
Citation: Beti, I.-A.; Herghelegiu,

P.-C.; Caruntu, C.-F. Architectural

Framework to Enhance Image-Based

Vehicle Positioning for Advanced

Functionalities. Information 2024, 15,

323. https://doi.org/10.3390/

info15060323

Academic Editors: Dejiu Chen,

Fredrik Warg, Anders Thorsén and

Anders Cassel

Received: 24 April 2024

Revised: 22 May 2024

Accepted: 28 May 2024

Published: 31 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Architectural Framework to Enhance Image-Based Vehicle
Positioning for Advanced Functionalities
Iosif-Alin Beti 1,† , Paul-Corneliu Herghelegiu 2,† and Constantin-Florin Caruntu 1,*,†

1 Department of Automatic Control and Applied Informatics, Gheorghe Asachi Technical University of Iasi,
700050 Iasi, Romania; iosif-alin.beti@student.tuiasi.ro

2 Department of Computer Science and Engineering, Gheorghe Asachi Technical University of Iasi,
700050 Iasi, Romania; paul-corneliu.herghelegiu@academic.tuiasi.ro

* Correspondence: caruntuc@ac.tuiasi.ro
† These authors contributed equally to this work.

Abstract: The growing number of vehicles on the roads has resulted in several challenges, including
increased accident rates, fuel consumption, pollution, travel time, and driving stress. However, recent
advancements in intelligent vehicle technologies, such as sensors and communication networks,
have the potential to revolutionize road traffic and address these challenges. In particular, the
concept of platooning for autonomous vehicles, where they travel in groups at high speeds with
minimal distances between them, has been proposed to enhance the efficiency of road traffic. To
achieve this, it is essential to determine the precise position of vehicles relative to each other. Global
positioning system (GPS) devices have an intended positioning error that might increase due to
various conditions, e.g., the number of available satellites, nearby buildings, trees, driving into
tunnels, etc., making it difficult to compute the exact relative position between two vehicles. To
address this challenge, this paper proposes a new architectural framework to improve positioning
accuracy using images captured by onboard cameras. It presents a novel algorithm and performance
results for vehicle positioning based on GPS and video data. This approach is decentralized, meaning
that each vehicle has its own camera and computing unit and communicates with nearby vehicles.

Keywords: computer vision; traffic optimization; vehicle platooning; vehicle positioning; V2V
communication

1. Introduction

We live in a constantly developing world, where cities are becoming more and more
crowded, and the number of cars is constantly increasing. Traffic becomes more and more
congested because the road infrastructure can no longer cope with the increasing number
of vehicles. This means more fuel consumption, more pollution, longer journeys, stressed
drivers, and, most importantly, an increase in the number of accidents. Pedestrians, cyclists,
and motorcyclists are the most exposed to road accidents. According to a report from 2017
by the World Health Organization, every year, 1.25 million people die in road accidents,
and millions more are injured [1]. The latest status report from 2023 [2] indicates a slight
decrease in the number of road traffic deaths to 1.19 million per year, highlighting the
positive impact of efforts to enhance road safety. However, it underscores that the cost of
mobility remains unacceptably high. The study described in [3] tracked the progress of
reducing the number of car accidents since 2010 in several cities. It concluded that very few
of the studied cities are improving road safety at a pace that will reduce road deaths by
50% by 2030, in line with the United Nations’ road safety targets.

Autonomous vehicles can avoid some errors made by drivers, and they can improve
the flow of traffic by controlling their pace so that traffic stops oscillating. They are
equipped with advanced technologies such as global positioning systems (GPS), video
cameras, radars, light detection and ranging (LiDARs), and many other types of sensors.

Information 2024, 15, 323. https://doi.org/10.3390/info15060323 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15060323
https://doi.org/10.3390/info15060323
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0009-0000-1820-8000
https://orcid.org/0000-0002-4026-2852
https://doi.org/10.3390/info15060323
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15060323?type=check_update&version=1

Information 2024, 15, 323 2 of 26

They can travel together, exchanging information about travel intentions, detected haz-
ards and obstacles, etc., through vehicle-to-vehicle (V2V) or vehicle to everything (V2X)
communication networks.

To increase the efficiency of road traffic, the idea of grouping autonomous vehicles
into platoons through information exchange was proposed in [4]. Vehicles should consider
all available lanes on a given road sector when forming a group and travel at high speeds
with minimal safety distances between them. However, this is possible only if a vehicle can
determine its precise position with respect to other traffic participants.

In recent years, image processing and computer vision techniques have been widely
applied to solve various real-world problems related to traffic management, surveillance,
and autonomous driving. In particular, the detection of traffic participants such as vehicles,
pedestrians, and bicycles [5] plays a crucial role in many advanced driver assistance systems
(ADAS) and smart transportation applications.

Image processing is important in optimizing traffic by being used to develop func-
tionalities that reduce the number of accidents, increase traffic comfort, and group vehicles
into platoons. Several approaches have been proposed over time to detect traffic partic-
ipants with video cameras using convolutional neural networks [6,7], but most of them
require a significant amount of computing power and cannot be used in real-time due to
increased latency.

In this paper, a proof of concept algorithm to solve a part of the image-based vehicle
platooning problem is proposed. It uses a decentralized approach, with each vehicle
performing its own computing steps and determining its position with respect to the
nearby vehicles. This approach relies on images acquired by the vehicle’s cameras and
the communication between vehicles. To test our approach, we used cheap commercial
dashboard cameras equipped with a GPS sensor. No other sensors were used, mainly
because they would have greatly increased the hardware cost. Each vehicle computes an
image descriptor for every frame in the video stream, which it sends as a message along
with other GPS information to other vehicles. Vehicles within communication range receive
this message and attempt to find the frame in their own stream that most closely resembles
the received one. The novelty of this approach lies in calculating the distance between
the two vehicles by matching image descriptors computed for frames from both vehicles,
determining the time difference at which the two frames were captured, and considering
the traveling speeds of vehicles.

The rest of the paper is organized as follows. Section 2 presents some vehicle grouping
methods for traffic optimization, then reviews applications of image processing related to
street scenes, and, lastly, presents several image descriptors. The method proposed in this
paper is detailed in Section 3, while in Section 4, the implementation of the algorithm is
presented. In Section 5, preliminary results are presented, demonstrating the feasibility of
the proposed algorithm. Finally, Section 6 presents the main conclusions of this study and
directions for future research.

2. Related Work

The aim of this study is to describe a system architecture for positioning nearby
vehicles using image processing techniques. The related work section is divided into three
subsections: traffic optimization, street scene image processing, and image descriptors, as
detailed in the following subsections.

2.1. Traffic Optimization

The majority of driver errors can be avoided by autonomous vehicles. They can
reduce traffic oscillations by maintaining a safe distance, while exchanging information in
real-time. Single-lane platooning solutions, proposed in [8,9], prove that vehicle platooning
improves traffic safety and increases the capacity of existing roads.

To further increase traffic flow, ref. [4] extends the idea of single-lane platoons to
multi-lane platoons [10–12]. Vehicles should consider all available lanes on a given road

Information 2024, 15, 323 3 of 26

sector when creating a group of vehicles and travel with small distances between them
at high speeds. The platoon should be dynamic to allow new vehicles to join or leave the
group, be able to overcome certain obstacles encountered on the road, and also allow faster-
moving vehicles to overtake. Through the vehicle-to-vehicle communication network, they
exchange information about travel intentions, dangers, and detected obstacles.

Vehicle movement control is divided into two parts: lateral control and longitudinal
control. Lateral control is in charge of changing lanes, whereas longitudinal control is
in charge of actions in the current lane. These two, when combined, must ensure that
vehicle collisions are avoided. Maintaining formations and joining new members is made
easier with lateral control via a lane change solution. At the same time, longitudinal
control is used to keep a safe distance between vehicles. As such, the triangle formation
strategy inspired by [13] is usually chosen because it offers several advantages, such as the
stability of each member within the group and quick regrouping of the members in case of
a dissolving scenario.

The way platoons are formed is based on the fields of swarm robotics and flocking,
which are inspired by nature, more precisely, by the way fish, birds [14], insects, and
mammals interact in a group [15,16]. An individual possesses poor abilities, but within a
group, they contribute to the formation of complex group behaviors and, thus, provide
flexibility and robustness, such as route planning and task allocation.

2.2. Street Scene Image Processing

Vehicle detection plays a very important role in modern society, significantly impacting
transportation efficiency, safety, and urban planning. It optimizes traffic flow by refining
signal timings and reducing congestion, as evidenced in [17]. Moreover, advancements in
vehicle detection technology have facilitated features like automatic collision avoidance
and pedestrian detection, contributing to a decrease in accidents [5].

Law enforcement also benefits from vehicle detection systems, aiding in tasks like
license plate identification and stolen vehicle tracking [18]. Additionally, these systems
support efficient parking management by monitoring parking spaces and guiding drivers
to available spots [19].

Regarding the topic of advanced driver-assistance systems (ADAS), recent studies provide
comprehensive reviews of vision-based on-road vehicle detection systems [20,21]. These
systems, mounted on vehicles, face challenges in handling the vast amounts of data from traffic
surveillance cameras and necessitate real-time analysis for effective traffic management.

Addressing challenges in traffic monitoring requires precise object detection and clas-
sification, accurate speed measurement, and interpretation of traffic patterns. Techniques
proposed in studies offer efficient approaches for detecting cars in video frames, utilizing
image processing methods [22].

While vision-based solutions have made significant advances in the automotive in-
dustry, they remain vulnerable to adverse weather conditions [23]. Weather elements like
heavy rain, fog, or low lighting can potentially impact the accuracy and reliability of these
systems, thus necessitating further research and development efforts.

