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Abstract: With the rapid growth of the data scale in data centers, the high reliability of storage is
facing various challenges. Specifically, hardware failures such as disk faults occur frequently, causing
serious system availability issues. In this context, hardware fault prediction based on AI and big data
technologies has become a research hotspot, aiming to guide operation and maintenance personnel
to implement preventive replacement through accurate prediction to reduce hardware failure rates.
However, existing methods still have weaknesses in terms of accuracy due to the impacts of data
quality issues such as the sample imbalance. This article proposes a disk fault prediction method
based on classification intensity resampling, which fills the gap between the degree of data imbalance
and the actual classification intensity of the task by introducing a base classifier to calculate the
classification intensity, thus better preserving the data features of the original dataset. In addition,
using ensemble learning methods such as random forests, combined with resampling, an integrated
classifier for imbalanced data is developed to further improve the prediction accuracy. Experimental
verification shows that compared with traditional methods, the F1-score of disk fault prediction is
improved by 6%, and the model training time is also greatly reduced. The fault prediction method
proposed in this paper has been applied to approximately 80 disk drives and nearly 40,000 disks in the
production environment of a large bank’s data center to guide preventive replacements. Compared
to traditional methods, the number of preventive replacements based on our method has decreased
by approximately 21%, while the overall disk failure rate remains unchanged, thus demonstrating
the effectiveness of our method.

Keywords: classification intensity; imbalanced data; resampling; bucket undersampling; secondary
screening; SMOTE oversampling

1. Introduction

With the explosive growth of data scale, the high reliability of storage faces enormous
challenges as the data foundation carries financially distributed information systems.
The disk is the most important medium of storage. The self-monitoring analysis and
reporting technology (SMART) of the disk can analyze the working status of the hard
disk and detect various attributes of the disk. The main research method is based on
feature selection, selecting the main features that affect hard disk fault prediction and
then establishing disk fault prediction models using machine learning algorithms such as
decision trees, support vector machines, Bayesian networks, and neural networks [1–3].
However, standard machine learning models cannot deal with imbalanced data very
well. This article proposes a disk fault prediction method based on classification intensity
resampling. Considering that in practical applications, even if the imbalance ratio is
the same, different datasets may exhibit extremely different classification intensities. By
introducing a base classifier to calculate the classification intensity, the gap between the
imbalance degree of the dataset and the actual classification intensity of the task is filled,
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thus better preserving the data features of the original dataset and improving model
performance. By integrating ensemble learning methods, such as random forest, with
resampling techniques, an ensemble classifier tailored for unbalanced data was ultimately
developed, further enhancing prediction accuracy.

2. Research Background
2.1. The Current Research Status

Many distributed information systems rely on large-scale, low-cost, ordinary devices,
such as disks, which are prone to hardware failures. These failures often lead to system
availability issues, posing challenges to the overall performance and reliability of the
system. However, the existing hardware fault prediction methods based on big data
and AI technology are limited by issues such as sample imbalance, complex physical
characteristics of various hardware, and diverse fault types, resulting in low accuracy and
generalization as well as inefficient preventive replacement. The current focus of operation
and maintenance and research hotspots include disk fault prediction.

Specifically, disk fault prediction is mainly based on self-monitoring analysis and
reporting technology (SMART) analysis, directly predicting the fault state at a certain
moment in the future. Microsoft proposed a transfer learning approach [4,5], and some
scholars have proposed data-screening methods with deep learning [6–11]. Some progress
has been made in model accuracy, but it is still difficult to effectively solve the sample
imbalance problem caused by scarce fault samples. A comparison of commonly used disk
fault prediction methods is shown in Table 1.

Table 1. Comparison of commonly used disk fault prediction methods.

Method Type Basic Idea Limitations

Conventional Machine
Learning

Based on labeled data, uses supervised machine
learning models for classification

Only a very small number of fault samples result
in dataset imbalance, which affects

classification accuracy.

Transfer Learning Focuses on solving the problem of model transfer
training between different disk models. Sample imbalance issue is not addressed.

Data Screening

Divides the dataset based on disk usage life and
utilizes similarity metrics to assess the closeness

between the state of the hard drive to be predicted
and the hard drive states in the training set; a new

training set is formed by selecting those hard
drives that exhibit high levels of similarity.

