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Abstract: Stemming vulnerabilities out of a smart contract prior to its deployment is essential to
ensure the security of decentralized applications. As such, numerous tools and machine-learning-
based methods have been proposed to help detect vulnerabilities in smart contracts. Furthermore,
various ways of encoding the smart contracts for analysis have also been proposed. However, the
impact of these input methods has not been systematically studied, which is the primary goal of
this paper. In this preliminary study, we experimented with four common types of input, including
Word2Vec, FastText, Bag-of-Words (BoW), and Term Frequency–Inverse Document Frequency (TF-
IDF). To focus on the comparison of these input types, we used the same deep-learning model,
i.e., convolutional neural networks, in all experiments. Using a public dataset, we compared the
vulnerability detection performance of the four input types both in the binary classification scenarios
and the multiclass classification scenario. Our findings show that TF-IDF is the best overall input
type among the four. TF-IDF has excellent detection performance in all scenarios: (1) it has the best
F1 score and accuracy in binary classifications for all vulnerability types except for the delegate
vulnerability where TF-IDF comes in a close second, and (2) it comes in a very close second behind
BoW (within 0.8%) in the multiclass classification.

Keywords: blockchain; smart contract; vulnerability detection; Word2Vec; FastText; Bag-of-Words;
Term Frequency–Inverse Document Frequency

1. Introduction

Smart contracts constitute the cornerstone of all decentralized applications [1]. As
such, any vulnerability in a smart contract could be detrimental to the security of the
application. The most well-known incident related to smart contract vulnerability is the
DAO hack that took place in 2016 [2]. Here, DAO is short for decentralized autonomous
organization. In the DAO hack, a hacker stole about ETH 3.54 million (worth about USD
150 million at the time) by exploiting the re-entrancy vulnerability in the smart contract that
powers the DAO. Because of the severe impact of the incident, the Ethereum foundation
was forced to perform a highly controversial hard fork to effectively restore the stolen funds
back to the hands of the original investors [3]. The positive impact of the incident is the
sharply increased awareness of the smart contract security issue. Various tools have been
developed to detect vulnerabilities in smart contracts. In recent years, machine learning
and deep learning have also been used to identify vulnerabilities in smart contracts because
they could be more robust in detecting vulnerabilities if trained properly.

In many ways, smart contract source code resembles natural languages. Hence, the
schemes developed for natural language processing have been used to transform the smart
contract source code (typically written in Solidity) into a form of input that is conducive for
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analysis, either by rule-based vulnerability detection tools or by machine-learning models.
A large number of schemes have been proposed, some of which would transform the
bytecode of the smart contract instead of the smart contract code into feature vectors. Each
scheme focuses on capturing some specific characteristics of the smart contracts. Hence, it
would be interesting to study the impact of different types of input towards the detection
of smart contract vulnerabilities. Although some studies have incorporated more than one
type of input, we have yet to see a systematic study that examines the impact of different
types of input in the context of smart contract vulnerability detection.

The goal of this study is to examine the impact of four types of input, namely,
Word2Vec, FastText, Bag-of-Words (BoW), and Term Frequency–Inverse Document Fre-
quency (TF-IDF), towards the detection of six common types of smart contract vulnerability,
namely re-entrancy, integer overflow, integer underflow, timestamp dependence, delegate
call, and call stack depth attack. We choose to use a deep-learning model, the convolutional
neural network (CNN), as the classifier. We report the performance of vulnerability detec-
tion in term of binary classification (i.e., a particular type of vulnerability vs. normal case)
and multiclass classification (i.e., all types of vulnerability and the normal case). The choice
of the four types of input and six types of vulnerability is driven by two considerations:
(1) these types of input and types of vulnerability are the most heavily reported in the
literature of smart contract vulnerability detection studies; (2) the six types of vulnerability
have publicly available datasets, and the python code for converting a smart contract to
three out of the four types of input is available in GitHub (we developed the python code
for TF-IDF).

To our knowledge, this is the first study that systematically examines the impact of the
input types for smart contract vulnerability detection, which constitutes the main research
contribution of this paper. Our original hypothesis is that different input types would
be complementary to each other (at least some of them are) in that one input type could
exhibit superior detection performance for some types of vulnerability while another input
type would show excellent detection performance for some other types of vulnerability.
If proven true, then, we could develop an ensemble model that would select the best
input type for each type of vulnerabilities. Unfortunately, our experimental results show
that this is not the case. Instead of them being complementary to each other, TF-IDF
clearly outperforms all other input types. Nevertheless, we think the findings still carry
research merit.

Furthermore, we note that it is not our goal to propose a methodology that outperforms
existing approaches. The current study is limited to the study of the impact of the input
types on the detection performance of smart contract vulnerabilities. As such, we choose to
use CNN as the classifier for experiments because it offers reasonably good performance
and it does not require the availability of huge amount of training data. For the same
reason, we intentionally do not use any attention mechanisms to improve the classification
performance, and we do not use more advanced models such as Bidirectional Encoder
Representations from Transformers (BERT) [4].

The remainder of the paper is organized as follows. Section 2 provides the necessary
background information for the current study. Section 3 discusses related work. Section 4
describes the methodology of the current study, including the dataset used, input prepara-
tion, and the classifier description. Section 5 presents the experimental results and analysis
for our study. Section 6 reflects our findings and points out limitations of the current study.
Section 7 concludes this paper.

2. Research Background

In this section, we briefly introduce the background of this study, including the defini-
tion of the six types of smart contract vulnerability and the four types of input methods.
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2.1. Smart Contract Vulnerabilities

A large array of vulnerability types have been identified and there is no universally
accepted taxonomy for the vulnerabilities. In this paper, we adopt the taxonomy proposed
in [5]. Here, we provide a brief introduction of the limited set of vulnerabilities that we aim
to detect in the current study.

