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Abstract: Workload management is a cornerstone of contemporary human resource management
with widespread applications in private and public sectors. The challenges in human resource
management are particularly pronounced within the public sector: particularly in task allocation.
The absence of a standardized workload distribution method presents a significant challenge and
results in unnecessary costs in terms of man-hours and financial resources expended on surplus
human resource utilization. In the current research, we analyze how to deal with the “race condition”
above and propose a dynamic workload management model based on the response time required to
implement each task. Our model is trained and tested using comprehensive employee data compris-
ing 450 records for training, 100 records for testing, and 88 records for validation. Approximately
11% of the initial data are deemed either inaccurate or invalid. The deployment of the ANFIS algo-
rithm provides a quantified capability for each employee to handle tasks in the public sector. The
proposed idea is deployed in a virtualized platform where each employee is implemented as an
independent node with specific capabilities. An upper limit of work acceptance is proposed based on
a documented study and laws that suggest work time frames in each public body, ensuring that no
employee reaches the saturation level of exhaustion. In addition, a variant of the “slow start” model is
incorporated as a hybrid congestion control mechanism with exceptional outcomes, offering a gradual
execution window for each node under test and providing a smooth and controlled start-up phase
for new connections. The ultimate goal is to identify and outline the entire structure of the Greek
public sector along with the capabilities of its employees, thereby determining the organization’s
executive capacity.

Keywords: workload management; public sector; load control; human resources; productivity;
ranking; efficiency; task allocation; personnel selection

1. Introduction

The public sector faces mounting pressure to transform its operations and service
delivery mechanisms in an era marked by rapid technological advancements and evolving
societal demands. The need for agility, responsiveness, and efficiency within government
agencies has never been more pressing [1]. Central to addressing these challenges is the
development and implementation of a robust dynamic workload management system
(DWMS) tailored to the unique demands of the public sector.

Traditional public administration systems often struggle to adapt to changing cir-
cumstances, leading to inefficiencies, delays, and suboptimal resource allocation [2]. In
addition, they lack independent performance assessments, while reformation approaches
must be adapted to evolving circumstances [3]. In this context, a DWMS emerges as a
critical tool for enhancing the performance of public sector organizations by optimizing
work distribution, resource allocation, and service delivery processes in real time. The
current paper analyzes the conceptualization, design, and practical implementation of
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such a system, aiming to bridge the gap between theory and practice, as well as seeks to
explore the development of a DWMS as a strategic imperative for the public sector. The
significance of this study lies in its potential to transform how government agencies operate,
enabling them to respond swiftly to emerging challenges, allocate resources judiciously, and
enhance overall service quality. By providing a comprehensive understanding of DWMS
design and implementation in the public sector, this research contributes to the body of
knowledge on public administration and management. Workload distribution was always
the “Achilles heel” of any system related to human resource management. The current
situation is characterized by an overabundance of public sector employees, many without
the necessary training. At the same time, it is not uncommon for individuals to become
overwhelmed by the high volume of work, leading to delays in completing several tasks.
Consequently, the quality of these tasks may suffer as they are rushed to meet deadlines.
Highly skilled employees are overloaded with tasks that cannot be handled in their daily
schedule, resulting in overtime and physical and mental problems [4,5]. On the other hand,
underutilized human resources, due to a subjective assessment of lack of specialization,
do not undertake jobs, resulting in the operation of two-speed services and the gradual
cessation of all activities.

The existing literature reveals a significant gap in research regarding the development
and implementation of DWMSs in the public sector. Although related concepts and
theories have been explored, two critical aspects remain unaddressed. First, existing
management systems often rely on performance indicators and assessments based on
supervisors’ opinions rather than productivity factors. This oversight limits the objectivity
and effectiveness of workload management. Second, there is a lack of a holistic approach to
modeling the potential efficiency of public bodies based on employee efficiency. This gap
hinders the ability to comprehensively evaluate and enhance organizational performance.
Furthermore, the selection of the ANFIS algorithm as the candidate for producing the
Capacity Factor for each employee was based on pre-analysis with actual data and is
supported by a robust theoretical framework. Thus, there is a clear need for comprehensive
analysis and practical guidance on designing and implementing DWMSs that address
these gaps. The current investigation sheds light on various aspects of the problem by
highlighting task boundary management.

The paper is organized into several sections, including a literature review of relevant
concepts and theories, a discussion of the critical components of a DWMS, and case studies
illustrating successful implementations. It concludes by offering insights into the potential
future developments in dynamic workload management in the public sector.

In summary, current research promotes a dynamic workload management system’s
pivotal role in enhancing public sector organizations’ efficiency and effectiveness. By
addressing the challenges and opportunities inherent in such a system, we aim to provide a
comprehensive resource for policymakers, directors, and researchers invested in the future
of public administration.

2. Related Work and Contributions

Workload management in the public sector has not been extensively reported, although
researchers have attempted to outline the proposed topic. A quite exciting approach was
initiated by Michalopoulos et al. [6], where a four-level factor profile was utilized to pro-
duce the correlation between the hard skills and the Capacity Factor (CF) to determine
each employee’s efficiency. This initial deployment was further deployed in the research by
Giotopoulos et al. [7], where results illustrated the significant impact of work experience
in the private sector compared to the public sector on the value of the Capacity Factor.
ANFIS was selected due to its ability to learn and represent complex nonlinear relationships
effectively. While the deployment of neural networks has demonstrated remarkable predic-
tive capabilities, a large amount of information in the public domain remains unexploited.
Therefore Theodorakopoulos et al. [8,9] showed the use of big data and machine learning
for predicting valuable information in many fields of modern business that could be ap-



Information 2024, 15, 335 3 of 28

plied to any public body. The study of Adams et al. [10] suggests that for sustainability
reporting to become widespread in the public sector, it may require mandatory adoption
or a shift toward competitive resource allocation based on sustainability performance.
However, these conclusions are subject to potential limitations, and future research should
explore the role of regulatory environment congruence in sustainability performance. The
importance of intangible assets (IAs) and intellectual capital (IC) was also highlighted by
Boj et al. [11], who introduced a methodology using an analytic network process (ANP).
Regarding productivity in the public sector, the use and usefulness of corresponding per-
formance measures are considered vital [12]. Arnaboldi et al. [13] proposed leveraging
complexity theory to address the intricacies of public sector performance management,
taking into account performance management, exploring the applicability of complexity
theory to public service managers’ everyday tasks, and conducting a holistic evaluation
including public managers. Gunarsih et al. [14] emphasized the importance of comprehen-
sive performance measurement by integrating the balanced scorecard (BSC) method along
with system dynamics (SD) modeling to capture complex interactions. On the other hand,
Bruhn et al. [15] introduced a multi-level approach to understanding frontline interactions
within the public sector and demonstrated the value of applying conversation analysis
methods to investigate how policies and rules are applied, negotiated, and reshaped dur-
ing those interactions. Indicators such as allocation, distribution, and stabilization have
been analyzed, leading to defined measurements of public sector performance (PSP) and
efficiency (PSE), giving an advantage to smaller public bodies [16].

There is still an ongoing debate regarding measuring productivity in public services.
This debate suggests that we are currently in a phase characterized by testing various
approaches, making it challenging to draw meaningful comparisons.

When discussing and assessing the performance of public services, it is crucial to
clearly distinguish between various aspects of public service performance, such as produc-
tivity, efficiency, and effectiveness, and how working time flexibility affects those factors.
Integrating working time flexibility into this strategy can contribute positively to produc-
tivity but has various impacts due to the range of measures implemented. The manner of
implementation and collective influence affect working conditions, and work–life balance
and other relevant factors are emphasized [17]. A measurable dimension that will deter-
mine the efficiency of a civil servant is still missing. Instead, government outputs typically
encompass complex social outcomes that are challenging to precisely delineate and often
exhibit multidimensional and interconnected characteristics [18].