Moreover, communication between vehicles is an emerging area of research, as high-
lighted in [24]. Understanding and optimizing vehicle-to-vehicle communication tech-
niques are essential for enhancing road safety and traffic efficiency. Implementing robust
communication protocols can facilitate cooperative driving strategies, leading to smoother
traffic flow and reduced congestion levels.

2.3. Image Descriptors

Image descriptors are essential in computer vision and image processing. They extract
robust and distinctive features from images for tasks like matching, recognition, and
retrieval. Rather than processing the entire image, these techniques focus on specific key
points. Each key point is associated with a descriptor that describes its properties. Examples
of such descriptors are provided below.

Information 2024, 15, 323 4 of 26

2.3.1. Scale-Invariant Feature Transform (SIFT) Descriptor

The scale-invariant feature transform (SIFT) [25] is a widely used feature descriptor in
computer vision and image processing. It extracts distinctive features using the scale-space
extrema detection and the difference in the Gaussian (DoG) method. SIFT provides invari-
ance to image scaling, rotation, and robustness against changes in viewpoint, illumination,
and occlusion.

The algorithm consists of several steps [26]:

1. Scale-space extrema detection: this step identifies potential points of interest that are
invariant to orientation using the difference of Gaussians (DoG) function.

2. Key point localization: the algorithm establishes the location and scale of key points
to measure their stability.

• Contrast threshold: following the selection of key points, the algorithm sets
a contrast threshold to ensure stability. By considering the DoG function as a
contrast function, key points with a DoG value less than 0.03 (after normalizing
the intensity [0 1]) are excluded from the list.

• Eliminating edge response: the next approach for localizing key points involves
the elimination of edge responses. This is achieved by employing the Hessian
matrix derived from the DoG function,

H =

[
Dxx Dxy
Dyx Dyy

]
. (1)

Due to variations in the DoG function, there are significant changes in curvature
at edges perpendicular to the direction of interest. To ensure robustness, key
points lacking a stable maximum are excluded. This is achieved by predicting
the Hessian matrix and computing the sum of its eigenvalues.

Tr(H) = Dxx + Dyy = α + β, (2)

Det(H) = DxxDyy − DyxDxy = αβ. (3)

In rare cases, the curvatures may have different signs when the determinant
is negative. Let r denote the ratio of the largest to the smallest magnitude
eigenvalue, then the expression (r + 1)2/r reaches its minimum value when the
two eigenvalues are equal, and it rises as r increases. To ensure the principal
curvatures ratio stays below a threshold r, only verifying r is necessary.

Tr(H)

Det(H)
=

(α + β)2

αβ
=

(rβ + β)2

rβ2 =
(r + 1)2

r
, (4)

Tr(H)2

Det(H)
<

(r + 1)2

r
. (5)

Therefore, key points with a ratio between the primary curvatures greater than
10 are disregarded when r = 10.

3. Orientation assignment: local image gradient directions are assigned to each key
point position.

4. Key point descriptor: descriptors are obtained from the region surrounding each
key point, incorporating local image gradients and scale information to represent
significant shifts in light and local shape distortions.

2.3.2. Sped-Up Robust Feature (SURF) Descriptor

The sped-up robust feature (SURF) descriptor [27] is a faster and more efficient alter-
native to SIFT for feature extraction in computer vision and image processing. It is based
on Haar wavelet responses and the determinant of the Hessian matrix. SURF achieves

Information 2024, 15, 323 5 of 26

comparable performance to SIFT in matching and recognition tasks while significantly
improving processing efficiency. Unlike SIFT, which utilizes the difference of Gaussian
(DoG) technique to approximate the Laplacian of Gaussian (LoG), SURF employs box filters.
This approach offers computational advantages, as box filters can be efficiently computed,
and calculations for different scales can be performed simultaneously.

To handle orientation, SURF calculates Haar-wavelet responses in both the x and y
directions within a 6s neighborhood around each key point, with s being proportional to
scale. The orientation is determined by summing the responses in a sliding scanning area.

For feature extraction, a 20 s × 20 s neighborhood is extracted around each key point
and divided into 4 × 4 cells. Haar wavelet responses are computed for each cell, and the
responses from all cells are concatenated to form a 64-dimensional feature descriptor.

The SURF algorithm’s implementation involves the following key steps [28]:

• Identifying salient features like blobs, edges, intersections, and corners in specific
regions of the integral image. SURF utilizes the fast Hessian detector for feature
point detection.

• Utilizing descriptors to characterize the surrounding neighborhood of each feature
point. These feature vectors must possess uniqueness while remaining robust to errors,
geometric deformations, and noise.

• Assigning orientation to key point descriptors by calculating Haar wavelet responses
across image coordinates.

• Ultimately, SURF matching is conducted using the nearest-neighbor approach.

2.3.3. Oriented FAST and Rotated BRIEF (ORB) Descriptor

The oriented FAST and rotated BRIEF (ORB) descriptor [29] is an efficient algorithm
for feature extraction in computer vision and image processing. It combines the FAST
key point detector [30] with the binary robust independent elementary features (BRIEF)
descriptor [31] and introduces rotation invariance. This makes ORB robust to image
rotations and enhances its performance in matching and recognition tasks [32]. It achieves
comparable performance to other popular descriptors like SIFT and SURF while being
significantly faster in computation time.

The ORB method utilizes a simple measure for corner orientation, namely the intensity
centroid [33]. First, the moments of a patch are defined as follows:

mpq = ∑
x,y

xpyq I(x, y). (6)

With these moments, the centroid, also known as the ‘center of mass’ of the patch, can
be determined as follows:

C =

(
m10

m00
,

m01

m00

)
. (7)

One can construct a vector from the corner’s center O to the centroid O⃗C. The orienta-
tion of the patch is then provided as follows:

θ = atan2(m01, m01). (8)

After calculating the orientation of the patch, it can be rotated to a canonical position,
enabling the computation of the descriptor and ensuring rotation invariance. BRIEF (9)
lacks rotation invariance; hence, ORB employs rotation-aware BRIEF (rBRIEF) (11). ORB
integrates this feature while maintaining the speed advantage of BRIEF:

f (n) = ∑
1≤i≤n

2i−1τ(p; xi, yi), (9)

Information 2024, 15, 323 6 of 26

where τ(p; x, y) is defined as follows:

τ(p; x, y)) =

{
1 : p(x) < p(y),
0 : p(x) ≥ p(y),

(10)

and p(x) is the intensity p at a point x.
The steered BRIEF operator is obtained as follows:

gn(p, θ) = fn(p) | (xi, yi) ∈ Sθ . (11)

2.3.4. Boosted Efficient Binary Local Image Descriptor (BEBLID)

The boosted efficient binary local image descriptor (BEBLID) [34] is a newer binary
descriptor that encodes intensity differences between neighboring pixels. It provides an
efficient representation for feature matching and recognition. BEBLID enhances the perfor-
mance of the real-valued descriptor, boosted efficient local image descriptor (BELID) [35],
improving both matching efficiency and accuracy.

The proposed algorithm assumes that there is a training dataset consisting of pairs
of images, denoted as {(xi, yi, li)}N

i=1, where xi, yi ∈ X are labeled with li ∈ {−1, 1}. Here,
li = 1 indicates that two blocks belong to the same image structure, while li = −1 indicates
that they are different. The objective is to minimize the loss using AdaBoost:

LBELID =
N

∑
i=1

exp

(
−γℓi

K

∑
k=1

αkhk(xi)hk(yi)

)
, (12)

where gs(xi, yi) = ∑K
k=1 αkhk(xi)hk(yi), and γ represents the learning rate parameter. The

function hk(z) ≡ hk(z; f ; T) corresponds to the k-th weak learner (WL) in gs combined
with αk. The WL depends on the feature extraction function f (x) and threshold T, defined
as follows:

hk(z; f ; T) =

{
1 : f (x) ≤ T,
−1 : f (x) > T,

(13)

The BEBLID feature extraction function f (x) is defined as follows:

f (x; p1, p2, s) =
1
s2

 ∑
q∈R(p1,s)

I(q)− ∑
q∈R(p2,s)

I(r)

, (14)

where I(q) represents the gray value of pixel q, and R(p, s) is the square image frame
centered at p, with an area of s. Thus, f (x) computes the average gray values of pixels in
R(p1, s) and R(p2, s) and thresholds it. To output binary values 0, 1, −1 are represented as
0 and +1 as 1, resulting in the BEBLID binary descriptor.

LBEBLID =
N

∑
i=1

exp

(
−γℓi

K

∑
k=1

hk(x)hk(y)

)
. (15)

BEBLID has demonstrated superior performance compared to other state-of-the-art
descriptors such as SIFT [25], SURF [27], ORB [29], and convolutional neural networks
(CNNs) [36] in terms of speed, accuracy, and robustness.

Compared to CNNs, a powerful deep learning approach for feature extraction and
recognition, BEBLID is a lightweight and efficient alternative, ideal for low-resource ap-
plications. It also offers easier interpretation and debugging due to its binary string
representation. Hence, this paper utilizes the advantages and performance of BEBLID as
the chosen algorithm.

Information 2024, 15, 323 7 of 26

3. Precise Localization Algorithm

In this paper, an algorithm is proposed to help vehicles position themselves with
respect to other nearby vehicles. The approximate distance between two nearby vehicles is
computed using GPS data. The exact position between two vehicles cannot be computed
using only GPS data because all commercial GPS devices have an intended positioning
error [37]. This error might increase further according to various specific conditions, like
the number of available satellites, nearby buildings, trees, driving into tunnels, etc. For
example, when using a smartphone, the GPS error can be, on average, as much as 4.9 m [38].
Such errors can lead to potentially dangerous situations if any relative vehicle positioning
system relies solely on GPS data. For this reason, the aim of this paper is to increase the
positioning accuracy using images captured by cameras mounted on each vehicle. Thus, the
proposed solution aims to find two similar frames from different vehicles within a certain
distance range. Each vehicle sends information about multiple consecutive frames while
also receiving similar information from other vehicles for local processing. By using an
algorithm to match image descriptors calculated based on these frames, a high number of
matches indicates that the vehicles are in relatively the same position. Using the timestamps
associated with the two frames, we can determine the moment each vehicle was in that
position, allowing us to calculate the distance between them by considering their traveling
speed and the time difference between the two.