Sample imbalance issue is not addressed.

It can be seen that the aforementioned methods have not fundamentally solved the
problem of sample imbalance, limiting accuracy.

2.2. Issues and Challenges

With the explosive growth of data scale, the high reliability of storage, as the data
foundation of financial distributed information systems, faces enormous challenges. The
disk is the most important medium of storage, and sudden disk failure can directly affect
the stable operation of business systems. The SMART analysis of the disk can analyze
the working status of the hard disk and detect various attributes of the disk. Currently,
the main practice of operation and maintenance personnel is to predict faults based on
SMART analysis of the disk and implement preventive replacement to ensure the high
reliability of the disk. Currently, the preventive replacement of disks faces a dilemma.
On the one hand, if the false positive rate is too high, frequent replacement will lead
to resource waste. On the other hand, if the false positive rate is reduced to improve
accuracy, there may be omissions, and failure to replace on time may lead to business losses.
SMART includes 255 attributes related to hard disk failures, such as temperature, humidity,
pressure, the total number of reassigned sectors, and start–stop times. The main research
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method is based on feature selection, selecting the main features that affect hard disk
failure prediction and then establishing a disk failure prediction model through machine
learning algorithms, e.g., decision trees, support vector machines, Bayesian networks, and
neural networks, to detect hidden problems in advance and improve the reliability of
data storage in data centers. Although this method has improved prediction accuracy
compared with traditional methods, the F1-score is still insufficient. The main difficulty is
that the number of abnormal samples in SMART data is extremely scarce and the categories
are imbalanced. Standard machine learning models cannot deal with imbalanced data
well. The implicit optimization goal of these models is classification accuracy. However,
classification accuracy itself is not a reasonable evaluation index under the conditions of
imbalanced categories because it tends to judge all samples as majority classes. In the
premise that minority class samples contain more important information, this classifier has
poor performance in practical applications.

To solve the problem of class imbalance learning, researchers have proposed a series
of solutions, which can be roughly divided into two categories: data-level methods and
algorithm-level methods. Data-level methods balance the data distribution or remove
noise by adding or deleting samples in the dataset (also known as resampling methods),
and the modified dataset is used to train a standard learner. However, conventional
random undersampling and SMOTE oversampling techniques based on nearest neighbors
have poor performance in preserving the original data features [12–14]. As for algorithm-
level methods, by modifying existing standard machine learning methods to correct the
influence of different class sample sizes on them, standard learning methods can also adapt
to imbalanced learning scenarios but rely on specific domain knowledge and have poor
practical application effects [15,16].

Considering that in practical applications, even if the imbalance ratio is the same,
different datasets may exhibit very different classification intensities. Therefore, how to
integrate data-level methods with algorithm-level methods and take into account the
classification intensity of data during data resampling is an important yet challenging issue.

3. Model Architecture

This article proposes a disk failure prediction method based on classification intensity
resampling. It fills the gap between the imbalance level of the dataset and the actual
classification intensity of the task, thus better preserving the data characteristics of the
original dataset and maximizing the effectiveness of the model. In addition, using ensemble
learning methods such as random forest combined with resampling, we developed an
ensemble classifier for imbalanced data to further improve the prediction accuracy.

Figure 1 illustrates the architecture of the proposed model which consists of classifica-
tion intensity calculation based on base classifiers, bucket undersampling, secondary screen-
ing SMOTE oversampling, and retraining the base classifier based on balanced datasets.

Figure 1. Model architecture.
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4. Classification Intensity Calculation

Formally, we use F to represent a classifier. For a sample (x, y), we use F(x) to
represent the probability that the classifier outputs a positive sample when inputting x.
Due to the minority rate samples being marked as 1 and the majority class samples being
marked as 0, classification intensity can be formally defined as probability F(x), since the
true label is binary (0 or 1).

The definition of each sample in the imbalanced dataset is as follows: D represents the
training set, each sample point is represented by (x, y), the minority class is P = (x, y)|y = 1,
and the majority class is N = (x, y)|y = 0.

