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Abstract: Recently, the research community has shown significant interest in the continuous tem-
poral data obtained from motion sensors in wearable devices. These data are useful for classifying
and analysing different human activities in many application areas such as healthcare, sports and
surveillance. The literature has presented a multitude of deep learning models that aim to derive a
suitable feature representation from temporal sensory input. However, the presence of a substantial
quantity of annotated training data is crucial to adequately train the deep networks. Nevertheless,
the data originating from the wearable devices are vast but ineffective due to a lack of labels which
hinders our ability to train the models with optimal efficiency. This phenomenon leads to the model
experiencing overfitting. The contribution of the proposed research is twofold: firstly, it involves a
systematic evaluation of fifteen different augmentation strategies to solve the inadequacy problem of
labeled data which plays a critical role in the classification tasks. Secondly, it introduces an automatic
feature-learning technique proposing a Multi-Branch Hybrid Conv-LSTM network to classify human
activities of daily living using multimodal data of different wearable smart devices. The objective
of this study is to introduce an ensemble deep model that effectively captures intricate patterns
and interdependencies within temporal data. The term “ensemble model” pertains to fusion of
distinct deep models, with the objective of leveraging their own strengths and capabilities to develop
a solution that is more robust and efficient. A comprehensive assessment of ensemble models is
conducted using data-augmentation techniques on two prominent benchmark datasets: CogAge and
UniMiB-SHAR. The proposed network employs a range of data-augmentation methods to improve
the accuracy of atomic and composite activities. This results in a 5% increase in accuracy for composite
activities and a 30% increase for atomic activities.

Keywords: data augmentation; ensemble deep network; human activity recognition; multimodal
time series data

1. Introduction

People in today’s world are very accustomed to using wearable gadgets such as smart
phones, watches and eye-wear. Typically, these devices are equipped with numerous
sensing modalities such as inertial measurement units (IMUs), position sensors, ambient
light sensors, proximity sensors, etc., that produce massive amounts of data every day [1].
These data can be used in various activity recognition applications, especially in healthcare,
such as geriatric monitoring, to recognise and assess the actions of the elderly in order to
forecast future health issues [2]. Other than monitoring daily physical activity levels, they
may also be used to suggest healthier exercise regimens. Moreover, they can be utilised to
perform activity analysis on patients undergoing post-operative rehabilitation to provide
doctors with a more thorough comprehension of their current state, therefore expediting
patient evaluation and care [3].

Information 2024, 15, 343. https://doi.org/10.3390/info15060343 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15060343
https://doi.org/10.3390/info15060343
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0009-0007-2405-140X
https://orcid.org/0000-0002-6145-5848
https://orcid.org/0000-0003-3288-750X
https://doi.org/10.3390/info15060343
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15060343?type=check_update&version=1


Information 2024, 15, 343 2 of 33

This extensive usage of sensing modalities allows consistent accumulation of diverse
forms of data. These sensing modalities have the capability to quantify many parameters
such as temperature, motion, sound and even heart rate [4]. For example, a smartphone has
the capability to monitor the number of steps you take within a day through accelerometer
sensors or document the temperature of your environment through environment sensors.
Smartwatches have the capability to track your heart rate via LEDs and optical sensors
while you are engaged in physical activity, whereas smart glasses can offer up-to-the-
minute data about your surroundings. When all of these data are processed using machine
learning algorithms, it creates a comprehensive picture of our environment and daily life,
providing previously unobtainable insights [5].

This large amount and intricate nature of sensory information present considerable
obstacles for thorough analysis and understanding. Conventional analytical techniques
frequently face challenges in deriving useful insights from these data flows, resulting in
the under-utilisation of these data. Deep learning models have shown great promise in
a number of fields, including human activity recognition [6], healthcare [7] and elderly
care [8]. They have been more popular recently for handling time series-related tasks like
classifying time series data [9], forecasting future values [10] and identifying abnormalities
in time series [11]. Having a large amount of labeled training data is essential for deep
learning to be successful [12]. Nonetheless, the obtained data from these smart gadgets are
huge but unusable because they are unlabeled, and we lack enough labeled instances to
train the classification models efficiently. This issue causes the model to become overfit.
To solve this inadequacy of labeled data problem, we need a large amount of labeled
data which requires manual labeling of sensor data through a costly, time-consuming
and tedious process. Synthetic data generation using data augmentation has been one
approach to obtain additional information over the last two decades [13,14]. Notably, data
augmentation is a general-purpose data side solution that is independent of the input
space of a deep learning model yet maintains correct labels. Data augmentation aims
to decrease overfitting and broaden the model’s decision boundary so as to improve the
model’s capacity for generalisation [15]. In real-world data, the need for generalisation
is particularly crucial and can aid networks in overcoming small datasets [16] or datasets
with unequal class distributions [17,18].