The proposed approach is decentralized, meaning that each vehicle acts as an inde-
pendent entity. It has to cover the information exchange with the other vehicles as well
as processing the self-acquired and received data. In our model, vehicles employ a V2X
communication system with the broadcast information, but they will also use a V2V com-
munication model if the distance to a responding nearby vehicle is below a pre-defined
threshold (Figure 1). Each vehicle will broadcast processed information, not being aware if
any other vehicle will receive it.

Figure 1. Vehicle communication. First, each vehicle broadcasts data in a V2X communication
model (blue circles). Depending on the computed distance between two vehicles, they can start V2V
communication (orange arrows).

Information 2024, 15, 323 8 of 26

The proposed algorithm assumes that each vehicle is equipped with an onboard cam-
era with GPS and a computing unit. The GPS indicates the current position of the vehicle
in terms of latitude and longitude, as well as the timestamp at that time and the vehicle’s
speed. The vehicle computing unit will handle all computations and communications, so
it will process the data and send it to the other vehicles. Also, the processing unit will
receive data from other vehicles that are nearby. The processing unit must determine,
based on the received information, if a V2V communication can start between the two
vehicles. If it can, it will begin an information exchange with the other vehicle and will
process the subsequent received data. This means that each vehicle has two roles: the first
one involves data processing and communication, while the second involves receiving
messages from other nearby vehicles and analyzing them. As the paper does not focus on
the communication model itself but rather on the image processing part, we employed
a very simple and straightforward communication model. This model cannot be used in
real-world applications, where security, compression, and other factors must be taken into
consideration. Our main focus when developing the communication model was the main
processing steps needed from the image processing point of view. The send and receive
roles are described in the following subsection.

3.1. Message Transmission Procedure

To avoid sending large amounts of irrelevant data between vehicles, a handshake
system must be defined first. This will prevent congestion in any communication technique.
The handshake system allows all vehicles to broadcast their GPS position. As a low-ranged
communication system is assumed, only nearby vehicles will receive this message. Any
nearby vehicle that receives this broadcast message will compute the distance between
the sending vehicle and itself, and if the distance is lower than a threshold, it will send
back a start communication message. The distance threshold should be around 15 to 20 m.
This will take into consideration both the GPS errors and the minimum safety distance
between two vehicles. Also, note that, as most GPS systems record data once per second
and the video records at a much greater rate, synchronization between the GPS coordinates
and each frame must be performed. In other words, if the camera records 30 frames
per second, it means that 30 frames will have attached the same GPS coordinate. For
example, a car driving at 60 km/h will travel 16.6 m/s during this time interval. Thus,
during these approximately 17 m, the messages sent by the vehicle will have the same
GPS position, leading to potentially dangerous situations if data from images is not taken
into consideration.

After establishing that the two vehicles are close enough and that image data has
to be sent between them, the next question to be answered is exactly which data should
be exchanged. Sending the entire video stream is unfeasible due to high bandwidth
requirements, so the most straightforward approach is to compute key points for each
frame. Then, for each detected key point, a descriptor is computed. All these steps
are presented in the flowchart illustrated in Figure 2. Once the descriptors have been
computed, every piece of information related to the current frame is serialized and sent to
other paired vehicles. This includes the timestamp, latitude, longitude, speed, key points,
and descriptors.

Information 2024, 15, 323 9 of 26

Figure 2. Send message architecture overview.

3.2. Message Reception Procedure

After passing the handshake system described before, each vehicle will only receive
messages from nearby vehicles. The message will contain data about GPS positioning
and processed image data. The steps these data will take are presented in Figure 3 and
described in detail in the following subsection.

Figure 3. Receive message architecture overview.

Each vehicle will also have its own video stream that is processed locally. This means
that, for each frame, the key points and their descriptors are computed. These will have to
be matched against the key points and descriptors received from other vehicles. There are
various algorithms developed for feature matching, but the most used ones are brute-force
matcher (BFMatcher) [39] and fast library for approximate nearest neighbors (FLANN) [40].
Brute-force matcher matches one feature descriptor from the first set with all features
in the second set using distance computation to find the closest match. FLANN is an
optimized library for fast nearest neighbor search in large datasets and high dimensional
features, which works faster than BFMatcher for large datasets and requires two dictionaries
specifying the algorithm and its related parameters.

The matching algorithm will output the matched descriptors, which are the descriptors
that correspond to two matched pixels in the input images. Usually, filtering is carried out
to remove the outliers, i.e., points that have the same descriptors and do not correspond
to matching pixels in the input images. Having the two sets of matched descriptors, the
next step is to determine the relative position between them. In other words, at this point, a
set of matched points is available, but the location of the points from the received image
(their descriptors) in the current vehicle’s frame is unknown. This will determine where
the two vehicles are positioned with respect to each other: if the points are located in the
center of the image, it means that the two vehicles are in the same lane, one in front of the
other. If the points are located to the side of the image, it means that the two vehicles are
on separate lanes, close to each other. In other words, if corresponding matched points are

Information 2024, 15, 323 10 of 26

located on the right side of the first image and on the left side of the second image, then the
first vehicle is on the right side of the second vehicle.

One way to determine the points’ relative position is to compute a homography matrix
that transforms a point in the first image into a point in the second image. Once the
homography matrix is computed, it can be applied to the points from the first image to see
where those points are in the second image. In this way, the two vehicles can be relatively
positioned in relation to each other.

Of course, it might happen that the current frame from the receiving vehicle cor-
responds to an older or newer frame from the receiving car. In these cases, multiple
comparisons between the current frame and the received frames must be performed. By
combining all these pieces of information, the vehicle can detect the location of each nearby
vehicle accurately and efficiently, and the exact steps for these are described in detail in the
following section regarding algorithm implementation.

4. Framework for Algorithm Implementation

The following section details the implementation of the algorithm, which involves
several steps: resizing the image dimensions, extracting the camera-displayed time, simu-
lating the communication process, detecting the corresponding frame, defining the distance
calculation formula, and outlining the hardware equipment utilized.

4.1. Adjust Image Dimensions

Considering that the camera captures a significant part of the car dashboard (see, for
example, Figure 4), this aspect can negatively influence the image-matching algorithm. It is
important to note that this particular area is not relevant for the intended purposes. Fur-
thermore, in that area, information from the camera is displayed, such as the camera name,
current date, and speed. These elements can also affect the performance of the used image
descriptors. For this reason, the decision was made to crop out the respective area from
the original image, thus eliminating irrelevant information and retaining only the essential
data for the intended purposes. The cropped area corresponds to the region beneath the
red line in Figure 4, and this approach enables greater precision in image matching and
enhances the algorithm’s performance regarding the specific intended objectives.

Figure 4. Cropping out non-relevant image areas: enhancing data relevance and algorithm efficiency.

4.2. Extract Camera Displayed Time

It is necessary to consider that most GPS systems record data once per second, while
video recording is carried out at a much higher rate. Therefore, meticulous synchronization
between GPS coordinates and each video frame is required. To put it simply, if the camera
records 30 frames per second, it means that 30 frames will have the same GPS coordinate
attached. To address this issue and ensure the accuracy of our data, optical character recog-
nition (OCR) technology was utilized to extract time information from the images provided
by the camera. We specified the exact area where the time is displayed in the image and

Information 2024, 15, 323 11 of 26

assigned the corresponding GPS coordinates to that moment. This synchronization process
has allowed us to ensure that GPS data are accurately correlated with the correspond-
ing video frames, which is essential for the subsequent analysis and understanding of
our information.

To extract text from the image, we used Tesseract version 5.3.0, an open-source optical
character recognition engine [41]. Tesseract is renowned for its robustness and accuracy in
converting images containing text into editable content.

4.3. Simulation of Vehicle-to-Vehicle Communication

In our system, a vehicle extracts key points from each frame to obtain significant
information about the surrounding environment. Additionally, information is retrieved
from the GPS system, providing data about latitude, longitude, and crucial details about
the number of lanes and vehicle speed, using the specialized function.

To ensure the exchange of information with other involved vehicles, a function was
developed to simulate message transmission. As stated in Section 3, our paper focuses
mainly on image processing and not on the communication itself. This is why we use a
simulation model, in order to prove the feasibility of the proposed method. The function
that simulates the communication is responsible for transmitting the processed data to
other vehicles. This vehicle-to-vehicle communication is simulated through a file where the
information is stored and later read.

To receive and process messages from other vehicles, a function for message reception
is utilized. This simple function reads information from the specific file and extracts relevant
data to make decisions and react appropriately within our vehicle communication system.

Overall, this architecture enables us to successfully collect, transmit, and interpret data
to facilitate efficient communication and collaboration among vehicles in our project.

4.4. Detection of the Corresponding Frame

To detect the frame received from another vehicle within the current vehicle’s frame
sequence, we used an approach relying on the number of matches between the two frames.
Thus, the frame with the highest number of matches in the video recording was selected.

When received information about a frame is searched in a video, the closer it gets
to the corresponding frame, the higher the number of matches increases (as observed in
Figure 5). Essentially, the closer the current vehicle gets to the position where that frame
was captured, the more similar the images become. With some exceptions that will be
discussed at the end of the paper, this approach proved valid during all our tests.

Figure 5. Observing frame proximity in video analysis: closer vehicle positioning correlates with
increased image similarity and match frequency.

Information 2024, 15, 323 12 of 26

Implementing this algorithm involved monitoring the number of matches for each
frame and retaining the frame with the most matches. An essential aspect was identifying
two consecutive decreases in the number of matches, at which point the frame with the
highest number of matches up to that point was considered the corresponding frame.