For P, classification intensity means the probability of the minority class samples
being hit. This definition represents confidence. When the value is large, it indicates that
it is very close to the true label, which has guiding significance for oversampling; For N,
classification intensity means the probability of the majority class samples being misjudged.
This definition quantifies the difficulty of classification. When the value is large, it indicates
a significant difference from the true label, making classification more difficult.

In practical applications, even if the imbalance ratio is the same, different datasets
may exhibit extremely different classification difficulties. The classification intensity carries
more information about the implicit distribution of the dataset and can better reflect the
classification difficulty of the task.

Secondly, classification intensity serves as a bridge between data sampling strategies
and classifier learning capabilities. Most existing resampling methods are completely
independent of the classifier used. However, different classifiers may have significant per-
formance differences on the same imbalanced data classification task and exhibit completely
different behavior patterns. When conducting resampling, the differences in the learning
abilities of different models should be taken into account, and the definition of classification
intensity implies the information about the learning abilities of different models.

A model considering classification intensity can achieve the following:

(1) Due to the fact that classification intensity is defined by a given learner, the distribution
of classification intensity itself varies depending on the learning ability of different
classifiers. This enables the model to naturally adapt to the learning process of
different classifiers and obtain the optimal optimization process based on the different
classification abilities of the learners.

(2) The model can be used to collaborate with any classifier and improve its classification
performance on large-scale imbalanced datasets in an integrated manner.

In actual production, our main concern is the classification performance of the classifier
on the original imbalanced dataset. Therefore, when evaluating the classification model,
we do not resample the dataset, leaving it in a category-imbalanced state. The technical
details of classification intensity calculation are presented in Algorithm 1.

Algorithm 1 Classification intensity calculation

Input: Training set D;
Base learner f

Output: Initial classifier fo;
Sample classification intensity fo(N), fo(P)
1. Initialization: minority sample set in P ≤ D, majority sample set in N ≤ D;
2. Calculate the number of majority and minority samples |P| = count(P),
|N| = count(N);
3. Using random majority class subsampling to obtain a majority class subset No. Make
No = |P|.
4. Using balanced dataset NO ∪ P training initial classifier fo;
5. Utilize fo predict the probability of all samples being misjudged in N, fo(N);
6. Utilize fo predict the probability of all samples being hitted in P, fo(P);
return fo, fo(N), fo(P)
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In this article, a random forest is introduced as the base learner. Random forest is
an ensemble learning method based on decision trees and utilizes the results of multiple
decision trees for classification or regression. In a random forest, each decision tree classifies
or regresses the data and ultimately obtains the final result by averaging or voting the
output results of all decision trees. This ensemble learning method effectively avoids the
problem of overfitting a single decision tree.

For a dataset with m samples and n features, the random forest algorithm can be
constructed by the following steps: Step a. Sample N subsets of the training set. Firstly,
bootstrap sampling is performed on the original dataset D to generate N subsets of data
with size m, Di(i = 1, 2, . . . , N). At the same time, k features (k ≤ n) are randomly selected
as reference feature sets for decision tree training. Step b. Build a decision tree. Use the
CART algorithm (Classification and Regression Tree) to construct a decision tree for each
subset until the preset stop conditions (such as tree depth, number of leaf nodes, etc.) are
met. Since each decision tree is trained on different subsets of data, each decision tree in a
random forest is different. The main advantages of random forests include good model
robustness, robustness to missing data, and the ability to handle high-dimensional data.
Meanwhile, since random forests can generate feature importance, they can also be used
for feature selection.

5. Bucket Undersampling

In the processing of imbalanced datasets, random undersampling is the most com-
monly used and simplest undersampling method, which mainly achieves undersampling
by randomly selecting a portion of the samples from the majority class without any pro-
cessing for the minority class. When randomly selecting majority class samples, there
is randomness, which leads to a decrease or loss of some important information in the
majority class. When the data imbalance ratio increases significantly, the loss of important
information increases sharply, ultimately leading to a sharp decrease in the comprehen-
sive classification performance of the classifier in imbalanced datasets as the imbalance
degree increases.