The integer overflow and underflow vulnerabilities occur when integer arithmetic op-
erations produce numbers greater than the maximum or smaller than the minimum rep-
resentable values, which would result in unexpected behaviors. Attackers could use this
vulnerability to modify calculations or overflow/underflow checks, potentially resulting
in unauthorized access or financial loss. To avoid this vulnerability before performing
arithmetic operations, the operators and operands should be compared to ensure accuracy.
Also, one could utilize assert(), require(), and the ’SafeMath.sol’ package in the smart
contracts [6].

A re-entrancy attack occurs when a malicious contract exploits flaws in the target
contract’s logic and frequently calls back into the target contract before the first call is
completed. This can result in unanticipated actions such as illegal financial transfers or
contract state manipulation. To eliminate the re-entrancy vulnerability, the functions should
be structured to ensure that all internal state changes take place before calling another
contract [7].

The timestamp dependency vulnerability refers to the use of the block timestamp value
to execute an operation in a smart contract. The block timestamp is generated by the node
that executes the smart contract. The issue of this vulnerability is that it makes the contract
vulnerable to attacks and prone to manipulation. For example, the creating node of the
block could manipulate the blockchain timestamp value to maximum monetary profit.
Using the block height is preferable to using the block timestamp [8].

In the callstack depth attack vulnerability (CDAV), the attacker takes advantage of the
Ethereum Virtual Machine (EVM)’s low callstack depth to produce a denial-of-service
scenario or interrupt the blockchain network’s normal operation. An attacker can launch
a callstack depth attack by building a recursive or deeply nested call chain that exceeds
the EVM’s maximum callstack depth limit [9]. The Ethereum Improvement Proposal (EIP)
150 has placed a gas-based restriction on the call stake, which essentially would eliminate
this attack.

To invoke another contract’s function, the target function’s application binary interface
(ABI) must be available. A delegate call is used in cases when the target function’s ABI is
not available. One intention of the delegate call feature is to enable the call of the functions
defined in another smart contract as if it is their own. This feature might also enable
upgradability of the smart contract. However, the context-preserving aspect of the feature
may lead to security issues, such as access violation. That is why delegate is regarded as
a vulnerability and it has been exploited in attacks. To avoid potential problems, it is
recommended that the delegated contract be stateless [10].

2.2. Types of Input

We limit the discussion of the types of input to four specific types of input that are
used in the current study, although a large number of input types have been proposed.
These types of input are selected because of their popularity and the availability of open-
source code.

Word2Vec was created by a group of Google researchers to represent word distri-
bution in a vector space [11]. Word2Vec was designed to identify semantic similarities
between words where words with similar meanings would have less distance [11]. To
apply Word2Vec, the smart contract source code would be segmented into words (also
referred to as word embedding), which would then be vectorized into numerical values.

More specifically, each smart contract fragment is expressed as a set of tokens (i.e.,
words). First, a model referred to as continuous bag-of-words (CBOW) is trained to predict
the center token in the fragment. For an instance, with context tokens like “if”, “sender”,
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and “balance”, the CBOW model may predict the center token to be “require”. CBOW
might be beneficial for finding similar patterns or tokens related to vulnerabilities in smart
contracts.

Second, a model referred to as skip-gram is trained to predict the surrounding tokens
given a center token. For instance, if “transfer” is the center token, the skip-gram model
may predict “send”, “recipient”, or “amount” as surrounding tokens. By training the
skip-gram model on a large dataset of smart contracts, it is able to understand the distri-
butional features of code tokens and record their semantic links. Once given a new smart
contract fragment, the trained skip-gram model could recognize tokens that commonly
occur together with recognized vulnerable tokens, which may indicate the existence of
vulnerabilities.

FastText extends the Word2Vec scheme by treating each word as an n-gram, which aims
to provide a more nuanced representation of words. FastText could potentially generate
better word embeddings for rare words and out-of-vocabulary words based on the shared
structures with other words [12].

Similar to Word2Vec, FastText is also trained on a set of smart contract fragments.
The training process is best understood using an example. For instance, when FastText
comes across the token “untransferable”, it divides the token into sub-words as n-grams,
including “un”, “transfer”, “transf”, “rans”, “ansf”, “nstr”, “strans”, “stransf”, “tr”, “ran”,
“ans”, “ns”, “sf”, “f”, and “untransferable”. This step is to facilitate the model to recognize
that “untransferable” is related to other tokens such as “transfer”, “untransferred”, “trans-
ferFrom”, “untransferrable”, because they contain the same sub-word “transfer”. This is
how FastText learns semantically and morphologically related tokens.

BoW represents a text as a bag (i.e., multiset) of its words, keeping track of the multi-
plicity of each word, but ignoring grammar and word order [13]. BoW focuses on capturing
the frequency of words in a predefined set of words. More specifically, BoW would create a
vocabulary by extracting all unique tokens from a set of smart contract fragments. Each
token is assigned as a feature. The frequency of each token in the vocabulary is then
counted within each fragment. BoW would convert each fragment into a vector, with each
value indicating the frequency (i.e., number of instances) of a token in the vocabulary. The
vector representation preserves the syntax and structure of the code fragment.