A challenge that arises when considering the private sector when comparing public
and private sector efficiency is the achievement of complete comparability, which would
allow for an adequate evaluation of each. Even a cursory analysis reveals that the public
and private sectors are not interchangeable. Their objectives diverge significantly, with
the private sector primarily focused on profit generation. At the same time, the public
sector seeks economic gains and the attainment of social benefits, with a primary mission of
ensuring the public’s well-being. Private sector projects are primarily driven by the pursuit
of economic benefits: often with limited attention to social and environmental concerns.
However, in contemporary times, many companies are gradually shifting their mindsets
and are striving to integrate social responsibility alongside profit generation. Conversely,
public projects may prioritize social benefits over economic gains [19].

The relationship between outcomes or outputs, as the literature refers to them, and
inputs or efforts determines efficiency. While this relationship may seem straightforward,
practical implementation often proves otherwise. Identifying and measuring inputs and
outputs in the public sector is generally a challenging endeavor.

How is productivity related to working hours? Definitely, increasing working time
does not correspond to a proportional increase in productivity due to fatigue, which is
the most crucial parameter in the equation [20–22]. On the other hand, factors such as
wages, work arrangements, job content, IT skills, working conditions, health, stress, and job
satisfaction significantly contribute to employee productivity [23]. In contrast, incentives
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for companies to adopt and expand flexible working time arrangements, like flextime and
working time accounts, can improve morale, individual performance, and overall company
productivity and sustainability [24].

An interesting approach elucidates a path to augmenting production efficiency by im-
plementing a work-sharing methodology. Workforce reduction is achieved by meticulously
assessing cycle times per head, as organized by a process [25].

While it is relatively straightforward to measure inputs in terms of physical units, such
as the number of employees or hours worked, or in financial terms, defining and quantify-
ing outputs presents more significant challenges. This is due to the diverse perspectives
that consumers may have, whether they are viewed as end-users or representatives of
society at large.

Furthermore, additional complexities arise when it comes to defining and measuring
the outcomes of public services. External factors such as individual behavior, culture, and
social norms can significantly influence the final results, making it a multifaceted and
intricate process [26].

In analogous investigations aimed at forecasting student performance through prior
academic attainments, algorithms including naive Bayes, ID3, C4.5, and SVM were utilized,
with particular emphasis on their applicability and analyses concerning students. The
evaluation of these algorithms centered on metrics such as accuracy and error rates [27].

Aligned with the prevailing tendency towards incorporating AI in human resource
management, Chowdhury et al. [28] undertook a systematic review of AI research in HRM
and delineated key themes such as AI applications, collective intelligence, and AI drivers
and barriers. While the existing literature predominantly concentrates on AI applications
and their associated advantages, a research gap exists regarding collective intelligence, AI
transparency, and ethical considerations. The paper introduces an AI capability framework
for organizations and suggests research priorities, including validating the framework,
assessing the impact of AI transparency on productivity, and devising knowledge man-
agement strategies for fostering AI–employee collaboration. It underscores the necessity
for empirical studies to comprehensively evaluate the effects of AI adoption.Use of ma-
chine learning combined with metrics such as mean absolute error, mean squared error,
and R-squared have been widely used lately for evaluating employee performance [29].
Alsheref et al. [30] proposed automated model that can predict employee attrition based on
different predictive analytical techniques such as random forest, gradient boosting, and
neural networks, while Arslankaya, S., focused on employee labor loss, demonstrating the
superiority of ANFIS over pure fuzzy logic [31]. In all cases, it was evident that there is a
need for a recruitment system that can use artificial intelligence during the hiring procedure
to quantify the objectives set by the HR department [32] and move into a more personalized
HRM system [33] that provides insight into workload performance of the personnel. The
incorporation of artificial intelligence (AI) and machine learning (ML) into business process
management (BPM) within organizations and enterprises holds promise for achieving these
goals and enhancing performance, innovation procedures, and competitive edges [34].

In continuation of the research defining efficiency to include the measurement and
evaluation of workloads, Casner, S.M., and Gore [35] made a quite remarkable approach
by highlighting factors such as speed, accuracy, and task analysis and tried to illustrate
the performance relation to the quantification of the workloads of pilots. A load-balancing
algorithm could analyze and manage the load distributed on any public service in the
same way that protocols operate in the IT world. Compared to static ones, dynamic
algorithms gather and combine the load information to make decisions for load balancing.
Sharifian et al. [36] proposed an approach that involves predicting server utilization and
then correcting this prediction using real-time feedback on response time, while Xu and
Wang [37] introduced a modified round-robin algorithm designed to enhance web server
performance, particularly during periods of transient overload. In the same way, Diao,
Y., and Shwartz [38] illustrated the development of autonomic systems for IT service
management, aiming to improve service quality while optimizing costs. They employ
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automated data-driven methodologies encompassing workload management through
feedback controllers, workforce management using simulation optimization, and service
event management with machine learning models. Real-world examples from a large IT
services delivery environment validate the effectiveness of these approaches. The impact
of workloads on HR was highlighted by Razzaghzadeh et al., who introduced a novel load-
balancing algorithm designed for expert clouds that emphasized both load distribution
and efficient task allocation based on a mathematical model. It leverages nature-inspired
colorful ants to rank and distinguish the capabilities of human resources (HRs) within a
tree-structured site framework. Tasks and HRs are labeled and allocated by super-peer
levels using Poisson and exponential distribution probability functions. The proposed
method enhances throughput, reduces tardiness, and outperforms existing techniques when
tested in a distributed cloud environment [39]. In many research works, multitasking has
been considered in order to reduce and effectively cope with workloads. Bellur et al. [40]
deployed cognitive theories to understand multitasking’s effects in educational settings,
emphasizing students’ technology use. They investigated multitasking’s impact on college
GPAs and distinguished multitasking efficacy and additional study time as covariates.
The study revealed that multitasking during class negatively affects GPA, surpassing the
influence of study time. Rubinstein et al. [41] also indicated that, regardless of task type,
people experienced time loss when transitioning from one task to another. Additionally,
the duration of these time costs escalated with the intricacy of the tasks, resulting in notably
longer switching times between more complex tasks. Moreover, the time costs were higher
when individuals shifted to less familiar tasks. In theory and experimentation, significant
advancements have been achieved concerning how cognitive control affects immediate task
performance. Increased cognitive control requirements during encoding consistently lead
to a deceleration in performance and an uptick in error rates according to Reynolds [42] and
Meier and Rey-Mermet [43], while Muhmenthaler and Meier proved in their research that
task switching consistently impaired memory across all experiments conducted [44]. Mark
et al. [45] pointed out in their study that task interruptions “cost” an average of 23 min and
15 s to get back to the task. On average, individuals who frequently switch tasks experience
a loss of focus for just tens of minutes each time. Consequently, their efficiency is reduced
by approximately 20–40% [41].

However, the aforementioned approaches lack a reliable management system for eval-
uating employee productivity. Traditional evaluation systems, characterized by subjectivity
from experts and bureaucratic processes, fall short in providing adequate performance
appraisals. This inadequacy underscores the urgent need for transformative strategies in
public administration, especially in the context of the ongoing digital transformation era.
This research emphasizes the integration of objective efficiency assessment mechanisms,
moving away from traditional systems that rely on domain experts and their inherent
subjectivity. Introducing a time variant factor that measures the execution of each task
by a central HRMS is an innovative approach. Therefore, the novel contribution of this
study extends further by utilizing the capabilities of employees within each public body
to achieve a balanced workload network. Merely assessing and classifying employees is
insufficient without a strategic framework that demonstrates how to effectively deploy
those results.