Data augmentation is a well-known phenomena in the domain of digital images. Most
of the early cutting-edge Convolutional Neural Network (CNN) [19] architectures used data
augmentation, such as cropping [20], scaling [21], mirroring [22] and colour augmentation
on images [23–25]. Although data augmentation is frequently used in neural network-based
image identification, it is not a recognised best practice for time series recognition [26].
Compared to data augmentation for images, stochastic transformations of the training
data for the time series data have not been explored thoroughly. For instance, some
techniques that have been employed on time series data adequately include introducing
arbitrary noise, cutting or resising, adjusting the scale, applying random distortions in the
temporal dimension [27–30] and modifying the frequency characteristics [31]; however,
numerous other techniques such as augmix, hide and seek, mixup and cutmix, etc., have
been explored on digital images but not on time series data [32,33]. The above-mentioned
references provide a very interesting and explorable research gap. One challenge associated
with data augmentation based on random transformations is the presence of a wide variety
of time series modalities, each possessing unique characteristics.

We have performed a systematic evaluation of numerous augmentation techniques
on time series multimodal sensory data related to activities of daily living (ADLs). For
this purpose two datasets of ADLs, namely CogAge [34] and UniMiB-SHAR [35], are used
for the identification of useful methods for these activities. ADLs can be divided into
two groups based on activities that people do on a daily basis, namely short-term (i.e.,
atomic) and long-term (i.e., composite) [36]. Long-term activities like cooking, brushing
teeth, cleaning hands, etc., can be categorised as composite activities, whereas short bursts
of movement like lifting an arm or a leg are referred to as atomic activities [37]. Atomic
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actions are further divided into two categories: behaviour (such as sitting down, standing
up, and lying down) and position (such as sitting, standing, and lying) [34]. The limitation
of these approaches is that they are less effective when applied to composite activity data
and they lose their effectiveness in the presence of noisy data. This paper focuses not only
on classification of activities of daily living but also presents various data-augmentation
approaches for time series multimodal sensory data. We present an ensemble model also
termed hybrid model involving the combination of distinct deep models with the goal of
leveraging their individual strengths and capabilities to create a stronger and more efficient
solution. The proposed Multi-Branch Hybrid Conv-LSTM (MHyCoL) model consists of
two convolution blocks, each following a pooling layer, a flatten layer, a dropout layer
and a dense layer in each of its adaptive branches and two LSTM blocks followed by
two dense layers. The branched CNN model operates simultaneously with changeable
input to work with time series multimodal sensory data. Each CNN branch in the model
corresponds to a unique sensor modality having different frequencies. CNNs are used to
capture local patterns and spatial information in our temporal data, while Long Short-Term
Memory (LSTM) networks are used to capture long-range dependencies and temporal
dynamics, making them suitable for sequential data classification. We have applied fifteen
different data-augmentation techniques over the atomic and composite activities and
enhanced accuracy by 5% in composite activities and 30% in atomic activities. The major
contributions of the proposed research are explained in the following:

• A systematic evaluation of different augmentation techniques is presented to solve the
inadequacy problem of labeled time series data.

• An automatic feature-learning technique is proposed to recognise multimodal data of
different wearable smart devices.

• A detailed overview of existing techniques and their categorisation is presented.
• An extensive experimental evaluation is proposed on two benchmark datasets.

The rest of the paper is organised as follows: An extensive review of previous work is
provided in Section 2, and a detailed explanation of the proposed model and augmentation
methods is covered in Section 3. Section 4 covers all details of the experiments carried out
for the purpose of research. This study is finally concluded in Section 5, which offers some
final thoughts and suggests some possible directions for further research.

2. Literature Review

Human activity detection has stimulated the interest of researchers in recent years
due to its applications in physical health evaluation in rehabilitation facilities, suspicious
activity recognition in the context of security and gesture recognition in video games. The
actions of a person’s daily life are lengthy and typically performed in a hierarchical order.
Identifying human long-term activities is thus a hierarchical task. Several studies have
been undertaken in recent years to recognise the longer chronological human activity. The
literature review is divided into two sections. In the first section, we give a brief review of
activity-recognition techniques and the second section emphasises different augmentation
techniques.