For majority class samples, classification intensity quantifies the difficulty of classi-
fication. When a sample exhibits a high classification intensity value, it indicates greater
difficulty in accurate classification, thereby implying a higher informational value and
deserving a higher sampling rate. Conversely, a low classification intensity value suggests
easier accurate classification, resulting in a lower information density and thus deserving
less retention.

The idea of bucketing is analogous to that of a “histogram”. Since classification
intensity is expressed as a probability value ranging from 0 to 1, several buckets can be
established, each encompassing a specific probability range. For instance, if five buckets
are set, the probability range for the first bucket would be 0–0.2; for the second bucket,
it would be 0.2–0.4; and so on, with the fifth bucket encompassing the range of 0.8–1.
Each sample point is then assigned to the corresponding bucket based on its calculated
classification intensity value. Under the approach proposed in this paper, the first bucket,
despite containing the largest number of samples, exhibits the lowest classification intensity
and thus receives the lowest sampling weight. Conversely, the fifth bucket, containing the
samples with the highest classification intensity and the smallest sample size, receives the
highest sampling weight.

The main idea of bucket undersampling proposed in this article is to randomly under-
sample each bucket based on the average classification intensity of each bucket as a weight.
Although there are a large number of buckets with low classification intensity, they only
need to retain a small portion to represent their corresponding distribution of “skeletons”
because they have been well classified by the base classifier, which is used to prevent the
learner from being affected by noise in a few classes.

However, since the classifier has already learned such samples well, the majority of
them can be discarded in subsequent training since the weight is relatively small. The
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stronger the classification intensity of the bucket, the higher the weight and the more
samples are sampled. The sample points in this bucket may be closer to the classification
boundary, making it difficult for the base classifier to recognize. From the perspective of
information extraction, this type of sample has the largest amount of information during
model training and should be retained more. Therefore, compared to random undersam-
pling, bucket-based undersampling can better preserve the most valuable information in
the original dataset without losing the “skeleton” of data distribution. The technical details
of bucket undersampling are presented in Algorithm 2.

Algorithm 2 Bucket undersampling

Input: Majority class sample set N;
Number of buckets divided k;
Majority sample classification intensity fo;

Output: Sample set N after sub-bucket undersampling Ns
1. Determine the probability numerical interval for each sub-bucket with the interval for
the i-th bucket

[
i−1

k , i
k

]
2. Based on fo(N) distribution, according to the interval of buckets, load each sample
point into k buckets, and the samples in each bucket are Ni
3. Calculate the average classification intensity of each bucket with the average classifica-
tion intensity of the i-th bucket C(Ni) = avg( fo(Ni);
4. Calculate the sampling weight of each bucket, and the sampling weight of the i-th
bucket is W(Ni) =

C(Ni)

∑k
i=1 C(Ni)

;

5. Randomly sample each bucket based on its sampling weight with the i-th bucket
having a sampling amount of W(Ni) ∗ |P|;
return Return the sample set after sub-bucket undersampling Ns

6. Secondary Screening SMOTE Oversampling

By simply copying a few class samples to achieve sample increase, random oversam-
pling makes it easy to make the model classification area too specific, resulting in insufficient
generalization and ultimately leading to overfitting of the model classification [17].

The SMOTE (Synthetic Minority Oversampling Technique) algorithm is an improved
method for random oversampling, which is currently widely used. It creates minority
class samples through synthesis instead of simply copying minority classes to achieve
oversampling. The technical details of SMOTE oversampling are presented in Algorithm 3.

Algorithm 3 SMOTE oversampling

Input: minority sample x;
x’s adjacent sample set X

Output: New Sample Xnew
1. Repeat until the required oversampling rate is completed do
2. Calculate the distance between the minority sample x and its k-nearest neighbors and
randomly select a neighbor sample Xi
3. Randomly specify proportions λ ∈ [0, 1]
4. Combining x and Xi Two samples, according to Xnew = x + λ ∗ (Xi − x) Synthesize
new sample Xnew
5. End repeat
return Return New Sample Xnew

SMOTE randomly synthesizes a few instances along the line connecting them and
their selected nearest neighbors, ignoring the nearby majority instances, which can easily
blur the boundaries of minority class samples and reduce the accuracy of the algorithm [18].
For minority class samples, a high classification intensity value indicates closer proximity
to the true label, representing a higher degree of confidence. Drawing inspiration from the
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concept of “semi-supervision”, we calculate the classification intensity for the oversampled
points randomly generated by SMOTE and retain those with higher confidence, thereby
enhancing the performance of oversampling.

