sentence that a user could type. Using
the TensorDataset, we combined the input sequences, attention [89–91], masks, and labels,
and then created a DataLoader with a given batch size and a random sampler to create a
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data channel. This pipeline iterated over the training data batch by batch, introducing data
into the model for training and optimization.

5.2.2. Layers

A modified BERT model, exhibited in Figure 4, has been devised specifically for en-
hancing the accuracy of the medical assistant chatbot. This class incorporates BERT as its
foundational model, complemented by additional layers to optimize performance. BERT
introduces the notion of contextual word representations, signifying the capture of meaning
and context for each word based on its surrounding words. The self-monitoring mecha-
nism inherent in BERT’s transformer enables it to selectively focus on various segments
within the input sequence, emphasizing the relationships between words. Through the
utilization of an attention mechanism, BERT adeptly models intricate linguistic structures
and dependencies. The model operates by taking input sentence identifiers and attention
masks, which are then passed through the BERT model, culminating in the generation of
the output [92].

We then added a linear layer, which defines linear transformations of the given
input and output dimensions, with 1024 and 768 parameters. The numbers 1024 and
768 denote the input and output dimensions of the fully connected layer. In this case,
1024 corresponds to the input size, which is equal to the dimension of the BERT embeddings.
BERT models typically output contextualized word embeddings of 1024 or 768, which
capture the meaning and context of each word in the input sentence. The 768 represents
the output size, which is the desired dimensionality of the output tensor produced by the
fully connected layer. This value can be chosen based on the specific requirements of a
given task or as a design decision of the neural network architecture. The fully connected
layer takes an input tensor of size [batch_size, 1024] and produces an output tensor of size
[batch_size, 768] by performing a linear transformation and applying weights and biases to
the input.

Following this, the implementation of the Rectified Linear Unit (ReLU) activation
function takes place. This activation function is characterized by numerous advantages,
making it widely popular. Its incorporation introduces nonlinearity into the neural network,
enhancing the model’s ability to recognize and portray intricate relationships. Compared
to alternative activation functions like sigmoid [93] or tanh [94], ReLU is a straightfor-
ward choice. The ReLU function, defined as ReLU(x) = max(0, x), exclusively retains
positive values and assigns negative values to zero. This straightforwardness enhances
computational efficiency, promoting faster convergence during the training process [95].

The utilization of the ReLU activation function served the purpose of mitigating
the risk of vanishing gradients. A vanishing gradient refers to the inefficient transfer of
gradients from the model’s output back to layers situated closer to the input end in a
multilayer neural network [96]. Multilayer models are susceptible to drawing incorrect
conclusions due to this phenomenon. ReLU addresses this issue by setting the gradient
to zero when it experiences an exponential decrease. This action maintains a constant
gradient for positive values, preventing rapid gradient decline and facilitating a smoother
gradient flow during the backpropagation process [97]. When the gradient is set to zero, it
is disregarded by the model during the training phase. ReLU, by preserving the gradient
for positive values, contributes to enhanced generalization performance across various
deep learning tasks. By introducing nonlinearity [98] to the model, it allows for more
effective results on previously unseen data, marking one of its key attributes.

Subsequently, a Dropout layer was introduced to the model with a dropout rate set
at 0.2. Dropout serves as a regularization technique employed in neural networks to miti-
gate overfitting. This method randomly omits neurons in each training cycle, a percentage
specified by the dropout rate. Overfitting occurs when a model excels on training data
but struggles to generalize to unseen data. Dropout addresses this challenge by randomly
excluding neurons, preventing them from co-adapting excessively. This, in turn, compels
individual neurons to enhance their information content and diminish their reliance on
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the presence of other neurons. Following this, the final three layers were duplicated.The
adjustment was made to accommodate the specific requirements of 36 disease classes.

softmax input: (256, 36)
LogSoftmax output: (256, 36)

fc3 input: (256, 256)
Linear output: (256, 36)

dropout input: (256, 256)
Dropout output: (256, 256)

relu input: (256, 256)
ReLU output: (256, 256)

fc2 input: (256, 512)
Linear output: (256, 256)

dropout input: (256, 512)
Dropout output: (256, 512)

relu input: (256, 512)
ReLU output: (256, 512)

fc1 input: (256, 768)
Linear output: (256, 512)

cls_kh input: (256, 768)
CLS Token output: (256, 768)

bert input: (256, 20, 768)
BertModel output: (256, 20, 768)

id_mask_input input: (256, 20)
inputLayer output: (256, 20)

?

