Production Scheduling Based on a Multi-Agent System and Digital Twin: A Bicycle Industry Case
Abstract
:1. Introduction
2. State of the Art
3. Method Description
3.1. Asset Administration Shell of Agents and Production
3.2. Digital Twin
4. Bicycle Industry Pilot Case
4.1. Industrial Scenario
4.2. Multi-Agent System Configuration for Bicycle Industry
4.2.1. Wheel Assembly Lines Scheduling Agent
- , where is the maximum number of product types.
- , where is the maximum number of resources.
- , where is the maximum number of tasks of a product type.
- , where is the maximum number of units to be processed of a job J.
- where is the maximum number of orders that a job can have.
- Suitability matrix: if the value is 0, it means that the task is not suitable for the resource.
- The scheduling solution involves allocating jobs () to resources ().
Algorithm 1. DRL training pseudocode. |
Input Data: Episodes |
Results: DQN weights |
Parameters: Episode |
Procedure: |
|
4.2.2. Painting Line Scheduling Agent
4.2.3. Bike Assembly Line Scheduling Agent
4.3. Implementation
4.4. User Interaction
5. Evaluation Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chryssolouris, G.; Alexopoulos, K.; Arkouli, Z. Artificial Intelligence in Manufacturing Systems. Stud. Syst. Decis. Control 2023, 436, 79–135. [Google Scholar]
- Liu, Y.; Fan, J.; Zhao, L.; Shen, W.; Zhang, C. Integration of deep reinforcement learning and multi-agent system for dynamic scheduling of re-entrant hybrid flow shop considering worker fatigue and skill levels. Robot. Comput. Manuf. 2023, 84, 102605. [Google Scholar] [CrossRef]
- Kayhan, B.M.; Yildiz, G. Reinforcement learning applications to machine scheduling problems: A comprehensive literature review. J. Intell. Manuf. 2023, 34, 905–929. [Google Scholar] [CrossRef]
- Shyalika, C.; Silva, T.; Karunananda, A. Reinforcement Learning in Dynamic Task Scheduling: A Review. SN Comput. Sci. 2020, 1, 1–17. [Google Scholar]
- Guzman, E.; Andres, B.; Poler, R. Models and algorithms for production planning, scheduling and sequencing problems: A holistic framework and a systematic review. J. Ind. Inf. Integr. 2022, 27, 100287. [Google Scholar] [CrossRef]
- Jacoby, M.; Baumann, M.; Bischoff, T.; Mees, H.; Müller, J.; Stojanovic, L.; Volz, F. Open-Source Implementations of the Reactive Asset Administration Shell: A Survey. Sensors 2023, 23, 5229. [Google Scholar] [CrossRef]
- Talebi, S.P.; Werner, S. Distributed kalman filtering and control through embedded average consensus information fusion. IEEE Trans. Autom. Control 2019, 64, 4396–4403. [Google Scholar] [CrossRef]
- Soori, M.; Arezoo, B.; Dastres, R. Digital twin for smart manufacturing, A review. Sustain. Manuf. Serv. Econ. 2023, 2, 100017. [Google Scholar] [CrossRef]
- De Simone, V.; Di Pasquale, V.; Miranda, S. An overview on the use of AI/ML in Manufacturing MSMEs: Solved issues, limits, and challenges. Procedia Comput. Sci. 2023, 217, 1820–1829. [Google Scholar] [CrossRef]
- Colledani, M.; Tolio, T.; Fischer, A.; Iung, B.; Lanza, G.; Schmitt, R.; Vancza, J. Design and management of manufacturing systems for production quality. CIRP Ann. 2014, 63, 773–796. [Google Scholar] [CrossRef]
- Arora, A.; Gupta, R. A Comparative Study on Application of Artificial Intelligence for Quality Assurance in Manufacturing. In Proceedings of the 4th International Conference on Inventive Research in Computing Applications, ICIRCA 2022-Proceedings, Coimbatore, India, 21–23 September 2022; pp. 1200–1206. [Google Scholar] [CrossRef]
- Lee, W.J.; Wu, H.; Yun, H.; Kim, H.; Jun, M.B.; Sutherland, J.W. Predictive Maintenance of Machine Tool Systems Using Artificial Intelligence Techniques Applied to Machine Condition Data. Procedia CIRP 2019, 80, 506–511. [Google Scholar] [CrossRef]