The main idea of the secondary screening SMOTE oversampling method proposed in
this article is to use a base classifier to calculate the classification intensity of each sample
point for the samples generated by SMOTE, ensuring that it is not lower than the average
classification intensity of minority class samples. By performing secondary screening
on SMOTE and retaining sample points with high reliability, oversampling compared to
standard SMOTE can effectively reduce the disturbance of noise points on classification
boundaries and avoid algorithm overfitting. The technical details of secondary screening
oversampling are presented in Algorithm 4.

Algorithm 4 Secondary screening oversampling

Input: minority class sample set P;
Oversampling rate R;
Minority sample classification intensity fo(P);
Initial classifier fo

Output: oversampled dataset Ps
1. Calculate the average classification intensity of minority class samples
C(P) = avg(Fo(P))
2. Based on the oversampling rate R, use SMOTE to oversample P and obtain the
sampling dataset PSMOTE;
3. Calculate the classification intensity f for each sample in the oversampling dataset
fo(PSMOTE);
4. Keep Sample points with fo(PSMOTE) > C(P) form an oversampling dataset Ps
return Return oversampled datase Ps;

7. Classifier Training

For the classifier training, the above sampling methods can be flexibly selected based
on the imbalance ratio of the original dataset, and the final balanced dataset can be con-
structed. Through actual data verification, when the imbalance ratio of the original dataset
is within 100, only sub-bucket undersampling is used. When the imbalance ratio is greater
than 100, it is recommended to use both bucket undersampling and secondary screening
SMOTE oversampling to construct a balanced dataset. Afterwards, based on the con-
structed balanced dataset, the base classifier is retrained to obtain the final prediction
model. The technical details of classifier training are presented in Algorithm 5.

Algorithm 5 Classifier Training

Input: Dataset imbalance ratio IR;
Undersampled dataset Ns;
Oversampling dataset Ps;
Classifier f

Output: Final classifier fs
1. If IR ≤ 100 then
2. Only using bucket undersampling method to construct a balanced dataset Ds = Ns ∪ P;
3. Else if IR > 100 then
4. Using bucket undersampling and secondary screening SMOTE oversampling methods
to construct a balanced dataset Ds = Ns ∪ PS ∪ P;
5. End if
6. Train classifier f using a balanced dataset to obtain the final classifier fs
return Return fs;
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8. Experiment and Analysis

The innovation of this model lies in the novel undersampling and oversampling
methods proposed, and the balanced dataset constructed can better reflect the information
of the source data, thus achieving better prediction results. Therefore, the focus of the
experimental analysis is verifying the effectiveness of bucket undersampling and secondary
screening SMOTE oversampling through actual data and analyze and compare the optimal
combination usage strategy of this model.

Based on this, the experiment considers three types of evaluation scenarios, includ-
ing the evaluation of the effects of bucket undersampling and random undersampling;
the evaluation of the effects of secondary screening SMOTE oversampling and SMOTE
oversampling; and the evaluation of the effects of bucket undersampling alone, secondary
screening SMOTE oversampling alone, and mixed sampling.

8.1. Experimental Environment

Number of Servers: 1; Server Model: Intel(R) Xeon E5-2650v2 specifications:
CPU@2.60 GHz with 32 GB RAM; Operating System: CentOS 7.3; Programming Language:
Python; Experimental Tool: Jupyter notebook.

8.2. Datasets

This article uses two types of datasets. The first is the SMART dataset [19], which is
sourced from the hard drive model ST31000524NS manufactured by Seagate. This dataset is
a public dataset with existing faulty disk labels, and 11 features are selected through feature
selection. The ones marked with ’raw’ are the original values of the attributes, as shown in
Table 2. Randomly select a certain number of minority and majority class samples from the
dataset to construct experimental sets with different imbalances. The basic information is
shown in Table 3. The purpose is to compare the effectiveness of resampling methods in
various imbalanced datasets.

Table 2. SMART dataset properties.