?

?

?

?

?

?

?

?

?

Figure 4. The structure of the BERT model.

The final layer incorporates a LogSoftmax activation function. A LogSoftmax is a
component commonly used in neural network architectures, particularly in the context of
deep learning and machine learning. It is often employed as the final layer in a network
for multiclass classification tasks. The LogSoftmax applies the logarithm of the softmax
function to the raw output scores (logits) produced by the preceding layers of a neural
network, according to the following formula:

Logsoftmax(x)i = log

(
exi

∑j exj

)
.

The negative values produced by the LogSoftmax are not used directly; rather, they are
used in the computation of the loss during training. The negative log-likelihood loss, when
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combined with the LogSoftmax, provides a measure of how well the predicted probabilities
match the true distribution of the classes.

The SoftMax function is a mathematical operation that takes a vector of real numbers
and transforms it into a probability distribution, where each element in the vector represents
the likelihood of a corresponding class [99].

5.2.3. Optimization and Loss Function

The optimization strategy employed for the model was AdamW, a variant of the
Adam optimizer commonly applied in conjunction with transformer-based models like
BERT. The selection of AdamW was specifically geared towards its compatibility with such
models. The optimizer’s learning rate was explicitly set to 10−3, dictating the pace at which
the optimizer adjusts the model parameters during training. For handling class imbalance
in the classification task, class weights were determined using the sklearn.utils.class_weight
module. The “balanced”option was utilized, automatically computing weights inversely
proportional to the class frequencies in the input data. This ensures that less frequent
classes receive higher weights, addressing the issue of class imbalance.

The negative log-likelihood loss (NLLLoss) [100] function was applied. It is a loss
function used in machine learning, particularly in the context of classification problems
where the goal is to predict a class label for a given input. This loss function is often used in
conjunction with the LogSoftmax activation function in the output layer of a neural network.
The NLLLoss is designed to be used with models that output log probabilities, typically
obtained by applying the LogSoftmax activation to the raw output scores (logits) [101] of a
neural network. The intuition behind the negative log likelihood loss is to penalize models
more when they assign low probability to the target class [67].

6. Results

Figure 5 demonstrates the validation and training accuracy of our LSTM model,
showcasing a significant achievement in model performance. As is exhibited, we have
achieved very promising results with the LSTM model. We got 0.91 validation accuracy.
We also tested the global F1-score, precision and recall, which came out to 0.9. This shows a
very good performance. Since the F1-score examines the correlation between precision and
recall, it can be seen that the model performance is very balanced for our data.

Figure 5. The accuracy and validation accuracy of the LSTM model.
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Figure 6 shows the training and validation accuracy of a chatbot over 100 epochs.
The blue line represents the training accuracy, which stabilizes around 0.75 and slightly
improves to 0.8. The orange line for validation accuracy also stabilizes around 0.65 and
modestly increases to about 0.7. As it is shown, BERT has very good results, but it is still in
its start-up phase. If a sufficient number of complaints are entered for a particular disease,
it detects it very well. However, those with even less data are mistaken and not recognized.
We also ran into the interesting fact that the complaint given can be the symptom of a wide
range of diseases, so it cannot categorize it exactly in the same class as the one we gave
it, but it does make the correct deduction. For the near future, we would definitely like
to expand the database in two aspects. One is that we want to collect more input data for
those diseases that are difficult to recognize. We also want to continue to include other
diseases, especially those that are very common in everyday life. As we mentioned with
the BERT model, we have so far achieved a validation accuracy of 0.7. As the LSTM model
produced significantly better results, we carefully reviewed its results and we would like
to present them.

Figure 6. The accuracy and validation accuracy of the BERT model.