Term Frequency–Inverse Document Frequency (TF-IDF) uses two components to capture
the importance of each word in a set of smart contract fragments [14]: (1) Term Frequency
(TF): This measures the frequency of a token in a smart contract fragment, e.g., in terms
of the raw count of the token as the fraction of the total token count in the fragment. The
intuition is that the word would be more important if it appears a greater number of
times in the same document. (2) Inverse Document Frequency (IDF): This measures the
importance of a token in the entire collection of fragments. For a particular token, IDF is
represented as the logarithm of the total number of fragments in the collection divided by
the number of fragments containing the token. The intuition is that, if a token is present in
many fragments, then it is less important as a feature for pattern recognition.

3. Related Work

A large body of work has been published on machine-learning-based detection of
smart contract vulnerabilities. In this paper, we focus on studies that have employed
deep-learning models for detection. Given sufficient training data, deep-learning models
typically attain better performance than traditional machine-learning models, as we have
demonstrated previously [15]. We further limit the related works to those that have adopted
the same taxonomy on smart contract vulnerabilities [5] (Table 1).
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Table 1. Summary of related work.

Study Input Type(s) Types of Vulnerability Detected

DeeSCVHunter [16] FastText (Word2Vec
+ Glove) Re-entrancy and timestamp dependency

CBGRU [17] Word2Vec+FastText
Re-entrancy, timestamp dependency,

integer overflow/underflow, CDAV, and
infinite loop

Peculiar [18] Graph Re-entrancy

BLSTM-ATT [19] Sequential Re-entrancy

TMP [20] Graph Re-entrancy, timestamp dependency, and
infinite loop

AME [21] Graph Re-entrancy, timestamp dependency, and
infinite loop

DA-GCN [22] Graph Re-entrancy and timestamp dependency

HAM [23] Word2Vec
Re-entrancy, timestamp dependency,

arithmetic vulnerability, unchecked return
value, and Tx.origin

SPCBIG-EC [24] Word2Vec Re-entrancy, timestamp dependency, and
infinite loop

In [16], the re-entrancy and timestamp dependency vulnerabilities were detected
(separately) using eight deep-learning models. The primary innovation was the introduc-
tion of an additional step prior to performing word embedding, which is referred to as
the vulnerability candidate slice (VCS). The VCS was inspired by a common practice of
extracting regions of interest in an image for recognition. Hence, the method was termed as
DeeSCVHunter in the paper. The paper stated that three different word embeddings were
employed, including Word2Vec, FastText, and Glove, and FastText was used as the default
embedding method. However, the paper did not report the detection performance for each
of the embedding methods. Presumably, the best performance out of the three embedding
methods was reported.

In [17], Word2Vec and FastText were used for word embedding. Furthermore, CNN
was used to perform further feature extraction based on the output of the Word2Vec em-
bedding, and the bidirectional gated recurrent unit (BiGRU) was used to perform further
feature extraction based on the output of the FastText embedding. Then, the features
extracted by CNN and BiGRU were combined by concatenation. Then, a fusion neural net-
work layer and a softmax neural network layer were used to perform classification based on
the fused input. The dataset contains six different types of vulnerability, including integer
overflow, integer underflow, re-entrancy, timestamp dependency, CDAV, and the infinite
loop. It appears that binary classification was performed for each type of vulnerability.

In [18], a single type of vulnerability, i.e., re-entrancy, was detected using a transformer
neural architecture called GraphCodeBERT [25] and an improved version of data flow
graph (referred to as a crucial data flow graph) as the way to encode the smart contracts for
classification. The paper reported the classification performance using two datasets.

In [19], a new model that converts the smart contract to a vector format was proposed
(referred to as a sequential model). The study used a deep-learning model called the
bidirectional long short-term memory with attention mechanism (BLSTM-ATT) to perform
the detection of the re-entrancy vulnerability in smart contracts.

In [20], the smart contracts were converted into a graph format (combining control
flow, data flow, and fallback information). Two deep-learning models were proposed
to detect vulnerabilities based on normalized graph input. One model is referred to as
a degree-free graph convolutional neural network (DR-GCN), and the other is a novel
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temporal message propagation network (TMP). The performance of the proposed input
and two deep-learning models was reported for the detection of each of three types of
vulnerability, namely, re-entrancy, timestamp dependency, and infinite loop. TMP was
shown to have better performance than DR-GCN.

In [21], the same graph format that combines the control flow, data flow, and fallback
information in the smart contracts was used as the input. Differently from that of [20],
four levels of input (three local patterns, and one global graph-based input similar to
that of [20]) were experimented on to see their impact on the detection performance. An
attentive multi-encoder network was used to detect each of three types of vulnerability:
re-entrancy, timestamp dependency, and infinite loop. The different levels of input were
used to illustrate the interpretability of the detection process.

In [23], Word2Vec was used for word embedding, and a hybrid attention mechanism
with deep learning was used for the detection of vulnerabilities. The detection performance
was presented for each of the five types of vulnerability, namely re-entrancy, timestamp
dependency, arithmetic vulnerability, unchecked return value, and Tx.origin vulnerability.

In [22], a control flow graph was used to represent the smart contract fragments
as the input to the deep-learning model, which is referred to as a dual attention graph
convolutional network (DA-GCN). Two types of smart contract vulnerability, namely,
re-entrancy and timestamp dependency, were detected separately.

In [24], Word2Vec was used to encode the smart contract fragments as the input
to a sophisticated deep-learning model referred to as the Serial–Parallel Convolutional
Bidirectional Gated Recurrent Network Model incorporating Ensemble Classifiers (SPCBIG-
EC). Two types of smart contract vulnerability, re-entrancy and timestamp dependency,
were detected separately.