- Pournader, M.; Ghaderi, H.; Hassanzadegan, A.; Fahimnia, B. Artificial intelligence applications in supply chain management. Int. J. Prod. Econ. 2021, 241, 108250. [Google Scholar] [CrossRef]
- Helo, P.; Hao, Y. Artificial intelligence in operations management and supply chain management: An exploratory case study. Prod. Plan. Control. 2022, 33, 1573–1590. [Google Scholar] [CrossRef]
- Cadavid, J.P.U.; Lamouri, S.; Grabot, B.; Pellerin, R.; Fortin, A. Machine learning applied in production planning and control: A state-of-the-art in the era of industry 4.0. J. Intell. Manuf. 2020, 31, 1531–1558. [Google Scholar] [CrossRef]
- Bueno, A.F.; Filho, M.G.; Frank, A.G. Smart production planning and control in the Industry 4.0 context: A systematic literature review. Comput. Ind. Eng. 2020, 149, 106774. [Google Scholar] [CrossRef]
- Serrano-Ruiz, J.C.; Mula, J.; Poler, R. Smart manufacturing scheduling: A literature review. J. Manuf. Syst. 2021, 61, 265–287. [Google Scholar] [CrossRef]
- Alexopoulos, K.; Nikolakis, N.; Chryssolouris, G. Digital twin-driven supervised machine learning for the development of artificial intelligence applications in manufacturing. Int. J. Comput. Integr. Manuf. 2020, 33, 429–439. [Google Scholar] [CrossRef]
- Sutton, R.S.; Barto, A.G. Book Reviews Reinforcement Learning; MIT Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [Google Scholar] [CrossRef]
- Chien, C.-F.; Lan, Y.-B. Agent-based approach integrating deep reinforcement learning and hybrid genetic algorithm for dynamic scheduling for Industry 3.5 smart production. Comput. Ind. Eng. 2021, 162, 107782. [Google Scholar] [CrossRef]
- Mohan, J.; Lanka, K.; Rao, A.N. A Review of Dynamic Job Shop Scheduling Techniques. Procedia Manuf. 2019, 30, 34–39. [Google Scholar] [CrossRef]
- Tang, J.; Salonitis, K. A Deep Reinforcement Learning Based Scheduling Policy for Reconfigurable Manufacturing Systems. Procedia CIRP 2021, 103, 1–7. [Google Scholar] [CrossRef]
- Waschneck, B.; Reichstaller, A.; Belzner, L.; Altenmüller, T.; Bauernhansl, T.; Knapp, A.; Kyek, A. Optimization of global production scheduling with deep reinforcement learning. Procedia CIRP 2018, 72, 1264–1269. [Google Scholar] [CrossRef]
- Jasinski, M.; Najafi, A.; Homaee, O.; Kermani, M.; Tsaousoglou, G.; Leonowicz, Z.; Novak, T. Operation and Planning of Energy Hubs Under Uncertainty—A Review of Mathematical Optimization Approaches. IEEE Access 2023, 11, 7208–7228. [Google Scholar] [CrossRef]
- Thörnblad, K. Mathematical Optimization in Flexible Job Shop Scheduling Modelling, Analysis, and Case Studies. Ph.D. Thesis, Department of Mathematical Sciences, Division of Mathematics, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden, 2013. [Google Scholar]
- Vasilis, S.; Nikos, N.; Kosmas, A.; Dimitris, M. A toolbox of agents for scheduling the paint shop in bicycle industry. Procedia CIRP 2022, 107, 1156–1161. [Google Scholar] [CrossRef]
- Nurjanni, K.P.; Carvalho, M.S.; Costa, L. Green supply chain design: A mathematical modeling approach based on a multi-objective optimization model. Int. J. Prod. Econ. 2017, 183, 421–432. [Google Scholar] [CrossRef]
- Habib, M.S.; Lee, Y.H.; Memon, M.S. Mathematical Models in Humanitarian Supply Chain Management: A Systematic Literature Review. Math. Probl. Eng. 2016, 2016, 3212095. [Google Scholar] [CrossRef]
- Alkahtani, M. Mathematical Modelling of Inventory and Process Outsourcing for Optimization of Supply Chain Management. Mathematics 2022, 10, 1142. [Google Scholar] [CrossRef]
- Bork, W.; Giedraitis, M. Optimizing within the Supply Chain: A Mathematical Model for Inventory Optimization with Respect to Demand Planning. 2023. Available online: https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-341853 (accessed on 17 April 2024).