3. Methodology
3.1. Tasks and Capacity Factor

Every country has laws defining the number of and duration of time spent on breaks
for each employee. In Greece, if the continuous daily working hours exceed 2 h, public
servants are entitled to a minimum 15 min break, during which they can temporarily leave
their workstations. This break cannot be accumulated at the start or end of the workday, as
per the adjustments made by Law 4808 of 2021, Article 56, and the 540/2021 decision of the
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Supreme Court, while the required skill set for a public servant is based on decision No.
540/2021 from the Greek Council of State according to Council Directive 90/270/EEC.

ValidBreak = 15 min (1)

MaxContinousTime = 120 min (2)

We base our hypothesis on the fact that each employee possesses a unique set of complex
skills that influence their ability to complete tasks within a specified time frame, referred
to as the “Time Factor”. As each employee is bound to a specific profile, indicated by
Michalopoulos et al. [6], each individual can be treated as a separate node with designated
skills for its properties, leading to a unique Time Factor. As such, for every employee or
node, a specific Time Factor is assigned based on their skills and is represented by factors
K1 through K4 according to Michalopoulos et al. [6].

The selected factors are

• K1: academic skills (number of Bachelor’s degrees, availability of Master’s degree,
certification from the National School of Public Administration, and PhD diploma);

• K2: working experience in the public sector (number of years, with a maximum
number of 35, plus type of responsibility);

• K3: working experience in the private sector (number of years, with a maximum
number of 35, plus type of responsibility);

• K4: Age in number of years within the range of 20–67.

P = Set of All Profiles in the public sector and Pj ⊂ P (3)

For each employee with profile Pj, a task with ID Tk is assigned.
Tasks are categorized according to complexity into TW1, TW2, . . . , TWx, indicating

a proportional increase in their execution times, and TW1 is considered the task with
minimum complexity. Therefore, TWx = task weight x, which indicates the complexity of
each task as measured in a specified time unit TU, which can be mins, hours, etc., in terms
of the metric.

TWx = xTW1, x > 0 (4)

When a task is allocated to employee Pj, the associated timer TIj is triggered and continues
until the task is completed.

For as long as the timer runs, each profile Pj is assigned with various tasks, but all of
them will be dependent on the base TW1. So for a given number of samples n, the Time
Factor is denoted as the mean value of all timers of tasks proportional to TW1.

Therefore, for any given profile Pj and task Tk,

TFPjTk =
∑n

i=0 TIi

n
, j, k, n > 0 which is defined as the Time Factor (5)

In continuation of the previous assumptions, each employee profile has a unique capability
to accomplish tasks per time unit TU; this is designated as the Capacity Factor. Therefore,

CF(Pj) =
average time spent on number of accomplished tasks of Pj

TU
=

TFPjTk

TU
(6)

So from the assumptions above, it is deducted that: CF(Pj) = f (K1, K2, K3, K4), where Kx
is the skill identification for each employee according to Michalopoulos et al. [6].

Figure 1 illustrates the procedure, which involves a multi-step approach to regulate
load control in a network using four factors, K1 through K4, as inputs. These steps are
outlined and explained as follows: Input to ANFIS: The four factors K1, K2, K3, and K4 are
utilized as inputs to the adaptive neuro-fuzzy inference system (ANFIS). The role of the
ANFIS here is to process these input factors and produce an output termed the Time Factor.
Derivation of Capacity Factor: Once the Time Factor is obtained from the ANFIS, it serves
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as an intermediary variable for the calculation of the Capacity Factor. The Capacity Factor
is a critical metric that quantifies the efficiency of the node within each public body. Load
control mechanism: Each node within the network utilizes the derived Capacity Factor
to regulate its load. This process is part of a load control mechanism, wherein the nodes
adjust their operational loads based on the Capacity Factor to optimize overall network
performance. The Capacity Factor (CF) is mathematically dependent on the four initial
factors (K1 to K4). This relationship can be expressed as a function CF = f(K1,K2,K3,K4),
indicating that the Capacity Factor is a resultant function of the inputs K1, K2, K3, and K4.

Figure 1. Illustration of how inputs K1 to K4 contribute to the production of the Capacity Factor.

The public body now consists of a multi-core “equivalent to IT based platform”, where
each employee (Pj) is a potential CPU “running” at a distinct Capacity Factor. For the rest
of the study, each employee will be denoted as Ni (node Ni) such that:

N = Set of all Nodes (7)

Node Ni ∈ N (8)

In the current research, the following primary tasks (Table 1) for areas of interest were
identified:

Table 1. Public body tasks.

Task Description

T1 Financial request
T2 Suggestion for new technical document
T3 Committee minutes
T4 Primary expense claim
T5 Contract deployment
T6 Clearance of tenderer accounts
T7 Technical opinion
T8 Draft tender design
T9 Design of a national tender
T10 Design of an international tender
T11 Implementation of a proposal for inclusion in the NSRF
T12 Examination of supporting documentation

Table 2 provides the durations, in minutes, for draft tender design (TK) and interna-
tional tender design (TK+1) from 15 distinct profile samples according to Giotopoulos et al.
(2023) [7]. TFPjT1 is always the baseline for Time Factor calculations on any given profile Pj.
The Time Factor Table 2 presented below showcases fifteen sample data records received
from the system. It delineates the variations in the time taken to accomplish each sample
task. TFPjT8 and TFPjT9 indicate the samples taken for Tasks TW8 and TW9, respectively.
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Table 2. Time Factor table.

Sample No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TFPjTk (mins) 149 106 81 319 209 157 208 171 129 138 180 338 197 208 115
TFPjTk+1 (mins) 1049 1185 1090 739 900 946 1047 396 909 571 771 734 460 823 623

TFPjT1 (mins) 53 74 47 25 21 29 31 44 66 46 54 86 43 63 42

3.2. Data Collection and Analysis

The population for this study comprised employees from public sector organizations
within the western region of Greece. A stratified random sampling method was employed
to ensure representation across different departments and levels of hierarchy. This approach
was chosen to capture a diverse range of data and improve the generalizability of the
findings. The sample size was determined based on the size of the public body under
test, and the maximum range was selected in order to ensure sufficient power to detect
meaningful effects. A total of 638 participants were selected for the study. Data were
collected from performance records, which provided quantitative measures of efficiency.
Surveys were not selected since the subjectivity of each expert could influence the validity
of the output results. As far as the data collection instrument is concerned, the primary
tools used included performance tracking software that is already being adopted by the
ministry of labor in Greece. Data were collected over a period of two years, ensuring
consistency in measurements across all participants. Detailed instructions were provided
to participants to minimize variability in responses.

The adaptive neuro-fuzzy inference system (ANFIS) algorithm was chosen due to
its ability to model complex, nonlinear relationships between input variables (K1 up to
K4) and the output variable (the Time Factor, indicating performance capability). The
rationale for using the ANFIS lies in its superior capability to learn from data and provide
interpretable rules. According to the performance indicators, the gbellmf membership
function with the use of a hybrid algorithm was selected due to its low root mean squared
error. In comparison with an ANN, linear regression, a support vector machine, and a
gradient boosting machine, the ANFIS showed better results in terms of RMSE (root mean
squared error) and MAPE (mean absolute percentage error) in a preliminary analysis.