As can be seen, most of related studies have chosen to use a single input type. Although
three types of input were mentioned in [16], FastText was used as the default input type,
and the study did not disclose any impact of the input types on the vulnerability detection
performance. In [17], Word2Vec and FastTest were fused together as the input. We are not
aware of any study that systematically compared the impact of different input types on the
detection performance.

Again, we note that it is not our goal is to propose a method that outperforms other
approaches. Nevertheless, for completeness, we show the vulnerability detection perfor-
mance of the related studies compared with that of ours in Table 6 in Section 5.3. The
purpose of the comparison is to summarize what has been studied and the reported results
instead of drawing any definitive conclusion on which approach is superior because these
studies often used different datasets, in addition to the use of different input types and
different classifiers.

4. Methodology: Dataset, Input Preparation, and Classifier Description

The primary objective of the current study is to investigate the impact of the four
input types on the smart contract vulnerability detection performance using the same
deep-learning model. The reasons for using CNNs for vulnerability classification will be
elaborated in Section 4.2. As we have outlined in Section 2.2, the four types of input we
plan to study have different approaches to extracting the features of the smart contracts.
Word2Vec and FastText consider the similarity between different words. BoW focuses on
the frequency of the words. TF-IDF also focuses on the word frequency, but considers not
only the presence in a single smart contract fragment but also the presence of words in the
entire corpora. The flow of the detection process is shown in Figure 1.
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Smart Contract Dataset

Word2Vec FastText BoW TF-IDF

CNN

Result

CNN CNN CNN

Result Result Result

Figure 1. The overview of methodology in detection of smart contract vulnerabilities.

4.1. Data Preprocessing

The data preprocessing step is to convert the original smart contract into a matrix that
conforms to the input requirement of CNNs using the four methods we outlined previously.
More specifically, the preprocessing of each smart contract is outlined as follows:

• All Ethereum solidity keywords are gathered, including “bool”, “break”, “return”,
“assert”, “event”, etc.

• Eliminate all components of the smart contract that are not related to the vulnerability
(such as “pragma solidity 0.5.8”), and eliminates blank lines, comments, and non-
ASCII values from the contract.

• Represent variable names as VAR with numbers (such as VAR1, VAR2, ...), and function
names as FUN with numbers (such as FUN1, FUN2, ...).

• Tokenize each smart contract fragment line by line.
• Gather these tokens to create a matrix using the input method.

4.2. Feature Extraction and Classification with CNN

CNNs have been predominantly used for image processing with excellent spatial
characterization. A CNN would take fixed input sizes because of the use of fixed-size
filters. Because smart contract is executed sequentially, one might expect that the input
would be formulated as a time series. In fact, this is not the case for the four input types
in our current study. For these types of input, a smart contract fragment is transformed
into a fixed-dimension vector. In fact, during the revision stage of this paper we became
aware of a paper on smart contract vulnerability detection based on CNNs [26] where each
smart contract fragment was transformed into an image format and excellent results were
achieved. Due to the above evidence, we argue that the use of CNN for classification is
justified.

Once the data preprocessing is completed, the vectors are fed into the CNN for feature
extraction and classification. The CNN architecture is shown in Figure 2. The CNN layers
are described as following:

• Convolution Layer 1: We choose to use a one-dimensional convolution layer (Con-
volution Layer 1). The sizes for Word2Vec, FastText, BoW, and TF-IDF are (300, 100),
(300, 100), 37, and 300, respectively.

• MaxPooling 1: Max pooling reduces the spatial dimension of the input data by only
preserving the maximum value within each pooling window; hence, it helps in lower-
ing computational complexity and managing overfitting. By offering translation in
variance, max pooling lowers the number of parameters in the model and increases its
resilience to small changes in the input data.

• Convolution Layer 2: This layer further extracts higher-level features.
• MaxPooling 2: This layer further decreases the dimensions of the feature maps.
• Dropout: This layer facilitates the learning of more robust features during training

by arbitrarily setting a portion of the input units to zero. This helps prevent overfit-
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ting [27]. By decreasing neuronal co-adaptation and enhancing generalization ability,
dropout regularizes the model.

• Flatten: This layer flattens the input into a one-dimensional vector required by dense
layers.

• Dense Layer 1: This fully connected layer performs a linear transformation with a
rectified linear activation function. From the features that are extracted, it learns
complex patterns and representations.

• Dense Layer 2: This fully connected layer performs further recognition of complex
patterns in the data.

• Dense Layer 3: This final dense layer computes the probability distributions over
the classes by applying the softmax activation function and translates the learned
representations to the output classes. The softmax is an activation function typically
used for classification. The function turns raw output results into probabilities that
reflect the possibility of each class.

Input Vector

Convolution Layer 1

MaxPooling 1

Flatten

Dense 3

Dropout

Dense 1

Dense 2

Convolution Layer 2

MaxPooling 2

Figure 2. CNN layers.

4.3. Deep-Learning Library and Parameters

Python is used as the programming language with the TensorFlow [28] and Keras
deep-learning libraries. The Adam optimizer [29] is used with a learning rate at 0.001. The
dropout of the Dropout layer is set at 0.5. Furthermore, an epoch of 50 and a batch size
of 128 are used in the experiments. Five-fold cross-validation is used for the training and
testing of deep learning. All experiments are conducted on an iMac-27 with a core i5 CPU
and 64 GB of RAM.