- Zhao, F.; Ubaka, I. Transit Network Optimization-Minimizing Transfers and Optimizing Route Directness. J. Public Transp. 2004, 7, 63–82. [Google Scholar] [CrossRef]
- Kolus, A.; El-Khalifa, A.; Al-Turki, U.M.; Duffuaa, S.O. An integrated mathematical model for production scheduling and preventive maintenance planning. Int. J. Qual. Reliab. Manag. 2020, 37, 925–937. [Google Scholar] [CrossRef]
- Chen, S.; Pan, Q.-K.; Gao, L. Production scheduling for blocking flowshop in distributed environment using effective heuristics and iterated greedy algorithm. Robot. Comput. Manuf. 2021, 71, 102155. [Google Scholar] [CrossRef]
- Montiel, L.; Dimitrakopoulos, R. A heuristic approach for the stochastic optimization of mine production schedules. J. Heuristics 2017, 23, 397–415. [Google Scholar] [CrossRef]
- Aghelinejad, M.; Ouazene, Y.; Yalaoui, A. Production scheduling optimisation with machine state and time-dependent energy costs. Int. J. Prod. Res. 2018, 56, 5558–5575. [Google Scholar] [CrossRef]
- Jélvez, E.; Morales, N.; Nancel-Penard, P.; Cornillier, F. A new hybrid heuristic algorithm for the Precedence Constrained Production Scheduling Problem: A mining application. Omega 2020, 94, 102046. [Google Scholar] [CrossRef]
- Negri, E.; Fumagalli, L.; Macchi, M. A Review of the Roles of Digital Twin in CPS-based Production Systems. Procedia Manuf. 2017, 11, 939–948. [Google Scholar] [CrossRef]
- Botín-Sanabria, D.M.; Mihaita, A.-S.; Peimbert-García, R.E.; Ramírez-Moreno, M.A.; Ramírez-Mendoza, R.A.; Lozoya-Santos, J.d.J. Digital Twin Technology Challenges and Applications: A Comprehensive Review. Remote Sens. 2022, 14, 1335. [Google Scholar] [CrossRef]
- Boschert, S.; Rosen, R. Digital twin-the simulation aspect. In Mechatronic Futures: Challenges and Solutions for Mechatronic Systems and Their Designers; Springer: Berlin/Heidelberg, Germany, 2016; pp. 59–74. [Google Scholar]
- Negri, E.; Pandhare, V.; Cattaneo, L.; Singh, J.; Macchi, M.; Lee, J. Field-synchronized Digital Twin framework for production scheduling with uncertainty. J. Intell. Manuf. 2021, 32, 1207–1228. [Google Scholar] [CrossRef]
- Bakopoulos, E.; Siatras, V.; Mavrothalassitis, P.; Nikolakis, N.; Alexopoulos, K. Digital-Twin-Enabled Framework for Training and Deploying AI Agents for Production Scheduling. In Artificial Intelligence in Manufacturing; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Jhunjhunwala, P.; Atmojo, U.D.; Vyatkin, V. Applying Skill-based Engineering using OPC-UA in Production System with a Digital Twin. In Proceedings of the 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE), Kyoto, Japan, 20–23 June 2021. [Google Scholar] [CrossRef]
- Fuchs, J.; Schmidt, J.; Franke, J.; Rehman, K.; Sauer, M.; Karnouskos, S. I4.0-compliant integration of assets utilizing the Asset Administration Shell. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain, 10–13 September 2019. [Google Scholar] [CrossRef]
- Pribiš, R.; Beňo, L.; Drahoš, P. Asset Administration Shell Design Methodology Using Embedded OPC Unified Architecture Server. Electronics 2021, 10, 2520. [Google Scholar] [CrossRef]
- Lu, Q.; Li, X.; Li, G.; Li, M.; Zhou, J.; Liu, J.; Shen, X.; Zhu, F. A general asset administration shell platform for production line design. In Proceedings of the 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence, DTPI 2021, Beijing, China, 15 July–15 August 2021; pp. 192–195. [Google Scholar] [CrossRef]
- Siatras, V.; Bakopoulos, E.; Mavrothalassitis, P.; Nikolakis, N.; Alexopoulos, K. On the Use of Asset Administration Shell for Modeling and Deploying Production Scheduling Agents within a Multi-Agent System. Appl. Sci. 2023, 13, 9540. [Google Scholar] [CrossRef]
- Dorri, A.; Kanhere, S.S.; Jurdak, R. Multi-Agent Systems: A Survey. IEEE Access 2018, 6, 28573–28593. [Google Scholar] [CrossRef]
- Cardoso, R.C.; Ferrando, A. A Review of Agent-Based Programming for Multi-Agent Systems. Computers 2021, 10, 16. [Google Scholar] [CrossRef]
- Dittrich, M.-A.; Fohlmeister, S. Cooperative multi-agent system for production control using reinforcement learning. CIRP Ann. 2020, 69, 389–392. [Google Scholar] [CrossRef]