The F1-score [102] serves as a crucial statistical metric commonly employed in mul-
ticlass classification scenarios, particularly in situations where class distribution is imbal-
anced. This metric is calculated as the harmonic mean of precision and recall, making it a
valuable measure for assessing overall classification performance across multiple classes.
The F1-score can be calculated using the following formula:

F1-score = 2 · precision · recall
precision + recall

,

where precision is the number of true positives (TP) [103] divided by the total number of
cases classified as positive. This indicates how accurate the classification is for positive
results. Recall is the number of TP cases divided by the total number of true positives
(true positive + false negative). The advantage of the F1-score is that it is an indicator that
considers both indicators in the same way. As precision and recall are often in conflict
(high precision for low sensitivity and vice versa), the F1-score helps to find a balanced
performance in the classification system. The goal is to achieve a high F1-score, which
means that the system classifies cases accurately and efficiently [104].

The following are the diseases, in order: low blood pressure, angioedema, arthritis,
chicken pox, fungal skin, COVID-19, vitamin D deficiency, diabetes, eczema, sprains, sore
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tooth, earache, ringing in the ears, weakness, bite, bruise, bronchial asthma, dehydration,
tearing, conjunctivitis, sunburn, fever, high blood pressure, cold, menstruation, migraine,
nasal congestion, nasal flushing, reflux, heart attack, sore throat, pneumonia, cut, anemia,
bleeding, and insomnia.

As it is shown in Table 3, the model exhibits varying levels of performance across
different classes, demonstrating superior accuracy in certain instances, while showing
deficiencies in others. Incomplete data pose a significant challenge, leading to a lack
of comprehensive understanding in some cases. As the research progresses, it becomes
imperative to incorporate a representative test set from each class during the later stages.
Nonetheless, it is important to note that the inclusion of additional data is expected to
mitigate the risk associated with these limitations.

Table 3. Metrics of the LSTM model’s classes.

Class 1 2 3 4 5 6 7 8 9 10 11 12

Precision 1.0000 1.0000 1.0000 0.6667 0.7500 1.0000 1.0000 0.7778 1.0000 0.0000 0.8000 1.0000

Recall 0.9412 1.0000 1.0000 0.5000 1.0000 0.9655 1.0000 1.0000 0.6364 - 1.0000 1.0000

F1-score 0.9697 1.0000 1.0000 0.5714 0.8571 0.9824 1.0000 0.8750 0.7778 - 0.8889 1.0000

Class 13 14 15 16 17 18 19 20 21 22 23 24

Precision 1.0000 1.0000 - 0.0000 0.6250 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000

Recall 0.9333 0.9091 0.0000 - 0.8333 1.0000 1.0000 1.0000 - 0.7778 0.9286 0.0000

F1-score 0.9655 0.9524 - - 0.7143 1.0000 1.0000 1.0000 - 0.8750 0.9630 0.0000

Class 25 26 27 28 29 30 31 32 33 34 35 36

Precision 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 0.3333 0.0000 1.0000 0.0000 0.4000

Recall 1.0000 1.0000 0.2500 - 1.0000 1.0000 - 1.0000 - 1.0000 - 1.0000

F1-score 1.0000 1.0000 0.4000 - 1.0000 1.0000 - 0.5000 - 1.0000 - 0.5714

We also examined the Cohen’s kappa value (κ) [105], which is a statistical indicator
that is often used to determine the degree of agreement or similarity, especially cases where
categorical or discrete variables are evaluated or classified. Establishing the degree of
agreement between classifiers can help determine how stable classifications are. If κ is high,
it indicates that the classifiers have a higher degree of agreement on the classifications. The
value of κ helps us understand how much the classifications deviate from chance. Cohen’s
Kappa can range from −1 to 1 and indicates the extent to which observers agree on the
classification, taking into account chance matches including covariates. It can be calculated
as follows:

κ =
Po − Pe

1 − Pe
,

where Po represents the observed agreement between observers, while Pe stands for the
expected agreement by chance. In the ideal case, where observers are in perfect agreement
(no difference between their classifications), κ will be 1. When observers are classified
completely at random, κ is 0. Furthermore, if the observers are worse matched, than would
be expected by chance, then κ is negative. We obtained a value of 0.9 with the LSTM model,
which means that the observers were fairly consistent in their classification [106].

A confusion matrix [107] is a commonly employed matrix in classification tasks,
serving as a tool to evaluate the effectiveness of an algorithm or model in carrying out
classification assignments.