4.5. Compute Distance

After detecting the corresponding frame in the video stream, the next step involves
computing the distance between vehicles and determining their positions. This can be
achieved using information from the two vehicles associated with these frames, such as the
timestamp and speed.

Thus, if the timestamp from the current vehicle is greater than that of the other vehicle,
it indicates that the latter is in front of the current one. The approach to comparing the two
timestamps is presented in Figure 6. By knowing the speed of the front vehicle and the
time difference between the two vehicles, the distance between them is computed.

Figure 6. Determining neighboring vehicle relative position using matched frame timestamps.

Conversely, if the timestamp from the current vehicle is smaller than that of the other
vehicle, it suggests that the latter is behind the current one. With the speed of the current
vehicle and the time difference between the two vehicles, the distance between them can
still be computed.

Given that the video operates at a frequency of 30 frames per second and GPS data is
reported every second, each of the 30 frames contains the same set of information. However,
this uniformity prevents the exact determination of distance because both frame 1 and
frame 30 will have the same timestamp despite an almost 1-second difference between the
two frames.

To enhance the accuracy of distance computation between the two vehicles, adjust-
ments are made to the timestamp for the frames from both vehicles. In addition to other
frame details, the frame number reported with the same timestamp (ranging from 1 to 30)
is transmitted. In the distance computation function, the timestamp is adjusted by adding

Information 2024, 15, 323 13 of 26

the current frame number divided by the total number of frames (30). For instance, if the
frame number is 15, 0.5 s are added to the timestamp.

In Figure 7, the method of computing distance assuming that Vehicle 1 is in the front
and Vehicle 2 is behind is detailed. Frame V1 from Vehicle 1, which is the x-th frame at
timestamp T1 , is detected by Vehicle 2 as matching with frame V2, which is the y-th frame
at timestamp T2. To determine the position relative to Vehicle 1, the other vehicle needs to
compute the distance traveled by the first vehicle in the time interval from timestamp T1 to
the current timestamp T2, taking into account its speed.

Figure 7. Distance estimation between two vehicles through frame matching and timestamp comparison.

To compute the distance as accurately as possible, the speed reported at each times-
tamp is considered, and the calculation formula is presented in Equation (16). Since Frame
V1 is the x-th frame at timestamp T1, and considering that there are 30 frames per second,
the time remaining until timestamp T1 + 1 second can be determined. Then, this time
interval is multiplied by speed S1 at timestamp T1 to determine the distance traveled in
this interval. The distance traveled from timestamps T1 + 1 to T2 − 1 is determined by
multiplying the speeds S1 at these timestamps by 1 s each. To determine the distance
traveled from T2 to the frame y-th, the speed S1 at T2 is multiplied by y/30. By summing
all these distances, the total distance is obtained.

distance =
29

∑
j=x−1

1
30

(S1(T1) + j
S1(T1 + 1)− S1(T1)

30
),

+
T2−1

∑
Ti=T1+1

29

∑
j=0

1
30

(S1(Ti) + j
S1(Ti + 1)− S1(Ti)

30
),

+
y−1

∑
j=0

1
30

(S1(T2) + j
S1(T2 + 1)− S1(T2)

30
).

(16)

4.6. Hardware Used

For the developed solution, 2 DDPAI MOLA N3 cameras were utilized, each featuring
a 2k resolution and operating at a frame rate of 30 frames per second. These cameras
feature built-in GPS functionality that accurately records the vehicle’s location and speed.
The advantage of these cameras lies in their GPS data storage format, which facilitates the
seamless retrieval of this information. Cameras with identical resolutions were selected

Information 2024, 15, 323 14 of 26

to ensure consistency, as not all image descriptors maintain scale invariance, which could
otherwise affect algorithm performance.

5. Performed Experiments and Test Results

Based on the implementation presented in the previous section, a series of tests were
conducted to demonstrate both the feasibility of the algorithm and its performance. The
performances of the BEBLID, ORB, and SIFT descriptors were tested, as well as how the
number of features influences frame detection. Finally, a comparison between the distance
calculated by the proposed algorithm, the one calculated based on GPS data, and the
measured distance is presented to illustrate the preciseness of the proposed algorithm in
real-world applications. This comparison shows that the algorithm reflects a high degree of
accuracy when validated against physically measured distances, which demonstrates its
potential effectiveness for applications requiring precise distance calculations, e.g., vehicle
platooning applications.

5.1. Test Architecture

To prove the feasibility and robustness of the proposed algorithm, we conducted
various tests in real-world scenarios. For the first test, a vehicle equipped with a dashboard
camera was used to make two passes on the same streets, resulting in two video recordings.
The main purpose of this test was to determine what descriptors work best and if the
proposed system performs well when eliminating the errors caused using multiple cameras.
For this purpose, for a frame extracted from the first video (left picture from Figure 8),
we had to find the corresponding frame in the second video (right picture from Figure 8).
Additionally, the performances of three different descriptors were compared, namely SIFT,
ORB, and BEBLID, in terms of matching accuracy and speed. This comparison allows us to
evaluate the strengths and limitations of each descriptor in the context of our experiment.

For the selected frame and each frame in the second video, the following steps were
performed:

• In total, 10,000 key points were detected using the ORB detector for each frame.
• Based on these key points, the descriptors were computed, and the performances of

SIFT, ORB, and BEBLID descriptors were compared.
• For feature matching, the brute-force descriptor matcher was used for ORB and BE-

BLID, which are binary descriptors. This technique compares binary descriptors
efficiently by calculating the Hamming distance. As for SIFT, a floating-point descrip-
tor, the FLANN descriptor matcher, was employed. FLANN utilizes approximate
nearest neighbor search techniques to efficiently match floating-point descriptors.

• The frame with the highest number of common features with the selected frame
from the first video is considered as its corresponding frame in the second video.
This matching process is based on the similarity of visual features between frames,
allowing us to find the frame in the second video that best corresponds to the reference
frame from the first video. In Figure 8, an example of the identified corresponding
frame is presented.

Figure 8. Two corresponding frames from two video sequences.

Information 2024, 15, 323 15 of 26

The SIFT descriptor is considered a gold-standard reference but requires a significant
amount of computational power. It has a feature vector of 128 values. This descriptor
managed to match the reference frame with frame 136 from the second video with a total
of 3456 matches (Figure 9a). The ORB descriptor is considered one of the fastest algorithms
and has a feature vector of 32 values. It also successfully detected frame 136 from the
second video with 2178 matches, as shown in Figure 9b. According to the authors, the
BEBLID descriptor achieves results similar to SIFT and surpasses ORB in terms of accuracy
and speed, with a feature vector of 64 values. However, in our specific test case, the BEBLID
descriptor managed to detect frame 136 but with a lower number of matches, specifically
2064 (as shown in Figure 9c) compared to ORB. This discrepancy could be attributed to
the specific conditions of our experiment, such as variations in lighting, perspective, or the
content of the frames.

As a result of this first experiment, all three descriptors considered successfully match
two frames from different videos, but with the same camera, even if their content is slightly
different. These differences, such as variations in traffic conditions, will also occur when
video sequences form different vehicles are used.

(a) SIFT Matches

(b) ORB Matches

Figure 9. Cont.

Information 2024, 15, 323 16 of 26

(c) BEBLID Matches

Figure 9. Comparison of Matching Results for SIFT, ORB, and BEBLID.

5.2. Descriptor Performance Test

The underlying concept of this test involved the deployment of two vehicles equipped
with dashboard cameras driving on the same street. As they progressed, the cameras
recorded footage, resulting in two distinct videos.

Using these video recordings, the objective of the test was to identify 50 consecutive
frames from the leading vehicle within the footage captured by the trailing vehicle. Each
frame from the first video was compared with 50 frames from the second video, and the
frame with the highest number of matches was taken into consideration. This aimed to as-
certain the algorithm’s capability to consistently detect successive frames, thus showcasing
its robustness. Furthermore, a secondary aim was to evaluate the performance of the three
descriptors used in the process. In Figure 10a, one of the frames from the car in front (left)
and the matched frame from the rear car are presented (right). In the frame on the right,
the front car is also visible.

(a) Frame 1 Video 1 (b) Frame 26 Video 2

Figure 10. Two matched frames from vehicles.

In Table 1, the results of the three descriptors for a total of 20,000 features are presented.
BEBLID successfully detected 39 frames correctly, with instances of incorrect detections
shown in blue in the table. These incorrect detections exhibit a minor deviation by detecting
a frame either preceding or following the actual frame, which poses no significant concern.

Information 2024, 15, 323 17 of 26

Table 1. Results of descriptor analysis with color indications: blue for incorrect detections, red for
frames detected from behind, and orange for differences exceeding 1 frame.