Data analysis was conducted using MATLAB R2022b, which facilitated the implemen-
tation of the ANFIS algorithm and performed statistical analyses. To ensure the validity
and reliability of the ANFIS model, cross-validation techniques were employed. The
dataset was divided into training, testing, and validation subsets to evaluate the model’s
performance. Sensitivity analyses were conducted to assess the robustness of the findings.

3.3. Load Control and Loadability

Effective load management across the interconnected nodes is fundamental in every
interconnected network that handles traffic. The task acceptance limit (TAL) is introduced
as the rate, in Tasks/(TIrem), at which each node accepts and executes successful tasks.
TIrem is defined as hourly, daily, weekly, or monthly (in minutes) depending on the time
framework imposed by the public service supervisor and is the remaining time for the
execution of tasks in the queue. The rate is adjusted automatically per minute by the load
control function. Its maximum value is set based on the Capacity Factor.

TALNi =
Amount of tasks TW1 executed for Ni

TIrem
, TIrem = Remaining Time in minutes (9)

So for a period of TIdaily, where 1 TW1 and 1 TW2 (2 × TW1) are accomplished by Ni, it can
be deducted that:

TALNi =
1TW1 + 1TW2

TIdaily
=

1TW1 + 2TW1

TIdaily
=

3TW1

TIdaily
= 3

tasks
TIdaily

(10)



Information 2024, 15, 335 9 of 28

What is important is that the daily time framework is different for each country depending
on national laws. For eight hours of work, TIdaily is 6 × 60 = 360 mins from (10):

TALNi = 3
tasks

TIdaily
= 3

tasks
360 mins

(11)

In real-time systems, instantaneous monitoring of processor load is conducted at regular
intervals during minuscule time segments. However, the proposed solution deviates from
this real-time IT-based monitoring approach since supervisors’ allocated time for a task
queue is task-specific and predetermined. This signifies that in our envisaged scenario, the
node load (NLN) shall be computed by aggregating the weight of each task within the node
queue, factoring in the predefined remaining time (TIrem) for all the tasks in the queue, as
shown in Figure 2 below. In addition, Tqueue is defined as the total time of all tasks the node
currently possesses in the buffer queue.

TIrem = Remaining time of all tasks based on supervisor’s time framework (12)

Tqueue = Sum of task weights of all tasks in the node’s queue (13)

NLNi =
Tqueue

TIrem
=

∑k
x=1 TWx

TIrem
(14)

where k is the total number of tasks TWx, and TIrem is the remaining time in minutes.

Figure 2. Node buffer.

TIrem is the result of TIn − TI0, while TIn is updated every minute. The following
Algorithm 1 illustrates the Node Load calculation.

Algorithm 1 Node Buffer

1: REPEAT
2: Initial TIrem = TIn − TI0

3: NLNi =
∑k

1 TWx
TIrem

/*Calculate Node Load*/
4: For each minute TU, TWx is updated and decreases by CFNi .
5: If TWx is executed within the same time period, proceed to next TWx+i up to the end

of CFNi
6: UNTIL the end of timer TIn.

So in the case of CFNi = K TW1
TU and TIrem = K minutes, all tasks will be executed in a

single cycle, leaving the remaining K − 1 minutes either idle or ready for task reception.
We introduce the term CMTAL (calculated maximum task acceptance limit), which

estimates the rate of TW1 tasks, which the system accepts when each node operates at
maximum load NLN . CMTAL is the maximum estimated number of tasks, based on
minimum task weight TW1, that can be processed per time unit (Giotopoulos et al. [7])
when the exchange operates at maximum task load (loadability).

CMTALNi = maxTALNi (15)

So what represents the maximum load capacity for each individual node?
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We define loadability as the upper limit for the task load each node Ni can process.
The limit is set by (1) and (2) as described above, real time delays, and risk of task de-
ployment due to employee performance; the limit is expressed as a percentage of the total
available load.

LDBNi = maxNLNi (16)

Therefore, taking into account that every node reaches its maximum operational load
without degradation at MaxContinousTime per (ValidBreak + MaxContinousTime), from
(1) + (2) + (16):

LDBNi =
100 × MaxContinousTime

ValidBreak + MaxContinousTime
=

100 × 120
135

= 88.89% (17)

From a theoretical perspective, it is evident that achieving an optimized distribution of the
task workload is essential for reaching the highest level of efficiency in any organizational
setting. Ideally, each employee should dedicate approximately 88.89% of their total working
time to tasks. When the workload surpasses this upper threshold, it inevitably leads to
delays and inefficiencies emanating from the employees.

Load control is a vital mechanism that ensures each node within a system remains
within a designated protected load zone, preventing it from being overwhelmed by ex-
cessive load beyond its handling capacity. The objective is to guarantee successful task
throughput even under conditions in which the load surpasses the predefined limit that
the node can effectively manage.

In the absence of a load control function safeguarding the system, throughput would
exhibit a sharp decline in efficiency at an early overload stage. To sustain optimal task
throughput, it becomes imperative to regulate the system’s load by redistributing tasks
appropriately or rejecting tasks proportional to the system’s current load. So what is the
connection between stress level due to overload and employee performance?

From Figure 3 above, according to Corbett et al. (2015), it becomes clear that as the
level of stress becomes too high, performance decreases [46]. As the task-related load
increases, stress on every employee also increases proportionally. Similar to our case, there
is a direct dependency between employee performance and load distribution.

Figure 3. Yerkes–Dodson law.
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Tasks are never executed by following a strict FIFO queue simply because no such
mechanism can be applied when working in a dynamic working environment. A dedicated
buffer will be kept for all incoming tasks, but the one executed each time will be priority
dependent. There are distinct priority scales, P0, P1, P2, Px, with P0 indicating the highest
degree. Thus, as shown in Table 3 for every task with ID k, Tk:

Tk Priority = TkPi (18)

Table 3. Node buffer Task Priorities.

Node Buffer Task Priorities

TkPi Tk+1Pi+1 Tk+2Pi+2 Tk+3Pi+3 Tk+4Pi+4 Tk+5Pi+5

Although the list of tasks cannot be considered to be large enough to waste time during
indexing, a binary search will be deployed. The worst-case scenario for a binary search
occurs when Tki is not in the list and the correct insertion point needs to be determined. In
this case, for a total number of n tasks, the worst-case time complexity is O(log n), which is
still quite efficient for large lists compared to a linear search (O(n)).

3.4. Quorum Subscription

In order for any node Ni to be part of the current implementation, it must first be
subscribed to the mechanism as seen in Figure 4a, described as capacity provisioning for
task distribution (CPFTD).

(a) (b)
Figure 4. (a) Join quorum. (b) Leave quorum.

In a public body of n nodes, the quorum Qi consists of all active nodes, as seen in
Figure 5, such that:

Quorum Qi =
n

∑
i=1

Ni (19)

When entering the quorum, each node broadcasts a request to all members of Qn.
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Figure 5. Qn.

As this is a fully distributed solution, no central mechanism provides acknowledgment
for entering or leaving the quorum; instead, the acknowledgment is provided by all
members of the quorum Qn.

To preserve task redundancy in case of a sudden node “leaving”, each task will be
allocated to a primary and secondary node. The selection will be based on a hash algorithm
that uniquely selects the primary and secondary nodes. For the purpose of the current
research, no failover scenario will be described extensively.