ID Attribute Name

1 Raw Read Error Rate
3 Spin Up Time
5 Reallocated Sector Count
7 Seek Error Rate
9 Power On Hours

187 Reported Uncorrectable Error
189 High Fly Write
194 Temperature Celsius
195 Hardware ECC Recovered
197 Current Pending Sector Count

5_raw Reallocated Sector Count

Table 3. SMART datasets with different unbalance ratios.

Dataset N_Sample N_Minority N_Majority Imbalance Ratio

S1 468,936 156,312 312,624 2:1
S2 781,560 156,312 625,248 4:1
S3 1,094,184 156,312 937,872 6:1
S4 1,406,808 156,312 1,250,496 8:1
S5 1,719,432 156,312 1,563,120 10:1
S6 3,282,552 156,312 3,126,240 20:1
S7 3,946,394 96,253 3,850,141 40:1
S8 3,914,310 64,169 3,850,141 60:1
S9 3,898,267 48,126 3,850,141 80:1
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Table 3. Cont.

Dataset N_Sample N_Minority N_Majority Imbalance Ratio

S10 3,888,642 38,501 3,850,141 100:1
S11 3,869,391 19,250 3,850,141 200:1
S12 3,859,766 9625 3,850,141 400:1
S13 3,856,557 6416 3,850,141 600:1
S14 3,854,953 4812 3,850,141 800:1
S15 3,853,991 3850 3,850,141 1000:1
S16 3,852,066 1925 3,850,141 2000:1
S17 3,851,103 962 3,850,141 4000:1
S18 3,850,782 641 3,850,141 6000:1
S19 3,850,622 481 3,850,141 8000:1
S20 3,850,526 385 3,850,141 10,000:1

The second type of dataset [20,21] has different imbalanced ratios and can further
verify the generalization of the methods in this article. In addition to being used for disk
SMART data, it is also applicable to other imbalanced and classified datasets. Please refer
to Table 4 for details.

Table 4. Other imbalanced datasets.

Dataset N_Sample N_Minority N_Majority Imbalance Ratio

optical_digits 5620 554 5066 9.14
pen_digits 10,992 1055 9937 9.42
coil_2000 9822 586 9236 15.76
letter_img 20,000 734 19,266 26.25
webpage 34,780 981 33,799 34.45

mammography 11,183 260 10,923 42.01
protein_homo 145,751 1296 144,455 111.46

abalone_19 4177 32 4145 129.52
creditcard 284,807 492 284,315 577.88

8.3. Evaluating Indicator

Table 5 presents the confusion matrix of the binary classification results with the first
column showing the actual labels of the samples and the first row showing the predicted
labels of the samples. Among them, TP (True Positive), TN (True Negative), FP (False
Positive), and FN (False Negative) are composed of four values, where TP is the positive
example of correct classification, TN is the negative example of correct classification, FP is
the positive example of incorrect classification, and FN is the negative example of incorrect
classification.

Table 5. Confusion matrix for binary classification problems.

Positive Negative

True TP TN
Flase FP FN

Based on the confusion matrix, this article evaluates the performance of classification
models on imbalanced datasets using three indicators, i.e., recall, precision, and F1-score,
as described below.

Recall =
TP

TP + FN
, (1)

Precession =
TP

TP + FP
, (2)
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F1score = 2 × Recall × Precesion
Recall + Precesion

(3)

For the binary classification of imbalanced datasets, we hope that as many positive
samples can be detected as possible to ensure that the model has a high recall rate in this
case. The higher the F1score value, the greater the recall and precision rates of the current
classification algorithm, indicating better classification performance. Compared to accuracy,
F1score is more suitable for evaluating the classification performance of imbalanced datasets.

8.4. Experimental Plan and Analysis

This article of the experiment is based on the two types of datasets mentioned above,
and the specific parameters in the experiment are set as follows. The seed used to generate
a random number generator in a random forest is set to 0. The sub-bucket undersampling
method sets the number of sub-buckets to 10 each time, and the secondary screening
oversampling method extracts five samples each time to construct new samples based
on SMOTE. The experimental evaluation indicators Recall, Precision, and F1-score are
obtained by simulating 100 mean values with random forest parameters defaulted. To
better compare the computational complexity and time consumption of algorithms, the
experimental time was obtained by averaging 1000 simulations of the model.