2.1. Human Activity Recognition

Time series raw sensory data in its nature is a representation of information collected
over time, such as sequential events, recording trends and patterns. It is necessary to encode
features in order to transform raw data into a processable format for machine learning
algorithms, hence enabling them to recognise temporal patterns and relationships within
the data [38]. For feature engineering of the raw data, the most commonly used step is
windowing of time series sequences. Windowing is a process that adds temporal context
into feature engineering. By using data within a window, we capture dependencies and pat-
terns over time. The existing techniques for human activity recognition (HAR) are classified
into three categories: (1) handcrafted feature-based techniques (HFTs), (2) codebook-based
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feature encoding techniques (CBTs) and (3) automatic feature-learning techniques (AFTs).
Each category is discussed in the following subsections.

2.1.1. Handcrafted Feature-Based Techniques

Handcrafted features refer to manual or engineered properties obtained from raw
data that aim to capture specific patterns related to the task at hand. In HFTs, statistical
measures such as mean, variance, standard deviation, percentiles, Fourier transformations
or wavelets, etc., are applied on preprocessed sensory data to form a feature vector to be
fed to classification algorithms written for human activity recognition. The whole process
of handcrafted feature computation and classification is depicted in Figure 1.

Figure 1. An illustration exhibiting the process of detecting human actions utilising raw sensory data
using handcrafted feature-based encoding approaches.

Amjad et al. [39] proposed a two-level hierarchical method for HAR using wearable
sensors. Firstly, they detected atomic activities using 17 handcrafted features including
mean, variance, skewness, first-order norm, etc. Secondly, these atomic actions were used to
recognise composite activities. Similarly, Sargano et al. [40] employed various handcrafted
feature-extraction techniques, including space-time, local binary patterns, appearance-
based and fuzzy logic-based algorithms, on sensory input. Subsequently, these traits were
combined and employed to train a classifier with the objective of achieving recognition.
Hsu et al. [41] examined the patients’ movement patterns by computing the bandwidth
frequency, skewness and kurtosis features using time series sensory data. The effectiveness
of HFT greatly depends on the researchers’ expertise in the desired domain and their
capacity to record significant information from the unprocessed data [42,43]. HFTs are
more effective for short-term activities as they create features out of these sequences but
they are unable to capture temporal sequences of long-term activities [34].

2.1.2. Codebook-Based Feature-Encoding Techniques

CBTs employ the clustering of similar patterns within the data in order to generate a
codebook [44]. Every cluster corresponds to a unique pattern or characteristic. The process
of quantising the data into representative clusters allows a reduction in the dimensionality
of the time series, while still retaining pertinent information. This method is particularly
advantageous for rapidly extracting significant characteristics from sensory data that is both
high-dimensional and noisy. The whole process of codebook-based feature computation
and classification is depicted in Figure 2.

Lagodzinski et al. [45] employed a codebook-based feature-extraction approach on
the IMU data from smart glasses to identify behaviours such as reading from a printed
page, drinking water, viewing a video and so on. A multilevel approach was proposed by
Nisar et al. [34] to identify activities of everyday living. Atomic activities are identified at
the first level of their framework by applying the codebook [46] approach and at the second
level of their framework, composite activities are identified by using the rank pooling
strategy based on the recognition scores of atomic activities. Koping et al. [47] introduced a
feature-learning approach based on codebook for the purpose of recognising human actions
using sensory data. The researchers employed the k-means clustering approach to generate
a codebook and subsequently created a histogram-based feature vector representation
by predicting the codewords within the activity sequences. One major limitation of the
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codebook-based approach is that its computation with optimal size of clusters is a complex
process and requires a lot of time [48,49].

Figure 2. An illustration exhibiting the process of detecting human actions utilising raw sensory data
using codebook feature-based encoding approaches.

2.1.3. Automatic Feature-Based Techniques

Numerous automatic feature-learning techniques have been explored to recognise
human behaviours using sensory data by employing deep neural networks. The whole
process of automatic feature computation and classification is depicted in Figure 3.

Zhang et al. [50] used commercially available wifi devices to compute the spectrum
of ten human activities using a dense LSTM model. Some are atomic activities, such as
walking and running, while others are composite, such as playing a guitar and playing
basketball; they revealed the difference in recognition accuracy between atomic and com-
posite activities. Bianchi et al. [51] presented a deep CNN. Anagnostis et al. [52] suggested
a method to gather movement data from the human body using five IMU sensors; later,
they employed an LSTM-based deep neural network to identify the actions of the subject in
agricultural environments. Bu et al. [53] introduced a CNN with the aim to predict human
behaviours. This was achieved by dynamically localising a limited number of activity-
discriminative intervals, as opposed to using a fixed-length window. Cheng et al. [54]
introduced a prototype-guided framework for activity recognition in order to effectively
decouple the feature representation and classifier, hence providing support for Federated
Learning in the context of data privacy. Huang et al. [55] introduced channel equalisation
as a means to mitigate the interference caused by inhibited channels. This was achieved
through the implementation of a whitening operation. This technique guarantees that all
channels systematically contribute to the representation of features.