As can be seen from Figure 6, each task ID is allocated on a primary and a secondary
node and for the active and passive sections, respectively. In this way, for each receiving
task, e.g., T1 for node Ni, the active buffer of primary node Ni will be responsible for task
completion. In case of failover on Ni, T1 on the secondary node passive buffer on node
Ni+2 will be triggered and transferred to the active side when possible without pushing the
load levels above loadability LDBNi+2 . Node load is only committed on the active buffer of
each node.

Figure 6. Task allocation on each node for 12 tasks.

3.5. Slow Start—User History

Each subscribing node undergoes a gradual ramp-up known as a “slow start”. During
this phase, nodes are not immediately allocated the total capacity derived from the Capacity
Factor within the initial interval. Instead, they are initially granted only a partial percentage
of the required capacity. Following this initial phase, a predefined number of intervals,
denoted by HISTORYSIZE, is allowed to elapse. Upon completing this specified historical
period, the node is regarded as “well-known”. Consequently, the node is granted access to
the full capacity as indicated by the Capacity Factor, marking the transition from the slow
start phase to full capacity provisioning.

The outlined approach is deemed essential due to the inherent uncertainty in each
node’s behavior: specifically, its ability to utilize the capacity indicated by the Capacity
Factor effectively. Moreover, it aims to mitigate potential oscillations, given that distinct
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nodes exert varying impacts on the node load, and this impact is not linearly correlated
with reported task usage.

To operationalize this strategy, the capacity granted to a user is initially set at a
percentage calculated as HISTORY. During each fetch interval, HISTORY is incremented
by one TU. As HISTORY gradually approaches the predefined HISTORYSIZE value, the
user’s offered capacity increases proportionally until it reaches the full available capacity
once HISTORY equals HISTORYSIZE.

The proposed approach is exemplified in the following illustrative scenario:
Assume Node A sends tasks TWi to be deployed by Node B, while Node B acknowl-

edges every received task. If Node B is new in the “quorum”, it must receive only the
minimum of the tasks at the first interval, while it must be granted the total amount after
X intervals.

For this reason, the following Algorithm 2 applies to Node A:

Algorithm 2 Node A

1: History_Start = 1 /*TU = 1 min*/
2: History = History_Start /*the fist interval*/
3: History = History + TWi /*for every fetched interval, Node A receives a successful

ACK from Node B for a task with weight TWi*/.
4: History_Size = x /*x is the total amount of task weight that will lead Node B to

loadability*/

At the same time, the following Algorithm 3 applies to target Node B:

Algorithm 3 Node B

1: LDBNi = maxNLNi /*Timer TI initiates: TI = 0*/
2: For each TU interval:
3: IF new TWx is received:.

4: NLNi =
Tqueue
TIrem

= ∑k
x=1 TWx
TIrem

/*Calculate node load based on (14)*/
5: IF new NLNi > LDBNB ⇒ Reject TWx and wait for next interval
6: else
7: Accept TWx and insert in queue
8: Execute first task in FIFO queue Tk
9: For each minute TU1 , TWk of Tk is updated and decreases by CFNi ,

10: If TWk is executed within the same time period, proceed to next TWz up to the end of
CFNi ,

11: IFTimer TIn = TU ⇒ EXIT
12: ELSE continue to next interval (18)
13: /*In all cases, the history size will create the relative load, which will not exceed the

loadability*/

3.6. Node Capabilities

When capacity is allocated to a set of nodes characterized by relatively consistent
behavior, the system gradually approaches a state of loadability over successive inter-
vals. This incremental progression ensures a measured and stable transition toward
optimal performance.

A critical threshold is defined to maintain operational stability: the maximum theo-
retical verge of the node load, set at LDBN. If the task acceptance rate remains below this
predetermined threshold, tasks can be accepted and processed without hindrance. How-
ever, the system initiates a response mechanism when the task acceptance rate approaches
or surpasses the node load value.

In such cases, when the incoming task rate exceeds the node load value, the node
accumulates tasks. Ultimately, suppose the task rate persists at this elevated level, exceeding
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the specified loadability threshold. In that case, tasks over this limit will be, regrettably,
rejected, ensuring node efficiency and optimal performance within defined boundaries.

A comprehensive understanding of diverse node profiles and their respective capabili-
ties is essential to accurately determine the node load value. This arises from the system’s
overarching design approach, which is intentionally crafted to be versatile and applicable
to all node profiles, thereby facilitating the uniform application of capacity provisioning for
task distribution (CPFTD).

At the core of this methodology is the Capacity Factor (CF). This metric is fundamental
to load control parameter computation and is obtained by implementing the adaptive
neuro-fuzzy inference system (ANFIS) algorithm. The algorithmic deployment ensures a
precise calculation of the CF, which serves as a foundational capacity indicator.

The initial determination of the CF entails a comprehensive calculation, and this base
value remains valid over time. However, recognizing the dynamic nature of computing
environments, periodic revalidation of the CF occurs at regular intervals, ensuring its
accuracy and relevance within the evolving system landscape. This iterative validation
process guarantees that the CF aligns with the current system conditions and underpins
effective load control strategies and optimization of task distribution across the system.

3.7. Node Efficiency

Node efficiency is calculated by the following relation:

Node Efficiency NFi =
Number of Finished Tasks

Number of Expected Finished Tasks
(20)

In other words, node efficiency measures the tasks that the node has completed successfully
compared to those expected to be finished according to the Capacity Factor of node Ni
(CFNi ), where in an ideal situation, we would have one as a metric for NFi (number of
finished tasks = number of expected finished tasks). Note that the number of expected
finished tasks also contains the calculated waste due to task switching since efficiency
refers to accomplishing a task using minimal inputs or resources. Therefore, this is about
optimizing the use of resources to achieve the desired outcome.

3.8. Cognitive Switching

As previously mentioned by Rubinstein et al. [41], cognitive switching plays a pivotal
role in employee performance. We carefully consider the influence of cognitive switching
on each employee’s Capacity Factor and, thereby, its impact on the productivity of each
node accordingly. Therefore, we establish the limits of the effect within the range of 0% to
40% to appraise and analyze our findings alongside the load control strategy. This approach
will reveal the influence on the load for every employee and determine the optimal solution
in each case.

3.9. Apache Spark

Apache Spark, developed at UC Berkeley’s AMPLab [47,48], is a robust platform for
processing large-scale data. It boasts a hybrid framework that seamlessly integrates batch
and stream processing capabilities. Unlike Hadoop’s MapReduce engine, Spark performs
excellently because of its innovative features [49].

Spark’s greatest strength in batch processing lies in its utilization of in-memory com-
putation. Unlike MapReduce, which frequently reads from and writes to the disk, Spark
primarily operates within memory, significantly enhancing processing speed. This ad-
vantage is further amplified by Spark’s holistic optimization techniques, which analyze
and optimize entire sets of tasks preemptively. This optimization is facilitated by directed
acyclic graphs (DAGs), which represent the operations and data relationships within Spark.
Spark employs resilient distributed datasets (RDDs), which are read-only data structures
that are maintained in memory to ensure fault tolerance without constant disk writes to
support in-memory computation [50].
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Apache Spark boasts several notable features. Its remarkable speed, which is a hun-
dred times faster than Hadoop and ten times faster than disk access, is particularly notewor-
thy. Additionally, Spark offers exceptional usability by supporting multiple programming
languages like Java, Scala, R, and Python, allowing developers to leverage familiar lan-
guages for parallel application development [51].

Furthermore, Spark facilitates advanced analytics beyond simple maps and reduces
operations, including SQL queries, data streaming, machine learning, and graph algorithms.
Its versatility extends to deployment options, as it can run on various platforms such as
Apache Hadoop YARN, Mesos, EC2, Kubernetes, or in a standalone cluster mode in the
cloud. It integrates with diverse data sources like HDFS, Cassandra, and HBase.