Frame Video 1 Frame Video 2 BEBLID ORB SIFT

1 26 26–3992 matches 26–4964 matches 26–5935 matches
2 27 26–3848 matches 26–4885 matches 26–5970 matches
3 28 28–3929 matches 28–4970 matches 29–5984 matches
4 29 29–3921 matches 29–5053 matches 29–6052 matches
5 30 30–3868 matches 29–4918 matches 30–5958 matches
6 31 31–3890 matches 31–4953 matches 32–5878 matches
7 32 33–3923 matches 32–5016 matches 32–5957 matches
8 33 33–3991 matches 33–4996 matches 34–5927 matches
9 34 34–3900 matches 33–4864 matches 35–5884 matches
10 35 35–3974 matches 35–4949 matches 36–5957 matches
11 36 36–3884 matches 36–4927 matches 35–5893 matches
12 37 37–3894 matches 37–5061 matches 37–5925 matches
13 38 38–3895 matches 38–5044 matches 38–5875 matches
14 39 39–3837 matches 38–4964 matches 40–5838 matches
15 40 40–3906 matches 40–4846 matches 40–5817 matches
16 41 41–3848 matches 41–4937 matches 41–5886 matches
17 42 42–3966 matches 42–4995 matches 42–5880 matches
18 43 43–3764 matches 43–4835 matches 44–5980 matches
19 44 45–3744 matches 45–4772 matches 44–5787 matches
20 45 45–3780 matches 45–4903 matches 45–5862 matches
21 46 46–3809 matches 45–4776 matches 46–5796 matches
22 47 47–3891 matches 47–5009 matches 48–5998 matches
23 48 48–3939 matches 48–4956 matches 49–6043 matches
24 49 50–3645 matches 48–4802 matches 49–6017 matches
25 50 50–3678 matches 50–4592 matches 50–6011 matches
26 51 51–3695 matches 51–4737 matches 50–6019 matches
27 52 52–3672 matches 52–4741 matches 52–5986 matches
28 53 53–3544 matches 52–4599 matches 53–5900 matches
29 54 54–3755 matches 54–4709 matches 55–6031 matches
30 55 55–3793 matches 55–4796 matches 55–5976 matches
31 56 55–3582 matches 55–4560 matches 55–5971 matches
32 57 56–3486 matches 56–4591 matches 58–5926 matches
33 58 58–3600 matches 57–4582 matches 58–5985 matches
34 59 59–3639 matches 59–4584 matches 60–6079 matches
35 60 60–3628 matches 60–4704 matches 59–6052 matches
36 61 61–3584 matches 61–4609 matches 62–5965 matches
37 62 62–3650 matches 62–4575 matches 63–5851 matches
38 63 63–3653 matches 63–4523 matches 63–5946 matches
39 64 63–3584 matches 63–4512 matches 63–5909 matches
40 65 65–3435 matches 65–4402 matches 66–5875 matches
41 66 65–3449 matches 66–4349 matches 67–5745 matches
42 67 67–3565 matches 67–4410 matches 68–5967 matches
43 68 68–3393 matches 68–4320 matches 68–6003 matches
44 69 70–3343 matches 69–4356 matches 71–5825 matches
45 70 70–3477 matches 70–4399 matches 71–5940 matches
46 71 71–3434 matches 71–4389 matches 71–5929 matches
47 72 73–3288 matches 72–4282 matches 73–5971 matches
48 73 73–3135 matches 73–4119 matches 73–5960 matches
49 74 75–3193 matches 74–4048 matches 73–5884 matches
50 75 75–3199 matches 75–4079 matches 75–5955 matches

Number of Correct Detections 39 38 23

Note that, the frames shown in blue in Table 1 might be caused by the fact that a
perfect synchronization between frames of the used videos cannot be accomplished. For
example, the first car traveled at 21.9 km/h or 6.083 m/s records a frame every 0.2 m
(considering 30 frames per second). This sampling rate might, in our opinion, cause some

Information 2024, 15, 323 18 of 26

of the slightly incorrect detections presented in blue in Table 1. This is the reason to use the
blue color, because they might result from the sampling rate of the used cameras and not
by an actual error in the matching algorithm.

Similarly, ORB shows good performance by correctly detecting 38 frames. However,
the performance of SIFT falls short of expectations, with only 23 out of 50 frames being
detected accurately. Additionally, for SIFT, there are cases when it detected a frame from
behind after the detection of a subsequent frame, indicated in red in the table. Moreover,
the case when the difference between the correct frame and the predicted one is greater
than 1 frame is highlighted in orange in the table. Another downside of using SIFT is
that it has more cases with three consecutive detections of the same frame than the other
two descriptors (BEBLID-0, ORB-1 (frame 45), SIFT-4 (frames 55, 63, 71, 73)). Also, when
using SIFT, there are cases when two consecutive detected frames differ by three frames
(frames 29, 58, 66 and 71), which is a case that was not encountered when using BEBLID
of ORB.

Furthermore, it is noteworthy to highlight that a higher number of matches, as ob-
served in the case of SIFT, does not necessarily translate to better performance. Despite
BEBLID having a lower number of matches compared to the other two descriptors, it
achieved the highest performance in this test.

These findings underscore the importance of not only relying on the quantity of
matches but also considering the accuracy and robustness of the detection algorithm. In
this context, BEBLID stands out as a promising descriptor for its ability to deliver reliable
performance even with a comparatively lower number of matches.

It is worth mentioning that, the frames written in orange and red are most likely
errors in the detection algorithm and can lead to potentially dangerous situations if their
number increases.

5.3. Influence of the Number of Features

In this test, the objective was to analyze the influence of the number of features
associated with each descriptor on its performance. As the computational time increases
with a higher number of features, we examined the performance of the three descriptors
across a range of feature numbers, from 20,000 down to 5000.

The test methodology involved detecting 20 frames from the first video against
20 frames from the second video. This approach facilitated an assessment of how varying
feature counts affected the accuracy and efficiency of frame detection for each descriptor.

As observed in Table 2, the number of matches per frame decreased as the number of
features decreased. For BEBLID, if the number of features decreased from 20,000 to 10,000,
the performance did not decline considerably. In fact, for a feature count of 16,000, we
achieved the highest number of correctly detected frames, with 18 out of 20. However, if
the number of features dropped below 10,000, performance deteriorated significantly.

The results for ORB can be observed in Table 3. For a feature count of 12,000 and
10,000, we achieved 16 out of 20 correctly detected frames. However, if the feature count
dropped below 10,000, the performance deteriorated.

From Table 4, it is clear that the number of correctly detected frames varies depend-
ing on the number of features for SIFT. However, overall, this descriptor exhibits poor
performance in all cases.

Based on the outcomes of the last two tests, we can conclude that BEBLID generally
achieves better results, with the exception being when the number of features is 12,000,
where ORB detects 16 frames correctly compared to BEBLID’s 15, see Figure 11. ORB also
shows satisfactory results, whereas the performance of SIFT is not as commendable. For
the presented reasons, we will use only the BEBLID descriptor in further tests.

Information 2024, 15, 323 19 of 26

Table 2. BEBLID—The influence of the number of features on the frame detection: blue for incorrect
detections, red for frames detected from behind.

Frame
Video 1

Frame
Video 2 20,000 18,000 16,000 14,000 12,000 10,000 8000 6000 5000

1 26 26– 3992 26–3637 26–3263 26–2840 26–2442 26–2013 26–1672 26–1284 26–1065
2 27 26–3848 26–3483 26–3106 26–2755 26–2374 27–1974 26–1605 26–1252 26–1047
3 28 28–3929 28–3578 28–3218 28–2785 28–2392 28–2007 28–1667 28–1298 28–1095
4 29 29–3921 29–3575 29–3206 29–2815 29–2449 29–2052 30–1653 29–1274 30–1065
5 30 30–3868 30–3546 30–3210 30–2798 30–2442 30–2042 30–1671 29–1262 30–1074
6 31 31–3890 31–3539 31–3151 31–2753 32–2368 31–2016 30–1633 30–1252 30–1039
7 32 33–3923 32–3560 32–3183 32–2837 32–2434 33–2017 33–1643 33–1221 33–1037
8 33 33–3991 33–3616 33–3235 33–2857 33–2481 33–2111 33–1711 33–1289 33–1083
9 34 34–3900 34–3560 34–3183 33–2803 33–2442 35–2045 35–1643 34–1249 35–1056

10 35 35–3974 35–3609 35–3258 35–2887 35–2447 35–2049 35–1652 35–1244 35–1043
11 36 36–3884 35–3534 36–3159 36–2789 36–2415 36–2011 35–1629 36–1233 36–1048
12 37 37–3894 37–3508 37–3181 37–2793 37–2407 38–2025 38–1619 38–1248 36–1069
13 38 38–3895 38–3514 38–3153 38–2774 38–2407 38–2016 38–1640 38–1230 38–1023
14 39 39–3837 39–3512 39–3168 39–2813 39–2406 39–1986 39–1608 39–1227 39–1024
15 40 40–3906 40–3562 40–3167 40–2822 40–2441 40–2014 40–1650 40–1248 40–1047
16 41 41–3848 41–3483 41–3084 41–2717 41–2364 41–1922 42–1585 42–1201 42–1008
17 42 42–3966 42–3564 42–3203 42–2800 42–2410 42–2037 42–1619 42–1285 42–1088
18 43 43–3764 43–3431 43–3071 43–2679 44–2299 43–1937 43–1564 43–1208 42–993
19 44 45–3744 43–3364 43–3022 45–2692 43–2326 45–1967 45–1609 45–1218 43–1016
20 45 45–3780 45–3426 45–3069 45–2715 45–2336 45–1958 45–1569 45–1238 45–1017

Correct Detection 17 17 18 17 15 16 11 13 11

Table 3. ORB—The influence of the number of features on the frame detection: blue for incorrect
detections, and orange for differences exceeding 1 frame.