The ensemble deep network combines multiple individual models into one model.
The primary objective of these networks is to enhance forecast accuracy, resilience and
generalisability through the utilisation of the combined knowledge possessed by numerous
models [56]. For example, LSTM-CNN models utilise the spatial pattern-capturing capa-
bilities of CNNs in conjunction with the temporal sequence learning properties of LSTMs,
leading to enhanced and precise recognition of human activities. Kolkar et al. [57] presented
the hybrid CNN-GRU model for activity recognition. The initial stage of the model involves
passing the input data through the CNN, which is then followed by dropout and pooling
layers. In the second phase, the output of the CNN layers is inputted into GRU layers.
Afterwards, the output of the GRU is categorised using a softmax layer to identify activities.
Dua et al. [58] introduced a CNN-GRU ensemble model for the purpose of identifying hu-
man activities. Khatun et al. [59] introduced a combination of LSTM and CNN networks to
identify human actions based on sensory input from smartphones. The authors determined
that incorporating the self-attention mechanism enabled the architecture to concentrate on
the most significant and pertinent elements, resulting in enhanced accuracy. The efficacy of
ensemble models in capturing subtle temporal interactions and complex spatial features
has been well-established [60]. Therefore, they have the potential to surpass the constraints
of individual deep learning methods and provide a more comprehensive answer to the
intricacy of HAR systems.
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Figure 3. An illustration exhibiting the process of detecting human actions utilising raw sensory data
using an automatic feature-learning approach.

A summary of different feature-learning techniques for human activity recognition is
provided in Table 1.

Table 1. Summary of different feature-learning techniques for human activity recognition. Here sp,
sw and sg denotes smartphone, smartwatch and smartglasses, respectively.

Ref. Activity Type Modality Type Features

Amjad et al. [39] atomic sp, sw, sg Handcrafted
Sargano et al. [40] atomic videos Handcrafted
Hsu et al. [41] atomic IMU sensor Handcrafted
Lagodzinski et al. [45] composite sg Codebook
Nisar et al. [34] atomic, composite sp, sw, sg Codebook
Koping et al. [47] composite sp, sw, sg Codebook
Zhang et al. [50] atomic, composite wifi devices LSTM
Bianchi et al. [51] composite IMUs CNN
Anagnostis et al. [52] atomic IMUs LSTM
Bu et al. [53] atomic IMUs CNN
Huang et al. [55] atomic IMUs CNN
Kolkar et al. [57] composite IMUs CNN + GRU
Dua et al. [58] atomic IMUs CNN + GRU
Khatun et al. [59] atomic IMUs CNN + LSTM
Nisar et al. [61] atomic, composite sp, sw, sg CNN + LSTM

2.2. Data Augmentation

Data augmentation is a beneficial method for enlarging the training dataset by imple-
menting diverse alterations to the current data. Many earlier techniques for augmenting
time series data, including cropping, inverting and noise addition, were derived from
image data augmentation [27–29]. In general, time series transformations can be cate-
gorised into three distinct domains: magnitude, duration and frequency. Time series are
transformed in the magnitude domain along the value or variation axes. Frequency do-
main transformations distort frequencies, whereas time domain transformations affect time
increments. Additionally, hybrid methods which employ fusion of multiple domains also
exist. It is important to acknowledge that the dataset can be aggregated using multiple
transformation techniques, both sequentially [62] and concurrently [63,64]. The subsequent
subsections will provide comprehensive descriptions of the random transformation-based
data-augmentation methods and the pattern mixing method that are associated with each
of these domains.