In-memory computing is a pivotal feature of Spark that enables iterative machine
learning algorithms and rapid querying and streaming analyses by storing data in server
RAM for quick access. Spark’s real-time stream processing capabilities, fault tolerance, and
scalability make it a versatile and powerful tool for data-intensive applications [47].

The architecture of Apache Spark is structured around a controller node, which hosts
a driver program responsible for initiating an application’s main program. This driver
program can either be code authored by the user or, in the case of an interactive shell, the
shell itself. Its primary function is to create the Spark context, which serves as a gateway to
all functionalities within Apache Spark. The Spark context collaborates with the cluster
manager, who oversees various job executions.

Both the Spark context and the driver program collectively manage the execution of
tasks within the cluster. Initially, the cluster manager handles resource allocation, dividing
the job into multiple tasks distributed to the worker or agent nodes. Upon creation, resilient
distributed datasets (RDDs) within the Spark context can be allocated across different agent
nodes and cached for optimization purposes [51].

The agent nodes assume responsibility for executing the tasks assigned to them by
the cluster manager and, subsequently, return the results to the Spark context. Executors
are integral components of the architecture and perform the actual task execution. Their
lifespan coincides with that of Spark itself.

The number of worker nodes can be increased to enhance system performance, al-
lowing jobs to be further subdivided into logical portions, thereby optimizing resource
utilization and task execution. This scalable architecture ensures efficient processing of
large-scale data tasks within Apache Spark.

3.10. Spark MLlib

Spark MLlib is a library that enables the Apache Spark tool to run machine learning
algorithms with great accuracy and speed. This library is based on the RDD API and can
take advantage of multiple cluster nodes to avoid memory bottlenecks. In addition to the
Spark MLlib library, Apache Spark still contains a dataframe based on a machine learning
API called SparkML. SparkML enables developers to choose a library depending on the
available dataset and its size to achieve optimal performance. Some of the algorithms
provided by the library are algorithms for classification, regression, recommendation,
clustering, topic modeling, etc. The MLlib library provides machine learning algorithms
and features such as featurization, pipelines, model tuning, and persistence. MLlib also
supports data preprocessing, model processing and training, and prediction. This library is
characterized by its simplicity of design and scalability. Similarly, the machine learning
API offered by the Spark tool is suitable for performing a variety of machine learning tasks,
including deep learning tasks [52]. Spark was developed using the Scala programming
language and is compatible with APIs such as Java and Python. It allows operation in both
Hadoop and standalone environments [53].

One essential algorithm in the MLlib library is the multilayer perceptron (MLP) classi-
fier, which is a feedforward artificial neural network in Spark’s MLlib used for classification
purposes [54]. This algorithm will be used in this research. This classifier configuration
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includes a single hidden layer and ten neurons. With this specification, the multilayer per-
ceptron classifier offers a robust framework for analyzing and modeling complex datasets.

3.11. ANFIS and ANN

We will compare ANFIS with an artificial neural network based on forward propa-
gation using the root mean squared error (RMSE) in order to validate our approach. The
RMSE assesses accuracy by providing a measure of the average absolute error between
actual and predicted values:

RMSE =
√

MSE =

√√√√ N

∑
i=1

(yi − ŷi)2 (21)

The mathematical representation of forward propagation on an ANN is as follows:

• Input layer: The input layer simply passes the input features (X) to the hidden layer.
• Hidden layer: The hidden layer computes the weighted sum of the four inputs,

applies an activation function, and passes the result to the output layer. This can be
represented as follows for the i-th neuron in the hidden layer:
zi = ∑4

j=1(wijxj) + bi

ai = f (zj)
where
zi is the weighted sum for the i-th neuron in the hidden layer,
wij is the weight connecting the j-th input feature to the i-th neuron,
xj is the j-th input feature,
bi is the bias for the i-th neuron, and
f (·) is the activation function applied to zi to compute ai, which is the activation of
the neuron.

• Output layer: The output layer computes the final predicted output. In our code, it
appears that the activation function used in the output layer is the identity function
(linear activation):
ypred = ai

As far as the ANN is concerned, we will select a configuration with a single hidden
layer of ten neurons and compare the results of both (ANN and ANFIS) algorithms.

4. Results
Algorithm Comparison

Initial results were obtained using a Java simulation platform that illustrated the
following scenarios. Node A, as the source node, triggers 10 tasks (Figure 7) with task
weights TW3 (3 min time cycle for each one), and as they reach Node B (target node) and
before being processed (by Node B), another set of 20 tasks (Figures 8–10) with the same
weight are sent to Node B. The transmission rate is one task TW3 per minute. Each new
incoming task has higher priority, thus forcing Node B to interrupt task processing, similar
to the cognitive shift of employees in public service.

For the current test, it is assumed that no cognitive switching applies and that a time
frame of 120 min will be set. In addition, the load control is not activated in the current
context, and the slow start mechanism has not been initiated.

The results are illustrated below (Table 4):
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Figure 7. Task transmission and acknowledgments.

Figure 8. Highest load 67% for CF1, 30 TW3.
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Figure 9. Highest load 23% for CF2, 30 TW3.

Figure 10. Highest load 9% for CF3, 30 TW3.

Table 4. Node load for CF variations.

Tasks CF Time Frame Switching Enabled Load Control Slow Start Average Load Highest Load Turnaround Load

30 TW3 1 120 NO NO NO 32% 67% 45%
30 TW3 2 120 NO NO NO 5% 23% 14%
30 TW3 3 120 NO NO NO 1% 9% 7%

In the first three cases, the effect of the Capacity Factor on the node load for 30 tasks
with task weights assigned as TW3 can be seen. Turnaround load is not considered for the
whole time framework but only for the period of active capacity activity. The highest node
load for CF3 is limited to 9% compared to 67% for CF1. This is an expected result since
increased CF provides better task utilization. In all three cases, node efficiency is 100%.

In Figure 8, with CF = 1, the maximum slope (∆y/∆x) peaks at 2.64, which is notably
higher than 0.72 at CF = 2 and 0.08 at CF = 3. All peaks were observed early at x = 21,
indicating a non-gradual transition towards high load. In addition, this observation indi-
cates that a higher CF value allows for more efficient handling of the workload, making it
more manageable.
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In the following scenarios, we vary the CF but also introduce the productivity loss
factor, as stated by Rubinstein et al. [41].

In all four scenarios above, variation of productivity loss due to cognitive shift can lead
to a high node load to accomplish all tasks in the predefined time frame of 120 s for TIrem.
It is remarkable that for productivity loss of 40% and CF = 1, the load reaches loadability
early on: reaching almost infinity after 120 min. The maximum slopes for Figures 11–14
are 0.41, 0.94, and 3.64, respectively, and it is up to x = 21 min and 1250.00 for the last
scenario, which reaches infinity. What can be deduced from the values above is that, again,
the load is reaching high values early on in most cases, and a low Capacity Factor with
high productivity loss due to cognitive switching causes the opposite results of what would
happen if there was a smooth flow in the workload (Table 5).

Figure 11. Highest load 16% for CF = 3, 30 TW3, and productivity loss 20%.

Figure 12. Highest load 27% for CF = 3, 30 TW3, and productivity loss 40%.
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Figure 13. Highest load 89% for CF = 1, 30 TW3, and productivity loss 20%.

Figure 14. Highest load 2600% for CF = 3, 30 TW3, and productivity loss 40%.