Frame
Video 1

Frame
Video 2 20,000 18,000 16,000 14,000 12.000 10,000 8000 6000 5000

1 26 26–4964 26–4481 26–4016 26–3542 26–3052 26–2559 26–2170 26–1652 26–1379
2 27 26–4885 26–4425 28–3951 26–3487 28–3026 27–2538 26–2104 26–1618 28–1352
3 28 28–4970 28–4533 28–4095 28–3622 28–3118 28–2614 28–2161 28–1670 28–1412
4 29 29–5053 29–4614 29–4135 29–3664 29–3169 29–2668 29–2162 29–1660 29–1394
5 30 29–4918 30–4485 30–4069 30–3570 30–3104 30–2609 30–2125 29–1612 30–1330
6 31 31–4953 30–4480 30–4066 30–3566 30–3070 30–2592 30–2121 29–1600 30–1338
7 32 32–5016 32–4579 32–4079 32–3614 32–3159 32–2583 32–2119 32–1599 33–1348
8 33 33–4996 33–4555 33–4103 33–3632 33–3175 33–2688 33–2197 33–1660 33–1388
9 34 33–4864 33–4445 33–4008 33–3538 34–3105 34–2568 34–2107 33–1572 33–1320

10 35 35–4949 35–4534 35–4089 35–3628 35–3102 35–2621 35–2092 35–1593 35–1337
11 36 36–4927 35–4495 35–4033 36–3541 36–3069 36–2569 35–2100 36–1592 35–1346
12 37 37–5061 37–4566 37–4089 37–3615 37–3137 37–2615 36–2092 36–1602 36–1373
13 38 38–5044 38–4560 38–4055 37–3574 38–3142 38–2642 38–2143 38–1639 38–1366
14 39 38–4964 38–4482 39–4046 38–3545 38–3108 38–2619 38–2108 38–1606 38–1362
15 40 40–4846 40–4410 39–3942 39–3522 40–3010 39–2517 39–2095 39–1597 39–1312
16 41 41–4937 41–4477 41–3954 41–3510 41–3036 41–2479 40–2051 40–1570 40–1326
17 42 42–4995 42–4507 42–4057 42–3608 42–3055 42–2559 42–2113 42–1647 42–1384
18 43 43–4835 43–4394 43–3971 42–3510 43–3044 43–2584 42–2061 42–1635 42–1349
19 44 45–4772 43–4310 43–3879 45–3433 43–2987 43–2531 43–2062 43–1575 43–1349
20 45 45–4903 45–4439 45–4005 45–3521 45–3018 45–2536 45–2030 45–1566 45–1293

Correct Detection 15 14 14 12 16 16 11 10 9

Information 2024, 15, 323 20 of 26

Table 4. SIFT—The influence of the number of features on the frame detection: blue for incorrect
detections, red for frames detected from behind, and orange for differences exceeding 1 frame.

Frame
Video 1

Frame
Video 2 20,000 18,000 16,000 14,000 12,000 10,000 8000 6000 5000

1 26 25–5994 25–5474 25–5002 26–4504 26–3967 25–3385 26–2844 26–2169 25–1869
2 27 27–6042 28–5556 27–5054 27–4574 27–4059 27–3430 27–2942 27–2206 28–1871
3 28 28–6036 30–5499 28–4996 28–4511 29–3944 30–3413 28–2871 28–2196 30–1859
4 29 29–6066 31–5441 29–5007 31–4544 29–4050 29–3485 31–2904 31–2204 29–1839
5 30 30–5954 31–5496 29–4990 31–4475 30–4023 30–3459 31–2852 31–2250 31–1899
6 31 32–5904 32–5441 31–4978 32–4506 31–3980 31–3396 30–2847 31–2229 31–1912
7 32 32–5926 32–5437 33–4944 32–4503 33–3977 33–3430 33–2822 33–2188 32–1874
8 33 34–5874 34–5419 34–4972 32–4437 32–3900 34–3399 32–2817 33–2200 34–1903
9 34 35–5873 35–5450 35–4891 35–4439 35–3944 35–3410 34–2782 34–2155 35–1846

10 35 36–5953 35–5469 36–4960 35–4558 35–4027 35–3404 36–2806 35–2163 36–1845
11 36 36–5938 35–5474 35–4979 35–4441 35–3926 35–3411 36–2760 36–2174 36–1839
12 37 37–5892 37–5407 37–4964 37–4463 37–3930 38–3369 37–2775 36–2205 39–1836
13 38 38–5930 38–5468 38–4953 38–4400 38–3901 40–3369 38–2784 39–2159 39–1881
14 39 40–5836 40–5352 40–4902 40–4343 40–3893 41–3373 40–2785 39–2203 39–1853
15 40 40–5831 40–5425 40–4978 40–4386 39–3900 39–3346 40–2793 39–2247 39–1917
16 41 42–5928 42–5482 43–4970 41–4484 41–3902 42–3356 42–2786 41–2203 42–1877
17 42 42–5894 42–5501 42–4928 42–4410 42–3890 42–3428 42–2788 42–2195 42–1867
18 43 44–5981 44–5503 42–4947 44–4449 44–3978 42–3385 42–2803 43–2173 43–1844
19 44 44–5757 45–5310 45–4858 45–4421 44–3846 45–3360 45–2715 45–2162 43–1814
20 45 46–5855 46–5408 45–4978 45–4451 45–3904 45–3387 45–2789 45–2148 43–1847

Correct Detection 11 6 9 11 12 7 10 13 7

Figure 11. Comparison of correct detection rates for BEBLID, ORB, and SIFT descriptors across
different feature counts.

5.4. Distance Computation Test

The objective of this test was to evaluate the distance calculation algorithm and com-
pare the distance calculated based on the proposed algorithm with the distance calculated
based on GPS coordinates.

Thirty frames were used as a reference from the car in front, and attempts were made
to detect them in the video stream from the car behind using the BEBLID descriptor. As
can be observed in Table 5, the detected frames are mostly consecutive. Additionally, it is
evident that the distance calculated based on GPS coordinates is significantly larger than
the one calculated by the algorithm.

Information 2024, 15, 323 21 of 26

Table 5. First test—The computed distance between the vehicles (Car A in Front, Car B Behind) for
30 consecutive frames.

Frame Video 1 Frame Video 2 GPS Distance Computed Distance

1 33–2267 matches 34.153 m 20.694 m
2 33–2215 matches 34.153 m 20.516 m
3 35–2175 matches 34.153 m 20.681 m
4 37–2162 matches 34.153 m 20.846 m
5 38–2134 matches 34.153 m 20.839 m
6 39–2108 matches 34.153 m 20.832 m
7 40–2207 matches 34.153 m 20.825 m
8 41–2120 matches 33.463 m 20.653 m
9 43–2151 matches 33.463 m 21.005 m
10 45–2139 matches 33.463 m 21.181 m
11 44–2167 matches 33.463 m 20.827 m
12 45–2128 matches 33.463 m 20.826 m
13 47–2186 matches 33.463 m 21.000 m
14 49–2128 matches 33.463 m 21.173 m
15 49–2123 matches 33.463 m 20.996 m
16 50–2089 matches 33.463 m 20.993 m
17 52–2100 matches 33.463 m 21.164 m
18 52–2122 matches 33.463 m 20.987 m
19 53–2128 matches 33.463 m 20.984 m
20 54–2026 matches 33.463 m 20.980 m
21 56–1985 matches 33.463 m 21.148 m
22 56–2008 matches 33.463 m 20.972 m
23 57–1980 matches 33.463 m 20.968 m
24 58–2079 matches 33.463 m 20.963 m
25 60–2065 matches 33.463 m 21.128 m
26 62–2020 matches 33.463 m 21.292 m
27 62–2079 matches 33.463 m 21.117 m
28 64–2105 matches 33.463 m 21.279 m
29 64–2013 matches 33.463 m 21.104 m
30 66–2133 matches 33.463 m 21.265 m

A second test was conducted by reversing the order of the two cars. What is observed
in this test is that, in this case, the distance calculated based on GPS coordinates is smaller
than the distance calculated by the proposed algorithm. These results are presented in
Table 6.

Table 6. Second Test—The computed distance between the vehicles(Reversed Order: Car B in Front,
Car A Behind) for 30 consecutive frames.

Frame Video 1 Frame Video 2 GPS Distance Computed Distance

1 25–2255 matches 9.085 m 24.025 m
2 26–2222 matches 9.085 m 24.006 m
3 27–2232 matches 9.085 m 23.987 m
4 29–2184 matches 9.184 m 23.513 m
5 30–2180 matches 9.184 m 23.333 m
6 31–2177 matches 9.184 m 23.336 m
7 32–2191 matches 9.184 m 23.338 m
8 32–2148 matches 9.184 m 23.161 m
9 33–2270 matches 9.184 m 23.164 m
10 34–2202 matches 9.184 m 23.166 m
11 35–2176 matches 9.184 m 23.167 m
12 36–2186 matches 9.184 m 23.168 m
13 38–2202 matches 9.184 m 23.341 m
14 38–2205 matches 9.184 m 23.168 m
15 39–2193 matches 9.184 m 23.168 m

Information 2024, 15, 323 22 of 26

Table 6. Cont.

Frame Video 1 Frame Video 2 GPS Distance Computed Distance

16 41–2182 matches 9.184 m 23.336 m
17 41–2166 matches 9.184 m 23.165 m
18 43–2210 matches 9.184 m 23.329 m
19 44–2127 matches 9.184 m 23.325 m
20 44–2144 matches 9.184 m 23.156 m
21 45–2030 matches 9.184 m 23.152 m
22 47–2081 matches 9.184 m 23.310 m
23 48–1912 matches 9.184 m 23.304 m
24 49–1964 matches 9.184 m 23.297 m
25 49–2036 matches 9.184 m 23.132 m
26 50–1946 matches 9.184 m 23.126 m
27 51–2014 matches 9.184 m 23.119 m
28 51–2036 matches 9.184 m 22.955 m
29 54–2025 matches 9.184 m 23.256 m
30 54–2161 matches 9.184 m 23.094 m

5.5. Accuracy of the Computed Distance in a Real-World Scenario

The last test that was conducted aims to ascertain the accuracy of the distance between
two vehicles computed by the proposed algorithm. For this, we use a simple but very effective
real-world testing scenario. This scenario allows us to measure the exact distance between
two vehicles and compare it with the computed distance using the presented approach.

For this test, we used two vehicles, each equipped with a video camera. The street
where we recorded the videos was a one lane street. First, we recorded the videos used
by our positioning algorithm. Next, for the same frames we have computed the distance,
we positioned the cars in the exact same location and measured the exact distance using
a measuring tape. During this test, the cars were traveling with speeds between 17.8 and
20.3 km/h.