- Egger, G.; Chaltsev, D.; Giusti, A.; Matt, D.T. A deployment-friendly decentralized scheduling approach for cooperative multi-agent systems in production systems. Procedia Manuf. 2020, 52, 127–132. [Google Scholar] [CrossRef]
- Renna, P. Flexible job-shop scheduling with learning and forgetting effect by multi-agent system. Int. J. Ind. Eng. Comput. 2019, 10, 521–534. [Google Scholar] [CrossRef]
- Mezgebe, T.T.; El Haouzi, H.B.; Demesure, G.; Pannequin, R.; Thomas, A. Multi-agent systems negotiation to deal with dynamic scheduling in disturbed industrial context. J. Intell. Manuf. 2020, 31, 1367–1382. [Google Scholar] [CrossRef]
- Nair, A.S.; Hossen, T.; Campion, M.; Selvaraj, D.F.; Goveas, N.; Kaabouch, N.; Ranganathan, P. Multi-Agent Systems for Resource Allocation and Scheduling in a Smart Grid. Technol. Econ. Smart Grids Sustain. Energy 2018, 3, 15. [Google Scholar] [CrossRef]
- Wang, J.; Deng, X.; Guo, J.; Zeng, Z. Resilient Consensus Control for Multi-Agent Systems: A Comparative Survey. Sensors 2023, 23, 2904. [Google Scholar] [CrossRef]
- Komesker, S.; Motsch, W.; Popper, J.; Sidorenko, A.; Wagner, A.; Ruskowski, M. Enabling a Multi-Agent System for Resilient Production Flow in Modular Production Systems. Procedia CIRP 2022, 107, 991–998. [Google Scholar] [CrossRef]
- Moghadam, R.; Modares, H. Resilient adaptive optimal control of distributed multi-agent systems using reinforcement learning. IET Control Theory Appl. 2018, 12, 2165–2174. [Google Scholar] [CrossRef]
- Alexopoulos, K.; Nikolakis, N.; Bakopoulos, E.; Siatras, V.; Mavrothalassitis, P. Machine Learning Agents Augmented by Digital Twinning for Smart Production Scheduling. IFAC-PapersOnLine 2023, 56, 2963–2968. [Google Scholar] [CrossRef]
- Mourtzis, D.; Papakostas, N.; Mavrikios, D.; Makris, S.; Alexopoulos, K. The role of simulation in digital manufacturing: Applications and outlook. Int. J. Comput. Integr. Manuf. 2015, 28, 3–24. [Google Scholar] [CrossRef]
- Mavrothalassitis, P.; Nikolakis, N.; Alexopoulos, K. Discrete Event Simulation for Improving the Performance of Manufacturing Systems: A Case Study for Renewable Energy Sources Production. IFIP Adv. Inf. Commun. Technol. 2023, 692, 650–665. [Google Scholar]
- Alexopoulos, K.; Koukas, S.; Boli, N.; Mourtzis, D. Resource planning for the installation of industrial product service systems. IFIP Adv. Inf. Commun. Technol. 2017, 514, 205–213. [Google Scholar]
KPI: Production Rate (Items per Hanger) | |||
---|---|---|---|
Worst | Average | Best | |
Painting (No-hanger Upgrade) | +0.36% | +8.79% | +21.06% |
Painting (Hanger Upgrade) | +65.51% | +74.28% | +82.07% |
Scenarios | ||
---|---|---|
Environment with Breakdowns | Fully Operational Environment | |
Production Rate (%) | +1.9% | +14.78% |
Machine Utilization (%) | 67.69% | 74% |
Tardiness (minutes) | +191 min (worst)/+81.95 min (average) | −191 min (best) |
Bike Assembly Department Performance Results | |||
---|---|---|---|
Worst | Average | Best | |
Makespan | −1.97% | −19.39% | −29.67% |
Production Rate (bikes/shift) | +1.43% | +4.63% | +9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siatras, V.; Bakopoulos, E.; Mavrothalassitis, P.; Nikolakis, N.; Alexopoulos, K. Production Scheduling Based on a Multi-Agent System and Digital Twin: A Bicycle Industry Case. Information 2024, 15, 337. https://doi.org/10.3390/info15060337
Siatras V, Bakopoulos E, Mavrothalassitis P, Nikolakis N, Alexopoulos K. Production Scheduling Based on a Multi-Agent System and Digital Twin: A Bicycle Industry Case. Information. 2024; 15(6):337. https://doi.org/10.3390/info15060337
Chicago/Turabian StyleSiatras, Vasilis, Emmanouil Bakopoulos, Panagiotis Mavrothalassitis, Nikolaos Nikolakis, and Kosmas Alexopoulos. 2024. "Production Scheduling Based on a Multi-Agent System and Digital Twin: A Bicycle Industry Case" Information 15, no. 6: 337. https://doi.org/10.3390/info15060337
APA StyleSiatras, V., Bakopoulos, E., Mavrothalassitis, P., Nikolakis, N., & Alexopoulos, K. (2024). Production Scheduling Based on a Multi-Agent System and Digital Twin: A Bicycle Industry Case. Information, 15(6), 337. https://doi.org/10.3390/info15060337