Table 5. Node load on CF variations, productivity loss due to cognitive switching added.

Tasks CF Time Frame Switching Enabled Load Control Slow Start Average Load Highest Load Turnaround Load Prod Loss

30 TW3 3 120 YES NO NO 3% 16% 10% 20%
30 TW3 3 120 YES NO NO 8% 27% 17% 40%
30 TW3 1 120 YES NO NO 75% 89% 78% 20%
30 TW3 1 120 YES NO NO 204% 2600% 204% 40%

In the next two scenarios, we provide an initial 10 TW3 tasks, and as the receiving
node starts processing, an additional set of 30 TW3 tasks is added, thus increasing the total
number of tasks by 10 compared to previous tests. All tasks are sent serially and each one
with higher priority, thus forcing Node B to switch with every received job.

So for the two scenarios above, we deploy 40 TW3 tasks over the same period of
120 min. Production loss is set to a minimum of 20%. In Figure 15, it is impressive that
the node reaches loadability early (after 20 s of traffic initiation), while no task has been
completed. Since the load keeps increasing, it means that up to the end of the time frame, no
human can finish any task in actual circumstances. In the following scenario, as illustrated
in Figure 16, the results are remarkable when load control is applied to loadability, with
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rejection of any task above this threshold. Only 11 out of 40 tasks were rejected, and the
plot shows stable loadability behavior (Table 6).

Figure 15. CF = 1, productivity loss 20%, 40 TW3, and no load control.

Figure 16. CF = 1, productivity loss 20%, 40 TW3, and load control.

Table 6. Node load on CF variations.

Tasks CF Time Frame Switching
Enabled

Load
Control Slow Start Average

Load
Highest

Load
Turnaround

Load Prod Loss Completed
Tasks

40 TW3 3 120 YES NO NO 233% 3549% 235% 20% 0%
40 TW3 3 120 YES YES NO 66% 86% 71% 20% 29%

The last experiment was conducted using a slow start. The results showed a smoother
transition towards loadability. Due to rejections, the exact same number of tasks was
completed as in scenario 15, but, most importantly, most tasks resided on the source node.
In case of failure of Node B, the remaining functions are not deadlocked but remain with
a pending status on the sending node, providing flexibility in traffic distribution. The
maximum slope is achieved at x = 71 min, which is quite later than previous values (x = 21),
indicating a gradual transition to loadability. Load drops are considered normal behavior
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since no additional task can interfere if the history (window size) prevents more tasks from
being sent toward Node B (Table 7).

Table 7. Node load on Slow Start activated.

Tasks CF Time Frame Switching
Enabled

Load
Control Slow Start Average

Load
Highest

Load
Turnaround

Load Prod Loss Completed
Tasks

40 TW3 3 120 YES NO NO 47% 88% 49% 20% 29%

As far as efficiency of the nodes is concerned, we observe that when no load control is
activated, no task can be completed in realistic time measurements (no excess of loadability);
therefore, it reaches almost zero. On the other hand, with load control activated, regardless
of the slow start mechanism, we reach 29 completed out of 40 potentially completed tasks,
which provides, according to (9) NFi =

Number of Finished Tasks
Number of Expected Finished Tasks = 29

40 = 0.725.
What is valuable to identify is how fast the node leads to loadability.
So the results show a smooth transition to loadability for the history-enabled scenario,

which proves that this approach was wisely selected as the regulation driver.
Key Findings

The primary findings of our experiment indicate a tolerance to the node load as
the Capacity Factor increases, aligning with our initial expectations. Specifically, certain
combinations of factors result in proportional employee capability, as demonstrated in
Figures 8 and 9. Cognitive switching impacts the quantity of tasks each node re-processes,
which can cause delays and necessitate increased effort. This process may even lead to a
“blackout” within a given time frame, as illustrated in Figures 11 through 14. Introducing a
load control mechanism, which ensures tasks are assigned to employees only when neces-
sary, effectively prevents scenarios leading to dead ends, as shown in Figures 15 and 16. The
pinnacle of our research is represented by the integration of the slow start algorithm. This
algorithm ensures a gradual increase in load, even during load surges, thereby avoiding
overload conditions. This outcome is depicted in Figure 17.

Figure 17. CF = 1, productivity loss 20%, 40 TW3, no load control, and slow start.

Our choice of employing root mean squared error (RMSE) and mean absolute per-
centage error (MAPE) for validation purposes in the context of this study, particularly in
the comparison between the adaptive neuro-fuzzy inference system (ANFIS) and other
methodologies like artificial neural networks (ANNs), linear regression, support vector
machines (SVMs), and gradient boosting machines (GBMs) was primarily driven by the
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unique characteristics of the research. While the comprehensive results fall beyond this
paper’s immediate scope, we provide insights into the outcomes generated from a specific
configuration. Notably, the RMSE value obtained for the ANFIS was 35.83, contrasting
with considerably higher RMSEs of 47.81 for an ANN with three hidden layers of 8, 4, and
4 neurons, respectively, 52.73 for linear regression, 54.21 for an SVM, and 52.29 for a GBM
(Table 8). It should be acknowledged that further configurations and experiments could be
explored and undertaken to corroborate the validity of our selected method.

Table 8. Algorithm comparison.

ANN ANFIS Linear Regression SVM GBM

Root Mean Squared Error 47.81 35.83 52.73 54.21 52.29
Mean Absolute Percentage Error 5.01% 3.79% 5.77% 5.87% 6.08%

5. Discussion
5.1. Research Achievements

Based on the research of Michalopoulos et al. [6], the proposed workload management
system model is a hybrid adaptive approach that could be deployed under any circum-
stances in the public sector. Following the relation between skills (factors) and the Capacity
Factor, an update to any skill could consequently affect the produced Capacity Factor. For
factors K1, K2 . . . Kn,→ CFN = f (K1, K2, K3 . . . Kn). So the workload that each employee
is theoretically handling, up to the loadability level, directly depends on those factors.
Utilizing a complete dataset of skills and the corresponding capacity factors, a potential
change of Kn, for instance, would provide a CF for which the future workload could be
foreseen and to which management plans would be applied.

The current study has yielded several significant findings that contribute to the un-
derstanding and implementation of a workload management system within the public
sector. First and foremost, our research confirms the hypothesis that an increase in the
Capacity Factor corresponds with a greater tolerance to the node load. This finding is
critical as it highlights the robustness of our model under varying load conditions and
validates the foundational assumptions of our approach. As depicted in Figures 8 and 9,
specific combinations of factors result in proportional employee capabilities, ensuring that
the system can adapt to different workload scenarios effectively.

Another notable achievement is the elucidation of the impact of cognitive switching
on task processing. A cognitive switch, defined as the transition between different tasks,
significantly affects the quantity of tasks each node re-processes. Our results indicate
that frequent cognitive switching can introduce delays and necessitate additional effort,
potentially leading to a “blackout” within a specified time frame, as shown in Figures 11–14.
Without careful planning, cognitive switches become an unpredictable factor in the load
balance equation. This insight underscores the need for careful planning and management
of task allocation to mitigate the adverse effects of cognitive switching.

Furthermore, the introduction of a load control mechanism represents a pivotal ad-
vancement for preventing system overloads and dead-end scenarios. This mechanism
ensures that tasks are assigned to employees only when necessary, thereby maintaining a
balanced workload distribution and enhancing overall system efficiency. The effectiveness
of this approach is illustrated in Figures 15 and 16, where the implementation of load
control successfully averts conditions that could lead to operational bottlenecks.