We did this two times, the only difference being that we switched the car order. The
frames detected were in the same area for both cases. The results are presented in Table 7
and in Table 8. In these tables, we included the frame from the first video (from the car in
front), the detected frame in the video from the car behind, the computed distance relying
solely on the GPS coordinates, the distance computed by the proposed algorithm, and the
real measured distance.

Table 7. First Test—Comparison between the measured distance and the computed distance for
3 frames (Car A in Front, Car B Behind).

Frame Video 1 Frame Video 2 GPS Distance Computed
Distance

Measured
Distance Difference Percent

1 33–2267 matches 34.153 m 20.694 m 21.5 m −0.806 m 3.748%
16 50–2089 matches 33.463 m 20.993 m 21.45 m −0.457 m 2.130%
25 60–2065 matches 33.463 m 21.128 m 20.38 m 0.748 m 3.670%

The data presented in these two tables confirm the hypothesis that the distance com-
puted only using the GPS coordinates presents a significant error compared to the real
distance and should not be used in car platooning applications. Also, the data indicate
that the distance computed using the proposed algorithm outperforms the GPS distance by
a great margin, with small differences compared to the real distance. All the differences
between the distances computed using the proposed algorithm and the real distances were
under 1 m, compared to around 10 m using the GPS distance.

Information 2024, 15, 323 23 of 26

Table 8. Second Test—Comparison between the measured distance and the computed distance for
3 frames (Reversed Order: Car B in Front, Car A Behind).

Frame Video 1 Frame Video 2 GPS Distance Computed
Distance

Measured
Distance Difference Percent

1 25–2255 matches 9.085 m 24.025 m 23.95 m 0.075 m 0.313%
12 36–2186 matches 9.184 m 23.168 m 23.98 m −0.812 m 3.386%
16 41–2182 matches 9.184 m 23.336 m 23.9 m −0.564 m 2.359%

5.6. Limitations

In the conducted tests, we observed that for certain areas captured in the images, such
as in Figure 12, the proposed algorithm detected very few matches between frames from
the two cameras. This compromised the optimal functioning of the corresponding frame
detection algorithm. As depicted in Figure 13, for frame 11, which should ideally have the
highest number of matches, they amounted to only around 150. Due to the low number of
matches, the algorithm fails to accurately identify the correct frame.

Figure 12. Area of sparse matches detected by the algorithm.

Version May 22, 2024 submitted to Information 25 of 28

One of the reasons for this issue could be the lower brightness in these areas, where 634

descriptors may struggle to extract and match significant features between images, resulting 635

in a reduced number of matches. Nevertheless, such cases can be labeled as failed detections 636

and not to be used in further vehicle platooning applications. 637

Figure 13. Correct frame detection

6. Conclusions 638

Increasing urbanization and vehicle density have led to escalating traffic congestion 639

and a rise in road accidents. With millions of lives lost or injured annually, urgent measures 640

are required to enhance road safety. This underscores the necessity for effective vehicle 641

positioning algorithms to mitigate these challenges. 642

A robust vehicle positioning algorithm is crucial for effective traffic management and 643

enhanced road safety. With the rising number of vehicles, there is an increased need to 644

optimize traffic flow, minimize delays, and enable intelligent control systems. By accurately 645

determining the position of vehicles, advanced functionalities can be developed to reduce 646

the risk of accidents, improve commuting experiences, and facilitate efficient resource 647

allocation. Implementing such an algorithm is vital for creating a safer and more efficient 648

transportation system. 649

In this paper, an algorithm that accurately and robustly position vehicles on a road 650

with respect to the position of other nearby vehicles was described. The algorithm presents 651

a decentralized approach where each vehicle acts like an independent computational node 652

and tries to position itself depending on data received from the other nearby vehicles. 653

The decentralized approach proposed in this paper can use a low-range communica- 654

tion system with a very high bandwidth, but each vehicle requires a high computational 655

power to perform all the processing tasks in real time. A centralized approach (using 656

cloud services, for example) can perform all the processing tasks in real-time, but it highly 657

depends on the communication between the vehicles and the server, mainly because each 658

vehicle will send the entire video stream to the server. 659

Based on the results obtained for the various performed tests, it was proved that the 660

novel approach proposed in this paper is efficient and can be used to increase the accuracy 661

of the computed distance between vehicles. 662

For the first future research direction, the goal is to detect whether vehicles are on 663

the same lane or on different lanes based on the relative position of the two matched 664

descriptors. Another research direction involves implementing a centralized approach, 665

where each vehicle sends data to a server that utilizes cloud computing to process all the 666

data in real-time. This way, each vehicle will have a clearer understanding of vehicles that 667

are not within the considered distance threshold. Furthermore, we plan to expand the 668

Figure 13. Correct frame detection.

One of the reasons for this issue could be lower brightness in these areas, where
descriptors may struggle to extract and match significant features between images, resulting
in a reduced number of matches. Nevertheless, such cases can be labeled as failed detections
and not to be used in further vehicle platooning applications.

Information 2024, 15, 323 24 of 26

6. Conclusions

Increasing urbanization and vehicle density have led to escalating traffic congestion
and a rise in road accidents. With millions of lives lost or injured annually, urgent measures
are required to enhance road safety. This underscores the necessity for effective vehicle
positioning algorithms to mitigate these challenges.

A robust vehicle positioning algorithm is crucial for effective traffic management and
enhanced road safety. With the rising number of vehicles, there is an increased need to
optimize traffic flow, minimize delays, and enable intelligent control systems. By accurately
determining the position of vehicles, advanced functionalities can be developed to reduce
the risk of accidents, improve commuting experiences, and facilitate efficient resource
allocation. Implementing such an algorithm is vital for creating a safer and more efficient
transportation system.

In this paper, an algorithm that accurately and robustly position vehicles on a road
with respect to the position of other nearby vehicles was described. The algorithm presents
a decentralized approach where each vehicle acts like an independent computational node
and tries to position itself depending on data received from the other nearby vehicles.

The decentralized approach proposed in this paper can use a low-range communica-
tion system with a very high bandwidth, but each vehicle requires a high computational
power to perform all the processing tasks in real time. A centralized approach (using
cloud services, for example) can perform all the processing tasks in real-time, but it highly
depends on communication between vehicles and the server, mainly because each vehicle
will send the entire video stream to the server.

Based on the results obtained for the various performed tests, it was proven that the
novel approach proposed in this paper is efficient and can be used to increase the accuracy
of the computed distance between vehicles.

For the first future research direction, the goal is to detect whether vehicles are in the
same lane or in different lanes based on the relative position of the two matched descriptors.
Another research direction involves implementing a centralized approach, where each
vehicle sends data to a server that utilizes cloud computing to process all the data in
real-time. This way, each vehicle will have a clearer understanding of vehicles that are not
within the considered distance threshold. Furthermore, we plan to expand the experiments
and conduct them at higher speeds once we find a suitable road that allows for this, aiming
to ensure minimal interference and achieve more accurate results.

Author Contributions: Conceptualization, I.-A.B. and P.-C.H.; methodology, I.-A.B. and P.-C.H.;
software, I.-A.B.; validation, I.-A.B., P.-C.H. and C.-F.C.; formal analysis, I.-A.B. and P.-C.H.; inves-
tigation, I.-A.B. and P.-C.H.; resources, I.-A.B. and P.-C.H.; data curation, I.-A.B.; writing—original
draft preparation, I.-A.B.; writing—review and editing, I.-A.B., P.-C.H. and C.-F.C.; visualization,
I.-A.B.; supervision, P.-C.H. and C.-F.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

GPS Global Positioning System
LiDAR Light Detection and Ranging
V2V Vehicle-to-vehicle
V2X Vehicle-to-everything

Information 2024, 15, 323 25 of 26

ADAS Advanced Driver Assistance Systems
SIFT Scale-Invariant Feature Transform
DoG Difference of Gaussian
LoG Laplacian of Gaussian
SURF Speeded-Up Robust Feature
ORB Oriented FAST and Rotated BRIE
BRIEF Binary Robust Independent Elementary Features
rBRIEF Rotation-aware BRIEF
BELID Boosted Efficient Local Image Descriptor
BEBLID Boosted efficient binary local image descriptor
CNN Convolutional Neural Networks
BFMatcher Brute-force Matcher
FLANN Fast Library for Approximate Nearest Neighbors
OCR Optical Character Recognition

References
1. World Health Organization. Save Lives: A Road Safety Technical Package; World Health Organization: Geneva, Switzerland , 2017;

p. 60.
2. World Health Organization. Global Status Report on Road Safety 2023; World Health Organization: Geneva, Switzerland, 2023.
3. Forum, I.T. Monitoring Progress in Urban Road Safety; International Traffic Forum: Paris, France, 2018.
4. Caruntu, C.F.; Ferariu, L.; Pascal, C.; Cleju, N.; Comsa, C.R. Connected cooperative control for multiple-lane automated vehicle

flocking on highway scenarios. In Proceedings of the 23rd International Conference on System Theory, Control and Computing,
Sinaia, Romania, 9–11 October 2019; pp. 791–796. [CrossRef]

5. Sun, Y.; Song, J.; Li, Y.; Li, Y.; Li, S.; Duan, Z. IVP-YOLOv5: An intelligent vehicle-pedestrian detection method based on YOLOv5s.
Connect. Sci. 2023, 35, 2168254. [CrossRef]

6. Ćorović, A.; Ilić, V.; Ðurić, S.; Marijan, M.; Pavković, B. The Real-Time Detection of Traffic Participants Using YOLO Algorithm. In
Proceedings of the 2018 26th Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 November 2018; pp. 1–4. [CrossRef]

7. Joshi, R.; Rao, D. AlexDarkNet: Hybrid CNN architecture for real-time Traffic monitoring with unprecedented reliability. Neural
Comput. Appl. 2024, 36, 1–9. [CrossRef]