The analysis of the confusion matrix reveals notable patterns and challenges within
the classification model. The main diagonal of the confusion matrix, as can be seen in
Table A1, corresponds to instances where the model correctly classified health conditions.



Information 2024, 15, 297 16 of 23

Notably, in departments with a substantial volume of data, the model demonstrates a high
level of accuracy, indicating its proficiency in predicting certain diseases.

We have organized a selection of diseases into smaller clusters to assess how they are
distinguished by the model, focusing on respiratory issues.

These diseases in Table 4 either share similar symptoms or one condition may be a
subset of another. It is evident that the model struggles to accurately define “colds”, often
confusing it with nasal congestion and fever. Interestingly, while it does not consistently
identify a sore throat, it also does not misclassify it with these conditions. Nasal congestion
is frequently mistaken for fever, yet the model reliably identifies fever correctly. Accurate
differentiation is important for diagnosis and treatment, as different respiratory diseases
may require different treatment. For example, the choice of the right therapy depends on
whether someone is suffering from a cold, pneumonia, or another respiratory problem.

The next category we looked at was skin problems.

Table 4. Confusion matrix of respiratory issues.

Colds 0 0 0 0 5 2

Pneumonia 0 1 0 0 0 0

Sore throat 0 0 0 0 0 0

Nasal flushing 0 0 0 0 1 0

Nasal congestion 0 0 0 0 2 3

Fever 0 0 0 0 0 7

Colds Pneumonia Sore throat Nasal flushing Nasal congestion Fever

It is noticeable in Table 5 that chickenpox is distinctly recognized and not confused
with other conditions. However, there are instances where the model incorrectly identifies
skin fungus as chickenpox. Conversely, eczema is consistently classified accurately. Despite
this, the model consistently misidentifies sunburn but does not conflate it with other skin
diseases in this category. Differentiation of skin diseases is essential for a therapeutic
approach and prognosis, as different etiologies and clinical features of diseases require
different treatment protocols. An accurate diagnosis helps clinicians to apply targeted
therapeutic strategies, thereby minimizing the potential complications and exacerbations
of untreated or inappropriately treated skin diseases. We have dealt with accident-related
problems in the following groupings.

Table 5. Confusion matrix of skin problems.

Chickenpox 2 0 0 0

Fungal skin 2 6 0 0

Eczema 0 0 7 0

Sunburn 0 0 0 0

Chickenpox Fungal skin Eczema Sunburn

Here. it can be seen in Table 6 that the model occasionally confuses a sprain with a
bite, consistently misclassifying the latter. However, it does not erroneously classify bites
alongside other complaints. Notably, it consistently predicts bites within other classes. This
confusing result may suggest that the model is not able to clearly or effectively separate
and classify individual diagnoses. This may be because the similarities or differences
between diagnoses are not clear or consistent, or the model may not have sufficient data or
ability to accurately distinguish between them. It is also possible that the model does not
have sufficient information about the specificities or characteristics of the diagnoses, which
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can lead to confusing results. In our case, the lack of data is probably the main problem.
For these accident problems, the advice given by the medical chatbot is very important.
For example, in the case of a bite or bite wound, it may be important to identify the type
of animal and administer antibiotics immediately to prevent wound infection. However,
a torn muscle or tendon may require rest and physiotherapy to heal.

Diseases of the circulatory system are part and parcel of our everyday lives, so we
have paid close attention to them.

Table 6. Confusion matrix of accident-related problems.

Sprain 0 1 0 0 0

Bite 0 0 0 0 0

Bruise 0 1 0 0 0

Cut 0 1 0 0 0

Bleeding 0 2 0 0 0

Sprain Bite Bruise Cut Bleeding

In this instance, in Table 7, it is evident that there is no confusion between these diseases,
as indicated by a perfect sub-matrix. Additionally, neither of these classes is misclassified with
any other diseases, with the model consistently making accurate predictions. Correctly distin-
guishing them is key to choosing the appropriate medical intervention and treatment, as these
conditions require different therapeutic strategies. In the case of low or high blood pressure,
timely treatment can significantly improve vitality and quality of life, while in the case of
heart attack or anemia, immediate intervention is necessary to avoid serious complications.

Table 7. Confusion matrix of diseases of the circulatory system.