We designed three comparative analysis scenarios, namely the comparison between
bucket undersampling and random undersampling, the comparative analysis between the
secondary screening SMOTE oversampling and standard SMOTE oversampling, and the
comprehensive comparative analysis.

(1) Comparative analysis of bucket undersampling and random undersampling

Figure 2 shows the comparison of F1 values between bucket undersampling and
random undersampling algorithms on SMART datasets with different balance ratios. As
the imbalance ratio increases, the F1 value of bucket undersampling is significantly higher
than that of random undersampling.

Figure 2. Comparison of cost–time between two undersampling algorithms on SMART datasets.

Figure 3 shows the comparison of cost–time between two undersampling algorithms
on SMART datasets with different balance ratios. The cost–time of bucket-based undersam-
pling has been slightly increased compared to random undersampling, but it is still on the
same order of magnitude.

The detailed performance comparison on other imbalanced datasets shows similar
conclusions, as shown in Table 6.

(2) Comparative analysis of secondary screening SMOTE oversampling and standard
SMOTE oversampling

From Figure 4, on SMART datasets with different imbalanced ratios, the secondary
screening SMOTE algorithm has an average F1 value 2% higher than the standard
SMOTE algorithm.
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Figure 3. Comparison of cost–time between two undersampling algorithms on SMART datasets.

Table 6. Comparison of perf between two undersampling algorithms on other imbalanced datasets.

Dataset Imbalance Ratio
F1-Score Cost–Time

Buckets Random Buckets Random
Undersampling Undersampling Undersampling Undersampling

optical_digits 9.14 0.9267 0.8802 0.3406 0.2360
pen_digits 9.42 0.9930 0.9783 0.3409 0.2366
coil_2000 15.76 0.1735 0.1743 0.3449 0.2384
letter_img 26.25 0.9012 0.7539 0.3430 0.2373
webpage 34.45 0.5422 0.3514 0.4424 0.2788

mammography 42.01 0.5010 0.3418 0.3380 0.2335
protein_homo 111.46 0.7539 0.3855 0.4412 0.2734

abalone_19 129.52 0.0126 0.0115 0.3364 0.2323
creditcard 577.88 0.4744 0.0882 0.4235 0.2582

Figure 4. Comparison of F1-scores between two oversampling algorithms on SMART datasets.

(3) Comprehensive comparative analysis

The bucket undersampling and secondary screening SMOTE oversampling methods
in this article can correspond to three combinations in practical applications:

• Only using sub-bucket undersampling;
• Only using secondary screening SMOTE oversampling;
• Simultaneous using bucket undersampling and secondary screening SMOTE oversampling

Through analysis and comparison, we can derive efficient combination strategies to
guide the maximum effectiveness of the model in practical applications.

Figure 5 shows the F1 value comparison of the above three types of combination
methods on the SMART dataset. From the graph, we can see that when the imbalance
ratio of the dataset is below 100, the performance of the three types of methods is similar.
However, due to the low time complexity of sub-bucket undersampling and the short
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training time of the sampled model, it is more suitable to directly use sub-bucket under-
sampling processing. When the imbalance of the dataset continues to increase, the F1 value
of sub-bucket undersampling significantly decreases, and the performance of the other two
methods is similar.

Figure 5. Comparison of F1-scores between three sampling algorithms on SMART datasets.

However, due to the use of only secondary screening SMOTE, the training set size will
expand and the training time will be longer. Overall, mixed sampling is more suitable in
such scenarios.

Tables 7 and 8 show the experimental results on other imbalanced binary classification
datasets, which also support the above conclusion and demonstrate the generalization of
the method.

Table 7. Comparison of F1-scores between three sampling algorithms on other imbalanced datasets.