A key aspect of our research was the integration of the slow start mechanism. This
algorithm facilitates a gradual increase in load, even during periods of load surges, thereby
preventing overload conditions and ensuring a stable and manageable increase in workload.
As depicted in Figure 17, the slow start algorithm allows for a smooth transition to higher
load levels, maintaining system stability and preventing employee burnout. This gradual
approach to load management is particularly beneficial in dynamic environments where
workloads can fluctuate unpredictably. Additional research on the deployed slow start
algorithm is out of the scope of the DWMS. In addition, retransmission issues are not
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applicable at this level as there is no high traffic that could justify the adoption of such a
mechanism. Preanalysis results showed that the ANFIS, compared to algorithms such as
an ANN, linear regression, a support vector machine, and a gradient boosting machine,
showed better results in terms of RMSE (root mean squared error) and MAPE (mean
absolute percentage error). Nevertheless, what is hard to predict in any system based on
human attitude is the behavior of an employee on a “bad day”, which could affect the
imbalance–equilibrium of the workload in the proposed system.

Investigating the impact of task switching on the overall load distribution among
public body employees was particularly insightful. Task switching, if not meticulously
planned, introduces a variable element in the load balance equation, making it unpre-
dictable. Equally important in the analysis is the efficacy of the slow start deployment,
which ensures a seamless transition to loadability by leveraging load control at the overload
threshold. This mechanism consistently allows employees to operate at the necessary load
level, avoiding both underutilization and burnout. It is worth noting that further explo-
ration of the slow start algorithm’s deployment extends beyond the scope of the DWMS.
Additionally, retransmission concerns are irrelevant in this context due to the absence
of high traffic that would necessitate such measures. When comparing the ANFIS to an
ANN, the ANFIS demonstrated superior performance regarding the RMSE and CF values.
Nonetheless, a key challenge in any human-centric system is predicting performance fluc-
tuations due to personal factors, which can significantly impact workload stability in the
proposed system.

5.2. Limitations

Our study’s generalizability might be limited due to the sample size and chosen
methodology. The data samples may not represent the entire population, potentially af-
fecting the results’ applicability to other contexts. Additionally, while ANFIS is a valuable
tool for modeling employee assessment systems, its accuracy can be impacted by limited
data or unspecified variables. Future research could address these limitations by collecting
data from a broader, more diverse group and exploring more advanced modeling tech-
niques to enhance accuracy. While effective, the proposed workload management system
(DWMS) has some limitations that warrant consideration. Scalability is a key concern, as
the system’s performance in larger, complex public sector organizations remains untested.
Future research should explore its application across various organizational sizes. Human
behavior variability also poses a challenge. The current model does not fully account for
performance fluctuations due to personal factors, which can impact workload balance.
Integrating advanced behavioral models could enhance system accuracy. Data quality is
another critical issue. The DWMS relies on accurate and complete employee data, and inac-
curacies can lead to inefficiencies. Future studies should focus on improving data collection
and validation processes. The slow start algorithm, while effective, needs optimization
for environments with rapid workload surges. Enhancing its flexibility and adaptability is
essential for broader applicability.

5.3. Practical Considerations for Implementation

Implementing the proposed workload management system (DWMS) in the public
sector requires addressing several practical considerations to ensure effectiveness and
sustainability. First, accurate assessment and continuous updating of employee skills is
essential. Training programs should be in place to maintain up-to-date skill levels, ensuring
the DWMS can allocate tasks appropriately based on current capabilities. Real-time moni-
toring and feedback mechanisms are crucial for maintaining system balance. These tools
can quickly identify and address any imbalances or overloads, preventing inefficiencies and
ensuring smooth operations. Customization and flexibility of the DWMS are also important.
Public sector organizations vary widely in their workflows and employee capabilities. The
system should be adaptable to meet the specific needs of different organizations, allowing
for tailored workload management solutions. Furthermore, clear communication and
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a change to management strategies are vital for successful implementation. Employees
should be informed and trained on the new system, and their feedback should be incor-
porated to enhance the system’s acceptance and effectiveness. Lastly, ensuring robust
data security and privacy measures is critical. The DWMS relies on sensitive employee
data, and protecting this information is essential for maintaining trust and compliance
with regulations.

6. Conclusions and Future Work

The present research offers a robust framework for enhancing the efficiency and ef-
fectiveness of public sector organizations through a structured workload management
system. This system facilitates the optimized distribution, monitoring, and adjustment of
employee work assignments, leading to the efficient utilization of resources and enhanced
employee productivity. By aligning workloads with employee capabilities and capacities,
the system ensures a balanced distribution of tasks, thereby mitigating the risks of burnout
and stress-related issues. Moreover, this approach enhances project planning and resource
allocation, resulting in timely project completion and increased client satisfaction. Overall,
the implementation of a well-designed workload management system promotes a healthier
work environment, fosters employee engagement, and supports the organization in achiev-
ing its strategic goals effectively and sustainably. Future research should aim to extend
the applicability and scalability of the proposed workload management system (DWMS)
across diverse public sector environments. This involves conducting pilot studies in various
organizational settings to evaluate the system’s performance and adaptability. Additionally,
integrating advanced technologies such as artificial intelligence (AI) and machine learning
(ML) can further enhance the system’s predictive capabilities and responsiveness. One of
the significant future directions is the development of a holistic node clustering strategy
within a dynamic workload management system. This approach can dynamically group
nodes based on real-time workload demands and employee skill sets, allowing for more
efficient task allocation and load balancing. Implementing such a system can reduce the
impact of node failures by redistributing tasks to other capable nodes swiftly, thereby
maintaining operational continuity and minimizing disruptions. Another promising area
for future research is the exploration of virtual nodes and distributed task allocation mech-
anisms. In this context, virtual nodes refer to non-geographically bound nodes that can
handle tasks remotely. By leveraging cloud computing and virtualization technologies,
public sector organizations can manage workloads through distributed networks of virtual
nodes. This approach not only enhances flexibility and scalability but also allows for the
efficient handling of workload spikes and unforeseen disruptions. Incorporating sophisti-
cated human behavioral models into the DWMS is crucial for addressing the variability
in employee performance due to personal factors. These models can predict and manage
fluctuations in individual performance, thereby improving workload distribution accuracy.
Future studies should focus on developing and integrating these behavioral models to
enhance the system’s overall reliability and effectiveness. Ensuring high-quality data is
paramount for the DWMS to function effectively. Future research should prioritize the
development of robust data collection and validation methods to guarantee accurate and
complete employee data input. Additionally, maintaining data security and privacy is
essential, especially when dealing with sensitive employee information. Implementing
advanced encryption and access control measures can protect data integrity and maintain
trust. The slow start algorithm, while effective at managing gradual load increases, requires
further optimization for environments characterized by rapid workload surges. Enhancing
the algorithm’s flexibility and adaptability can improve its performance under varying
load conditions. Future research should explore modifications and improvements to the
slow start algorithm to ensure its applicability in diverse operational settings. Conducting
comparative analyses with other workload management models can identify best practices
and integrate effective elements from various approaches. Such comparative studies will
strengthen the DWMS and contribute to more efficient public sector workload manage-
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ment. Future research should aim to benchmark the DWMS against alternative models to
highlight its advantages and areas for improvement. In conclusion, the proposed workload
management system has the potential to revolutionize the way public sector organizations
manage their workforces. By addressing the outlined future research directions, the system
can be refined and enhanced to meet the evolving needs of public sector entities, ultimately
leading to improved operational efficiency and employee satisfaction. This marks the
beginning of a new era in employee management characterized by intelligent, adaptive,
and scalable workload management solutions.
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