Hypotension 16 0 0 0

Hypertension 0 13 0 0

Heart attack 0 0 13 0

Anemia 0 0 0 8

Hypotension Hypertension Heart attack Anemia

In Appendix A, the full 36 × 36 confusion matrix can be found, where some other
minor mistakes can be observed. There, for example, a lot of classes were misclassified as
bites, including those mentioned in Table 6. Alternatively, there were instances where the
model incorrectly classified a sore tooth and pneumonia as eczema.

The metrics used in the development of the medical assistant chatbot, such as accu-
racy, F1-score, confusion matrix, and Cohen’s Kappa, play a key role in evaluating the
performance of the model. These metrics are not only general statistical indicators, but also
provide a deeper understanding of the system’s application and effectiveness in a medical
environment. In this case, it is critical that the model accurately interprets and classifies
medical terms or symptoms. High accuracy means that the chatbot reliably recognizes the
input, which is essential for medical advice and information transfer. F1-score in this area
means that rare or less common symptoms are accurately recognized by the chatbot, which
increases the performance of the system. In the case of the medical assistant, it is essential
to observe which symptoms or diagnoses are easily confused by the system and to pay
particular attention to these when further refining the system, and, therefore it is worth
using a confusion matrix. For medical texts, where an input may belong to more than one
category (e.g., several symptoms at the same time), Cohen’s Kappa helps to evaluate the
consistency of the system. Using these metrics together helps ensure that the chatbot not
only performs well in general, but is also effective when tailored specifically to the specifics
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of the medical field. These evaluations help to identify weaknesses in the model and allow
for further refinements and improvements to improve the system’s medical applicability.

7. Conclusions

In addition, our analysis revealed that the inherent intricacies of BERT’s attention
mechanisms, which, while advantageous in capturing contextual nuances in large corpora,
may have posed challenges in effectively adapting to the limited scope of our dataset.
Furthermore, the fine-tuning process of BERT demands a substantial amount of annotated
data to harness its full potential, which was lacking in our current experimental setup.
Nonetheless, despite these limitations, the discernible efficacy of BERT in our preliminary
findings underscores its potential utility as a cornerstone for future iterations of our project.
As we accrue more diverse data samples and refine our model architecture, we anticipate
that the latent capabilities of BERT will manifest more prominently, ultimately yielding
superior performance in our target NLP tasks.

8. Discussion

While our study has advanced the understanding of AI tool development for the
Hungarian language, it is important to acknowledge its limitations and suggest avenues
for future research.

One of the principal limitations of this study is its reliance on available datasets, which
are not as comprehensive or diverse as those for more widely studied languages. This
scarcity of resources could affect the generalizability of our findings and may limit the
effectiveness of the proposed AI models. Looking ahead, future research should focus on
expanding the quantity and quality of linguistic resources for Hungarian. This includes
the creation of larger, more diverse corpora that are richly annotated with morphological,
syntactic, and semantic information.

Furthermore, exploring the application of newer AI techniques, such as deep learning
architectures that have shown promise in other agglutinative languages, could provide
breakthroughs in the processing of Hungarian [108]. Implementing and testing these
technologies could help overcome some of the morphological and syntactic processing
challenges identified in this study.

By addressing these limitations and following the suggested future directions, we can
enhance the efficacy and reach of AI technologies, ensuring that they serve the needs of the
Hungarian-speaking community more effectively. This approach not only aids in language
preservation but also enriches the linguistic diversity and technological robustness of AI
applications globally.
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Abbreviations

The following abbreviations are used in this manuscript:
NLP Natural language processing
MTS Manchester Triage System
GDPR General Data Protection Regulation
SVM Support Vector Machine
LSTM Long Short-Term Memory
RNN Recurrent Neural Network
BERT Bidirectional Encoder Representations from Transformers
ADAM Adaptive Moment Estimation
GPT Generative Pre-trained Transformers
AI Artificial intelligence
ReLU Rectified Linear Unit
NLLLoss Negative log-likelihood loss
TP True positive
AUC Area Under the ROC Curve
KNN K-Nearest Neighbors

Appendix A. Confusion Matrix of the LSTM Model

Table A1. The entire confusion matrix of the LSTM model.

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 7 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 5 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 5 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
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