The reason for using exactly the same set of hyper-parameters is to maintain consis-
tency when comparing the impact of the input types for the performance of detection of
smart contract vulnerabilities. We reiterate here that it is not our goal to propose a method
that outperforms existing approaches for smart contract vulnerability detection. Hence,
we intentionally do not tune the parameters for each type of input and for each type of
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vulnerability, which could potentially lead to improved performance. We choose to use
Adam optimizer because it is a widely used optimization algorithm in deep learning for
computer vision and natural language processing tasks. Furthermore, we set the dropout
rate to 0.5 in our model because it is a commonly used regularization technique to prevent
overfitting in neural networks by randomly dropping units during training. Similarly, we
set the number of epochs to 50 and the batch size to 128 because these values are commonly
used in deep-learning experiments for efficient training and convergence [17].

4.4. Smart Contract Dataset

The experiments are based on the SmartBugs Dataset—Wild [30], which is a large-
scale dataset of smart contract vulnerabilities. This dataset has been used in several recent
studies, such as [17]. This dataset includes 47,587 genuine and distinct Solidity files in this
collection and roughly 203,716 smart contract fragments in total. The dataset was labeled
in accordance with [31] in [17]. The Solidity files in the dataset were separated into two cat-
egories: smart contracts with vulnerabilities and those without vulnerabilities. Vulnerable
smart contracts include seven types of vulnerability, re-entrancy, timestamp dependency,
integer overflow, integer underflow, callstack depth attack (CDAV), delegate, and integer
big vulnerabilities. There are 12,247 smart contract fragments that are vulnerability-free
and 35,151 smart contract fragments that have vulnerabilities. We intentionally removed
the fragments for the integer big because this type strongly correlate with integer under-
flow and integer overflow. Furthermore, the dataset contains preprocessed smart contract
fragments rather than the raw smart contracts. The number of smart contract fragments for
each type of vulnerability in the dataset is provided as follows:

• Re-entrancy: 1224 fragments.
• Timestamp Dependency: 2908 fragments.
• Integer Overflow: 550 fragments.
• Integer Underflow: 4000 fragments.
• CDAV: 2800 fragments.
• Delegate: 980 fragments.

5. Vulnerability Detection Results and Analysis

We first present the results for binary classification scenarios. Then, we present the
results for the multiclass classification scenario. Finally, we present a comparison with
related work.

5.1. Binary Classification

In binary classification, we perform detection of a single type of vulnerability at time.
The dataset for each type of vulnerability would consists of a number of fragments with
the same type of vulnerability and a number of fragments without any vulnerability. The
performance of the binary classification is evaluated using four metrics: accuracy, precision,
recall, and F1 score. All four metrics have a range of 0 to 1, with a greater number indicating
better performance.

Accuracy is defined as the fraction of correctly classified entries among all instances in
the dataset, as shown in Equation (1):

Accuracy =
Number of correct predictions

Total number of predictions
(1)

To define precision, recall, and F1 score, it is necessary to first define four additional
metrics: true positive (TP), true negative (TN), false positive (FP), and false negative (FN):

• True Positive (TP): The number of predictions accurately identified as belonging to the
positive class.

• True Negative (TN): The number of predictions correctly identified as belonging to
the negative class.
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• False Positive (FP): The number of predictions wrongly classified as positive.
• False Negative (FN): The number of predictions mistakenly classified as negative.

Recall is also referred to as sensitivity or true positive rate. It is defined to be the
fraction of true positive predictions among all real positive instances in a dataset as shown
in Equation (2). Recall demonstrates the classifier’s ability to identify all of the positive
samples.

Recall =
TP

TP + FN
(2)

Precision is defined to be the fraction of true positive predictions out of all positive
predictions generated by the classifier, as shown in Equation (3). Precision demonstrates the
classifier’s ability to minimize false positives (i.e., classifying negative samples as positive).

Precision =
TP

TP + FP
(3)

F1 score is defined to be the harmonic mean of precision and recall, as shown in
Equation (4). The F1 score aims to strike a balance between precision and recall. The
F1 score is especially useful when the class distribution has an imbalance or when false
positives and false negatives have distinct consequences.

F1-score = 2 × Precision × Recall
Precision + Recall

(4)

5.1.1. Word2Vec Performance

The vulnerability detection performance using the Word2Vec input is shown in
Figure 3 and Table 2. Among the six types of vulnerability, delegate and integer over-
flow have the highest detection performance. For the delegate vulnerability, both the
accuracy and F1 score are higher than 96%. For the integer overflow vulnerability, both the
accuracy and F1 score are higher than 94%. Furthermore, for both types of vulnerability, the
recall is perfect, meaning that all vulnerabilities in the testing dataset have been identified.
Hence, this input type made some false negative predictions. The detection performance
for the CDAV, integer underflow, and re-entrancy lies in the second tier at 84–87% accuracy
and F1 score range. The timestamp dependency is the most difficult to detect, with accuracy,
precision, and recall all below 80% (only the recall is higher than 80%). It is interesting to
note that, for all types of vulnerability, recall is higher than precision, meaning that there
are more false positives than false negatives (if any).

5.1.2. FastText Performance

The vulnerability detection performance is summarized in Figure 4 and Table 3.
As can be seen, all four metrics (accuracy, precision, recall, and F1 score) are perfect
at 100% for detection of the delegate vulnerability. The detection performance for integer
overflow comes next with a perfect recall and accuracy of 91.67%. The presence of false
positives reduces the precision, similar to the situation for Word2Vec. Again, the detection
performance for CDAV, integer underflow, and re-entrancy is similar with accuracy in
the range of 85–87%, and F1 score in the range of 84–87%. The detection performance for
timestamp dependency comes last, with accuracy and F1 score below 80%. The overall
trend for FastText is rather similar to that of Word2Vec.