Dataset Imbalance
Ratio N_Feature Buckets Un-

dersampling

Secondary
Screening
SMOTE

Mixed
Sampling

optical_digits 9.14 65 0.9396 0.8811 0.9289
pen_digits 9.42 17 0.9942 0.9869 0.9862
coil_2000 15.76 86 0.1725 0.1319 0.2080
letter_img 26.25 17 0.9124 0.9271 0.9272
webpage 34.45 301 0.5603 0.7109 0.6766

mammography 42.01 7 0.4984 0.7459 0.7292
protein_homo 111.46 75 0.7714 0.8247 0.8264

creditcard 577.88 31 0.5021 0.8432 0.8467

Table 8. Comparison of cost–time between three sampling algorithms on other imbalanced datasets.

Dataset Imbalance
Ratio N_Feature Buckets Un-

dersampling

Secondary
Screening
SMOTE

Mixed
Sampling

optical_digits 9.14 65 0.3405 0.5751 0.6998
pen_digits 9.42 17 0.3403 0.7423 0.8977
coil_2000 15.76 86 0.3480 0.6101 0.7519
letter_img 26.25 17 0.3414 0.6489 0.7527
webpage 34.45 301 0.4488 1.5856 1.4937

mammography 42.01 7 0.3373 0.4542 0.5665
protein_homo 111.46 75 0.4587 3.5743 1.5278

creditcard 577.88 31 0.4297 6.5677 0.9589
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(4) Experimental Conclusion

Based on the experimental results above, compared with random undersampling, the
F1-score of bucket undersampling increases rapidly with the increase in the data imbalance
ratio. Compared with the standard SMOTE oversampling method, the F1-score of the
secondary screening SMOTE oversampling method increases by 2%. Compared with
directly training on the original dataset, using the resampling method classifier in this
paper, the F1-score increases by 6%, and the model training time is significantly reduced.

The sampling method proposed in this article has strong generalization ability. Among
them, bucket undersampling is suitable for scenarios with an imbalance ratio of less
than 100, and mixed sampling (bucket undersampling and secondary screening SMOTE
oversampling) is suitable for scenarios with an imbalance ratio between 100 and 10,000. Due
to the construction of a small-scale balanced dataset through undersampling, the training
time is significantly compressed while ensuring accuracy such as F1-score, resulting in
better performance.

8.5. Application Effect Analysis

This model has been deployed in a production environment of a bank, and it has been
applied to fault prediction for approximately 80 mid-to-high-end disk drives with nearly
40,000 disks. A centralized disk management tool has also been developed to support it. It
can generate weekly health check reports, covering SMART analysis and the prediction
results of disks, assisting in prompting front-line operation and maintenance personnel to
identify potential problems and guide preventive replacement, achieving good results.

9. Conclusions

Most existing methods for disk fault prediction are based on SMART data. They first
select the main features that affect hard disk fault prediction and then establish a disk fault
prediction model through machine learning algorithms such as decision trees, support
vector machines, Bayesian networks, and neural networks. However, these methods cannot
cope well with imbalanced data. This article proposes a disk fault prediction method based
on classification intensity resampling. By introducing a base classifier to calculate the
classification intensity, the gap between the imbalance degree of the dataset and the actual
classification intensity of the task is filled, and the data features of the original dataset are
better preserved. In addition, the use of ensemble learning methods such as random forests,
combined with resampling, ultimately results in an ensemble classifier for imbalanced
data, further improving the prediction accuracy. The proposed method first trains the base
classifier to calculate sample classification intensity; then, it begins bucket undersampling
and secondary screening SMOTE oversampling, and finally, it retrains the base classifier
based on a balanced dataset to obtain the prediction model. After actual data validation,
bucket undersampling is more effective than random undersampling, and the S score
accelerates with the increase of the data imbalance ratio. The second screening SMOTE
oversampling method improves the F1-score by 2% compared with the standard SMOTE
oversampling method. Compared with direct training on the original dataset, using the
resampling method in this article improves the classifier F1-score by 6%, and the model
training time was significantly reduced.

The method in this article uses a single sampling during the sampling stage, which
has a certain degree of randomness. Future work could benefit from improving the model’s
stability through iterative and multiple sampling strategies and exploring the integration of
reinforcement learning to train a meta-sampler for optimizing the resampling process [22].
Additionally, it proposes investigating the use of advanced base classifiers, such as deep
learning models, to further enhance the prediction accuracy and applicability of the disk
failure prediction methodology.
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