8. Jia, D.; Lu, K.; Wang, J.; Zhang, X.; Shen, X. A Survey on Platoon-Based Vehicular Cyber-Physical Systems. IEEE Commun. Surv.
Tutor. 2016, 18, 263–284. [CrossRef]

9. Axelsson, J. Safety in Vehicle Platooning: A Systematic Literature Review. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1033–1045.
[CrossRef]

10. Yang, H.; Hong, J.; Wei, L.; Gong, X.; Xu, X. Collaborative Accurate Vehicle Positioning Based on Global Navigation Satellite
System and Vehicle Network Communication. Electronics 2022, 11, 3247. [CrossRef]

11. Kolat, M.; Bécsi, T. Multi-Agent Reinforcement Learning for Highway Platooning. Electronics 2023, 12, 4963. [CrossRef]
12. Gao, C.; Wang, J.; Lu, X.; Chen, X. Urban Traffic Congestion State Recognition Supporting Algorithm Research on Vehicle Wireless

Positioning in Vehicle–Road Cooperative Environment. Appl. Sci. 2022, 12, 770. [CrossRef]
13. Lee, G.; Chong, N. Recent Advances in Multi Robot Systems; Chapter Flocking Controls for Swarms of Mobile Robots Inspired by

Fish Schools; InTechOpen: London, UK, 2008; pp. 53–68. [CrossRef]
14. Reynolds, C.W. Flocks, Herds and Schools: A Distributed Behavioral Model. SIGGRAPH Comput. Graph. 1987, 21, 25–34.

[CrossRef]
15. Tan, Y.; Yang, Z. Research Advance in Swarm Robotics. Def. Technol. 2013, 9, 18–39. [CrossRef]
16. Kennedy, J.; Eberhart, R.C.; Shi, Y. Swarm Intelligence. In The Morgan Kaufmann Series in Artificial Intelligence; Morgan Kaufmann:

San Francisco, CA, USA, 2001. [CrossRef]
17. Mandal, V.; Mussah, A.R.; Jin, P.; Adu-Gyamfi, Y. Artificial Intelligence-Enabled Traffic Monitoring System. Sustainability 2020,

12, 9177. [CrossRef]
18. Sultan, F.; Khan, K.; Shah, Y.A.; Shahzad, M.; Khan, U.; Mahmood, Z. Towards Automatic License Plate Recognition in

Challenging Conditions. Appl. Sci. 2023, 13, 3956. [CrossRef]
19. Rafique, S.; Gul, S.; Jan, K.; Khan, G.M. Optimized real-time parking management framework using deep learning. Expert Syst.

Appl. 2023, 220, 119686. [CrossRef]
20. Tang, X.; Zhang, Z.; Qin, Y. On-Road Object Detection and Tracking Based on Radar and Vision Fusion: A Review. IEEE Intell.

Transp. Syst. Mag. 2022, 14, 103–128. [CrossRef]
21. Umair Arif, M.; Farooq, M.U.; Raza, R.H.; Lodhi, Z.U.A.; Hashmi, M.A.R. A Comprehensive Review of Vehicle Detection

Techniques Under Varying Moving Cast Shadow Conditions Using Computer Vision and Deep Learning. IEEE Access 2022,
10, 104863–104886. [CrossRef]

22. Kalyan, S.S.; Pratyusha, V.; Nishitha, N.; Ramesh, T.K. Vehicle Detection Using Image Processing. In Proceedings of the IEEE
International Conference for Innovation in Technology, Bangluru, India, 6–8 November 2020; pp. 1–5.

http://doi.org/10.1109/ICSTCC.2019.8885496
http://dx.doi.org/10.1080/09540091.2023.2168254
http://dx.doi.org/10.1109/TELFOR.2018.8611986
http://dx.doi.org/10.1007/s00521-024-09450-2
http://dx.doi.org/10.1109/COMST.2015.2410831
http://dx.doi.org/10.1109/TITS.2016.2598873
http://dx.doi.org/10.3390/electronics11193247
http://dx.doi.org/10.3390/electronics12244963
http://dx.doi.org/10.3390/app12020770
http://dx.doi.org/10.5772/5477
http://dx.doi.org/10.1145/37402.37406
http://dx.doi.org/10.1016/j.dt.2013.03.001
http://dx.doi.org/10.1016/B978-155860595-4/50000-0
http://dx.doi.org/10.3390/su12219177
http://dx.doi.org/10.3390/app13063956
http://dx.doi.org/10.1016/j.eswa.2023.119686
http://dx.doi.org/10.1109/MITS.2021.3093379
http://dx.doi.org/10.1109/ACCESS.2022.3208568

Information 2024, 15, 323 26 of 26

23. Zhang, Y.; Carballo, A.; Yang, H.; Takeda, K. Perception and sensing for autonomous vehicles under adverse weather conditions:
A survey. J. Photogramm. Remote Sens. 2023, 196, 146–177. [CrossRef]

24. Lu, S.; Shi, W. Vehicle Computing: Vision and challenges. J. Inf. Intell. 2023, 1, 23–35. [CrossRef]
25. Lowe, D. Object recognition from local scale-invariant features. In Proceedings of the 7th IEEE International Conference on

Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2, pp. 1150–1157. [CrossRef]
26. Vaithiyanathan, D.; Manigandan, M. Real-time-based Object Recognition using SIFT algorithm. In Proceedings of the 2023 Second

International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT), Trichirappalli,
India, 5–7 April 2023; pp. 1–5. [CrossRef]

27. Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-Up Robust Features SURF. Comput. Vis. Image Underst. 2008, 110, 346–359.
[CrossRef]

28. Sreeja, G.; Saraniya, O. Chapter 3—Image Fusion Through Deep Convolutional Neural Network. In Deep Learning and Parallel
Computing Environment for Bioengineering Systems; Sangaiah, A.K., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 37–52.
[CrossRef]

29. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G.R. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011
International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571.

30. Rosten, E.; Drummond, T. Machine Learning for High-Speed Corner Detection. In Computer Vision—ECCV; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 430–443.

31. Calonder, M.; Lepetit, V.; Strecha, C.; Fua, P. BRIEF: Binary Robust Independent Elementary Features. In Computer Vision—ECCV;
Springer: Berlin/Heidelberg, Germany, 2010; pp. 778–792.

32. Wu, S.; Fan, Y.; Zheng, S.; Yang, H. Object tracking based on ORB and temporal-spacial constraint. In Proceedings of the IEEE 5th
International Conference on Advanced Computational Intelligence, Nanjing, China, 18–20 October 2012; pp. 597–600. [CrossRef]

33. Rosin, P.L. Measuring Corner Properties. Comput. Vis. Image Underst. 1999, 73, 291–307. [CrossRef]
34. Suárez, I.; Sfeir, G.; Buenaposada, J.M.; Baumela, L. BEBLID: Boosted efficient binary local image descriptor. Pattern Recognit. Lett.

2020, 133, 366–372. [CrossRef]
35. Suarez, I.; Sfeir, G.; Buenaposada, J.; Baumela, L. BELID: Boosted Efficient Local Image Descriptor. In Lecture Notes in Computer

Science; Springer International Publishing: Cham, Switzerland, 2019; pp. 449–460. [CrossRef]
36. Tian, Y.; Fan, B.; Wu, F. L2-Net: Deep Learning of Discriminative Patch Descriptor in Euclidean Space. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6128–6136. [CrossRef]
37. Zhang, H.C.; Zhou, H. GPS positioning error analysis and outlier elimination method in forestry. Trans. Chin. Soc. Agric. Mach.

2010, 41, 143–147. [CrossRef]
38. van Diggelen, F.; Enge, P.K. The World’s first GPS MOOC and Worldwide Laboratory using Smartphones. In Proceedings of the

28th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2015), Tampa, FL, USA,
14–18 September 2015.

39. OpenCV Modules. Available online: https://docs.opencv.org/4.9.0/ (accessed on 1 May 2024).
40. Muja, M.; Lowe, D. Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration. VISAPP 2009, 1, 331–340.
41. Tesseract OCR. Available online: https://github.com/tesseract-ocr (accessed on 1 May 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.isprsjprs.2022.12.021
http://dx.doi.org/10.1016/j.jiixd.2022.10.001
http://dx.doi.org/10.1109/ICCV.1999.790410
http://dx.doi.org/10.1109/ICEEICT56924.2023.10157675
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1016/B978-0-12-816718-2.00010-5
http://dx.doi.org/10.1109/ICACI.2012.6463235
http://dx.doi.org/10.1006/cviu.1998.0719
http://dx.doi.org/10.1016/j.patrec.2020.04.005
http://dx.doi.org/10.1007/978-3-030-31332-6_39
http://dx.doi.org/10.1109/CVPR.2017.649
http://dx.doi.org/10.3969/j.issn.1000-1298.2010.05.029
https://docs.opencv.org/4.9.0/
https://github.com/tesseract-ocr

	Introduction
	Related Work
	Traffic Optimization
	Street Scene Image Processing
	Image Descriptors
	Scale-Invariant Feature Transform (SIFT) Descriptor
	Sped-Up Robust Feature (SURF) Descriptor
	Oriented FAST and Rotated BRIEF (ORB) Descriptor
	Boosted Efficient Binary Local Image Descriptor (BEBLID)

	Precise Localization Algorithm
	Message Transmission Procedure
	Message Reception Procedure

	Framework for Algorithm Implementation
	Adjust Image Dimensions
	Extract Camera Displayed Time
	Simulation of Vehicle-to-Vehicle Communication
	Detection of the Corresponding Frame
	Compute Distance
	Hardware Used

	Performed Experiments and Test Results
	Test Architecture
	Descriptor Performance Test
	Influence of the Number of Features
	Distance Computation Test
	Accuracy of the Computed Distance in a Real-World Scenario
	Limitations

	Conclusions
	References