5.1.3. BoW Performance

The vulnerability detection performance with BoW is summarized in Figure 5 and
Table 4. Again, delegate is proven to be the easiest to detect with accuracy at 99.19% and
F1 score at 99.20% (the recall is perfect and the precision is at 98.41%). The detection
performance for integer overflow is still in the second place with accuracy at 86.11% and F1
score at 87.50% (the recall at 97.22% is significantly higher than precision at 79.55%). The
remaining types of vulnerability stand in the third tier with accuracy and F1 score both
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in the range of 74–79%. Unlike Word2Vec and FastText, recall is not always higher than
precision. For re-entrancy and integer underflow, the precision is higher than recall, which
means there are more false negatives than false positives.
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Figure 3. Vulnerability detection performance with Word2Vec embedding.

Table 2. Vulnerability detection performance with Word2Vec embedding.

Dataset Accuracy Recall Precision F1 Score

Delegate 96.77 100.00 93.94 96.88
Integer Overflow 94.44 100.00 90.00 94.74

CDAV 86.96 85.51 88.06 86.76
Integer Underflow 84.42 86.43 83.09 84.73

Re-entrancy 84.23 79.34 88.07 83.48
Timestamp Dependency 78.20 84.78 74.92 79.55
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Figure 4. Vulnerability detection performance with FastText embedding.
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Table 3. Vulnerability detection performance with FastText embedding.

Dataset Accuracy Recall Precision F1 Score

Delegate 100.00 100.00 100.00 100.00
Integer Overflow 91.67 100.00 85.71 92.31

CDAV 86.78 84.42 88.59 86.46
Integer Underflow 85.43 87.94 83.73 85.78

Re-entrancy 85.06 83.33 86.21 84.75
Timestamp Dependency 77.16 84.78 73.57 78.78
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Figure 5. Vulnerability detection performance with BoW.

Table 4. Vulnerability detection performance with BoW.

Dataset Accuracy Recall Precision F1 Score

Delegate 99.19 100.00 98.41 99.20
Integer Overflow 86.11 97.22 79.55 87.50

Re-entrancy 78.84 75.21 81.25 78.11
CDAV 76.81 82.97 73.87 78.16

Timestamp Dependency 76.47 83.04 73.39 77.92
Integer Underflow 74.37 73.12 75.00 74.05

5.1.4. TF-IDF Performance

The vulnerability detection performance for TF-IDF is summarized in Figure 6 and
Table 5. Delegate is still proven to be the easiest to detect with the highest accuracy
(99.19%) and F1 score (99.20%). Unlike other types of input, four types of vulnerability
come next with detection accuracy and F1 score both in the range of 94–96%. Although
the detection performance for the timestamp dependency still comes last, the accuracy
(85.29%) and F1 score (85.37%) are both significantly better compared with other types of
input. Furthermore, recall is slightly higher than precision consistently across all types
of vulnerability.
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Figure 6. Vulnerability detection performance with TF-IDF.

Table 5. Vulnerability detection performance with TF-IDF.

Dataset Accuracy Recall Precision F1 Score

Delegate 99.19 100.00 98.41 99.20
Re-entrancy 95.85 96.69 95.12 95.90

Integer Underflow 95.23 95.98 94.55 95.26
CDAV 95.11 96.01 94.31 95.15

Integer Overflow 94.44 100.00 90.00 94.74
Timestamp Dependency 85.29 85.81 84.93 85.37

5.1.5. Comparing the Impact of the Four Types of Input

To facilitate examining the impact of the four types of input on the vulnerability
detection performance, we redraw the results in terms of accuracy, precision, recall, and
F1 score in Figure 7, Figure 8, Figure 9, and Figure 10, respectively. As can be seen, for
accuracy and F1 score, TF-IDF performs consistently better than the other three types of
input for five types of smart contract vulnerability. For the integer overflow vulnerability,
TF-IDF ties Word2Vec as the best performer (94.44% for accuracy and 94.74% for F1 score).
For recall, TF-IDF is either the best or tied best performance among the four types of input
for all six types of vulnerability (for delegate, all four types of input have perfect recall, and
for integer overflow, Word2Vec, FastText, and TF-IDF all have perfect recall). However,
for precision, TF-IDF is tied as the second best performance for the delegate vulnerability,
losing to FastText by a very small margin (98.41% vs. 100%). Nevertheless, overall TF-IDF is
the most preferable type of input among the four for the detection of the six smart contract
vulnerabilities.

The second overall best performer is FastText. Word2Vec comes in a close third, and
BoW has the worst performance. Considering that FastText is based on Word2Vec and is an
improvement over Word2Vec, it is expected that FastText performs better than Word2Vec.
More specifically, FastText could handle morphologically rich languages by adding sub-
word information, which enables FastText to capture variations in word structure and
semantics, which improves its performance in specific contexts.

In addition to considering the overall detection performance, it is also important to
consider the complexity of different types of input. In our study, we choose to have a
shape of (100, 300) for Word2Vec and FastText, meaning that each input matrix contains
100 words (i.e., features) with 300 dimensions for each word. TF-IDF encodes the data
as a 300-dimension vector (i.e., the vocabulary has a size of 300). BoW uses a much
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smaller vector of 37 vocabulary words. Despite the very small vector used by BoW, its
detection performance is on par with the best types of input for the detection of the delegate
vulnerability. This analysis further demonstrates that TF-IDF stands out as the best choice of
input type because it achieves the best performance with a significantly smaller dimension
compared with Word2Vec and FastText.
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Figure 7. Detection accuracy for six types of smart contract vulnerability with the four types of input.
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Figure 8. Detection precision for six types of smart contract vulnerability with the four types of input.
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Figure 9. Detection recall for six types of smart contract vulnerability with the four types of input.
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Figure 10. Detection F1 score for six types of smart contract vulnerability with the four types of input.

5.2. Multiclass Classification

Although the detection of a single type of vulnerability has some value in research, its
practical impact is very limited because one would not know which type of vulnerability
exists in a given smart contract in general. Furthermore, it is also important to inform
what types of vulnerability a smart contract contains. Scientifically, it is interesting to
determine the power of a machine-learning model with a certain type of input to discern
different types of vulnerability. Hence, it is informative to conduct multiclass classification,
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although this is rarely performed in machine-learning-based vulnerability detection for
smart contracts.

To facilitate the multiclass classification study, we first construct the training dataset
based on those for individual datasets created for binary classification studies. The six
types of vulnerability and the no-vulnerability fragments together constitute seven classes.
We re-labeled the data as follows: no vulnerability as class 0, timestamp dependency
vulnerability as class 1, re-entrancy vulnerability as class 2, integer underflow vulnerability
as class 3, delegate vulnerability as class 4, CDVA vulnerability as class 5, and integer
overflow vulnerability as class 6.

Because the size of the dataset for each type of vulnerability is quite different, we are
facing a class imbalance problem. To avoid the imbalance between the classes during train-
ing, the Synthetic Minority Over-sampling Technique (SMOTE) [32] and Undersampling
are used. SMOTE works by oversampling the minority classes and it is used to augment
minority classes. Undersampling is used on majority classes.

The vulnerability detection overall accuracy for the four types of input is summarized
in Figure 11. The overall accuracy is calculated as the fraction of correctly classified samples
with respect to all the samples in the test set. As we can see in Figure 11, although TF-IDF
still has good performance (at 95.09%), BoW actually has the highest accuracy at 95.84%.
Word2Vec comes as the third best performer at 85.07%, while FastText performs in the last
place at 84.68%. This is significantly different from the results in binary classification. To
understand the details of multiclass classification, it is necessary to inspect the confusion
matrix [33] for each type of input, which is shown in Figure 12, Figure 13, Figure 14, and
Figure 15, respectively.
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Figure 11. Overall accuracy with Word2Vec, FastText, BoW, and TF-IDF for multiclass classification.

Each row of the confusion matrix represents instances in an actual class, and each
column represents instances in a predicted class. We define the misclassification rate as the
fraction of the sum of misclassified instances in a row of the total number of instances in
the row.

For BoW, the classifier with BoW has the most difficulty detecting timestamp depen-
dency, and can detect delegate and integer overflow perfectly. The result is consistent with
binary classification using BoW for timestamp dependency and delegate; it is somewhat
surprising that BoW is capable of detecting integer overflow perfectly in multiclass clas-
sification, while it has only 87.50% F1 score in binary classification. The low F1 score is
primarily due to low precision, which means BoW suffers from false positives in binary
classification for integer overflow vulnerability.

For TF-IDF, the classifier with TF-IDF has the most difficulty detecting CDVA, integer
underflow, and timestamp dependency, and it has the best performance in detecting integer
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overflow. Again, the result is not consistent with that of the binary classification with
TF-IDF, where only the detection performance for timestamp dependency is noticeably
lower than the remaining five types of vulnerability.
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Figure 12. Confusion matrix with BoW as the input type.
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Figure 13. Confusion matrix with TF-IDF as the input type.
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Figure 14. Confusion matrix with Word2Vec as the input type.
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Figure 15. Confusion matrix with FastText as the input type.

For Word2Vec, the classifier with Word2Vec performs badly for all types except for
delegate and integer overflow. Although the outstanding detection performance for dele-
gate and integer overflow is consistent with that of the binary classification with Word2Vec,
the detection performance for other types of vulnerability is noticeably lower than that in
binary classification. Furthermore, the detection for integer underflow has the (tied) worst
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performance in multiclass classification. The result also shows that there is a significant
issue of false positives (i.e., 0.235 misclassification rate for the no-vulnerability class).

The result for FastText is very similar to that for Word2Vec, but in general slightly
worse. Most notably, the model with FastText struggles to detect integer underflow reliably
with a misclassification rate of 0.296.

In summary, in consideration of the results from both binary classification and the
multiclass classification, TF-IDF is the only input type that is capable of making excellent
detection consistently, demonstrating that this input type can capture the essential charac-
teristics of the six types of vulnerability. Although BoW has the worst overall performance
in binary classification, it actually achieves the best performance in multiclass classifica-
tion. Furthermore, although Word2Vec and FastText exhibit fairly good performance in
binary classification, the overall accuracy in multiclass classification is only decent. Closer
examination reveals that Word2Vec and FastText have very bad detection performance
for timestamp dependency, integer underflow, and CDVA, and they also suffer from an
unacceptable rate of false positives.

5.3. Comparison with Related Work

This section compares our results with those reported in previous studies. As we have
reported in Table 1, these studies have chosen different sets of smart contract vulnerabilities.
Two studies experimented with the detection of a single type of vulnerability, two studies
experimented with the detection of a more than a handful of types of vulnerability, and
others have experimented with two or three types of vulnerability. All these studies
included the re-entrancy vulnerability, and all but two studies included the reentrancy and
timestamp dependency vulnerabilities. Some studies examined some types of vulnerability
that are not included in our study, such as infinite loop. Our study includes the delegate
vulnerability, which is not considered in the set of related studies.

For comparison, we choose to use the F1 score as the metric because all related stud-
ies reported this metric. Ideally, we should use exactly the same dataset for comparison.
Unfortunately, that is not feasible because some studies do not make their datasets pub-
licly available, and some others do not make their data preprocessing and deep-learning
code publicly available. Therefore, our comparison is not meant to be conclusive but,
rather, to be a way to gain insight that could guide future development in smart contract
vulnerability detection.

The comparison is summarized in Table 6. To save space, we use the following symbols
for the types of smart contract vulnerability: R: re-entrancy; T: timestamp dependency; IO:
integer overflow; IU: integer underflow; and D: delegate; C: CDAV.

It should be noted that all the related studies we include here used binary classification.
Hence, we can only compare the binary classification results. As can be seen in the table, our
result (with TF-IDF) ranks the second after SPCBIG-EC by a small margin for re-entrancy
vulnerability, and only the middle of the road with TF-IDF for timestamp dependency,
where CBGRU reported an outstanding F1 score at 93.29, significantly better than that
of other studies. SPCBIG-EC used the Word2Vec as input type, and CBGRU used both
the Word2Vec+FastText input types and fused them together. Although CBGRU has an
outstanding F1 score for the timestamp dependency vulnerability, one cannot deduce
that the graph-based input type is superior to other types of input because it has only
reasonably good F1 scores for other types of vulnerability. For CDAV, integer overflow, and
integer underflow, we show that, by encoding the smart contract fragments in TF-IDF, we
achieve significantly better F1 scores than those of CBGRU. Furthermore, we show that
the delegate vulnerability can be detected perfectly with FastText input (TD-IDF comes
very close as the second with 99.20%). It might also be interesting to note that, in our study,
using a rather simple CNN model with FastText, the F1 scores for the detection of the
re-entrancy and timestamp dependency vulnerabilities are only slightly lower than those
of DeeSCVHunter [16], which used a fairly sophisticated deep-learning model and three
types of input with FastText as the default input type.
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Table 6. F1 scores for the detection of various vulnerability types in our study and related studies.

Study Input R T D C IO IU

DeeSCVHunter [16] FastText (+W+G) 86.87 79.93

CBGRU [17] Word2Vec+FastText 90.92 93.29 90.21 86.43 85.28

Peculiar [18] Graph 92.40

AME [21] Graph 87.94 84.10

BLSTM-ATT [19] Sequential 89.81

TMP [20] Graph 78.11 79.19

DA-GCN [22] Graph 85.43 84.83

SPCBIG-EC [24] Word2Vec 96.74 91.62

HAM [23] Word2Vec 94.04 87.85

This Study TF-IDF 95.90 85.37 99.20 95.15 94.74 95.90
Word2Vec 83.48 79.55 96.77 86.76 94.74 84.73
FastText 84.75 78.78 100.00 86.46 92.31 85.78

BoW 78.11 74.05 99.20 78.16 87.50 74.05

6. Limitations of the Current Study

The current study is our initial exploration of the impact of different input types on
smart contract vulnerability detection performance. An obvious limitation of the current
study is that only four input types have been considered. The most notable missing piece is
the graph-based input type. Unfortunately, the graph-based input type is highly complex
and often heavily customized in each of the related studies. Other embedding methods,
such has abstract syntax tree embeddings, hybrid embeddings, and semantic and contextual
embeddings, also deserve to be considered. Furthermore, BERT could be used to encode
the smart contract fragments. The reason is that large language models such as BERT have
shown excellent performance in natural language processing. BERT-based embedding
could outperform the four types of input we have experimented.

The second limitation is that the dataset we used is relatively small. In particular, the
integer overflow has only 550 fragments. The number of fragments for delegate (980) and
re-entrancy (1224) is also relatively small. It is desirable to build a large dataset with at
least 10,000 fragments for each type of vulnerability.

Third, some tokens eliminated during the preprocessing stage for the dataset could
remove some essential information from the smart contracts. For example, some vulnera-
bilities could be present only in certain Solidity versions. Because we used a public dataset
that has already been preprocessed, we can no longer restore such tokens.

Last, but not the least, it is difficult to provide an in-depth analysis and explanation
regarding why TF-IDF has the best overall performance in vulnerability detection, and why
BoW has excellent performance in multiclass classification despite the fact that it has poor
performance in binary classification. One plausible explanation could be that overfit occurred
in some classifications, which could lead to inconsistency or artificial good or bad performance.

7. Conclusions and Future Work

In this paper, we systematically studied the impact of four different input types on
the vulnerability detection performance using a public dataset. In addition to carrying
out binary classification, which is quite pervasive in machine-learning-based vulnerability
detection studies, we also conducted multiclass classification experiments. We argued
that the vulnerability detection performance of multiclass classification is more useful in
practice because it is unlikely to be known beforehand which particular vulnerability the
smart contract might have. We experimented with four types of input, namely, Word2Vec,
FastText, BoW, and TF-IDF, and six types of vulnerability using a public dataset. We showed
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that TF-IDF is the overall best performing input type, despite the fact that it is significantly
less complex than Word2Vec and FastText, and the input dimension for TF-IDF is also
drastically smaller than those of Word2Vec and FastText. Somewhat surprisingly, BoW has
slightly better vulnerability detection performance than TF-IDF in multiclass classification
(95.84% vs. 95.09%).

There are three desirable future research directions: (1) include more types of input,
such as graph-based input, in the comparison; (2) compare the impact of deep-learning
models in vulnerability detection; and (3) perhaps most importantly, investigate how to
coherently fuse the different types of input for better detection performance. For (3), we
attempted to concatenate the feature vectors produced by different types of input and used
the combined vector as input for classification. The result is significantly lower classification
performance, which proved that this is not the correct way of fusing the input together.
To further improve the vulnerability detection performance, a much more sophisticated
scheme will have to be developed that could identify and combine complementary features
from different types of input.
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