2.2.1. Magnitude Domain Transformations (MDTs)

Data augmentation in the MDT involves changing the values of the time series while
keeping the time steps constant. These modifications only alter the values of each element,
which is essential for preserving temporal integrity. Jittering is the most common data-
transformation technique used for time series sensory data. For instance, Rashid et al. [64]
enhanced the precision of LSTM for sensor data originating from construction equipment
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by combining jittering with additional data-augmentation techniques. Um et al. [62] ap-
plied jittering to wearable sensor data for Parkinson’s disease monitoring using ResNet.
Steven et al. [65] utilised Gaussian noise in conjunction with various amplification tech-
niques to process atomic activity using sensor data. Rashid et al. [64] applied flipping
to univariate time series. Although rotation data augmentation is effective in generating
realistic patterns for image identification, it may not be appropriate for time series data as
rotating a time series can alter the class label assigned to the original sample [66]. Rotation
augmentation has been observed to either have no impact or a negative impact on time
series categorisation when using neural networks [64,67,68]. In contrast, Um et al. [62]
discovered that using rotation data augmentation resulted in enhanced accuracy, particu-
larly when used in conjunction with other augmentation techniques. Tran and Choi [69]
employed a technique that involved combining scaling with jittering and element-wise
interpolation for the purpose of gait identification. Tsinganos et al. [70] utilised surface
electromyography (sEMG) data and implemented various augmentation approaches, such
as magnitude warping, to demonstrate the effectiveness of data augmentation in enhancing
model correctness and generalisation capability.

These techniques are to capture variations in signal intensity, providing insights into
amplitude-related patterns and helping to generalise models; their major weakness is the
possible amplification of noise or distortion of characteristics of signals if transformation
parameters are not carefully managed. This may lead to inaccurate model predictions or
data loss [64].

2.2.2. Time Domain Transformations (TDTs)

In contrast to MDT, the TDT moves the elements along the timeline. This means
that time series elements are moved to different time stamps from where they started.
Jeong et al. [71] introduced a new technique for data augmentation called time warping and
applied it to partially obscured data from the accelerometer signals. Cheng et al. [72] per-
formed data augmentation (permuting, resampling) on HAR data to solve the inadequacy
problem using contrasitive learning. Similar work was carried out by steven et al. [65],
where they employed an ensemble of augmentation techniques (permuting, time warp-
ing etc.) and showed improvement in the results. Rashid et al. [64] applied time warping
to univariate time series data. Uchitomi et al. [73] employed time warping, cropping and
permutation on Parkinson’s disease data.

These techniques are to preserve temporal relationships allowing the model to capture
important sequential patterns and dependencies for time series analysis; however, they
may not capture nonlinear relationships or changes in signal characteristics limiting the
model’s ability to generalise complex temporal patterns [62,72].

2.2.3. Mixing Patterns (MPs)

MPs are the process of combining two or more patterns to create new ones. For random
transformations, it is assumed that the transformation results are representative of the
dataset. Not every transformation, however, is appropriate to every dataset. MPs presents
a notable advantage as they avoid dependence on identical assumptions, and they embrace
the notion that diverse patterns have the potential to be seamlessly integrated, resulting in
advantageous outcomes [74]. Averaging two patterns can be used to generate new patterns.
This technique was widely utilised for picture data augmentation (i.e. Mixup), in which
they combined the channels of two images from the same class to create a new image [32].
Most reference patterns are randomly selected from the same class or utilising nearest
neighbors. Numerous techniques from the category of MPs are employed such as cutmix,
augmix, mixup, etc. Cutmix and similar techniques substitute arbitrarily shaped segments
from one image for the other [75,76]. Gau et al. [74] employed these methods on time
series data.

These techniques are capable of enhancing model robustness for varied data dis-
tributions by introducing variability through a combination of multiple augmentation
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strategies. However, they may result in additional computational burden and intricacy
when adjusting settings for each augmentation technique, potentially resulting in longer
training duration and higher resource demands. Furthermore, the inadequate integration
of patterns may have a detrimental impact on the performance of the model if not executed
with caution [74].

2.2.4. Deep Learning-Based Generative Models

Deep learning-based models, i.e., GAN [77,78], were also introduced for image data
augmentation and they have gained significant popularity in recent times. Lou et al. [79]
built a GAN using a fully connected network. They utilised an autoencoder network in
conjunction with a Wasserstein GAN (WGAN) to enhance time series regression data.
Chen et al. [80] introduced EmotionalGAN, a model that utilises 1D CNNs to classify
emotions from extended ECG patterns. Significant improvements were discovered when
data augmentation was applied to Support Vector Machines (SVM) and Random Forests.
Fons et al. [81] proposed an automated data-augmentation technique, which focuses on
time series data. They developed two automated weighting schemes that determine the
contribution of augmented samples to the loss function. Additionally, one of the schemes
selects a subset of transformations based on the predicted training loss ranking. Both
adaptive policies show significant improvement in classifying various time series datasets.
GAN has more time complexity, whereas random transformations are simple and less
time-consuming approaches. Therefore, we analysed the strength of these approaches in
our work.

Table 2 shows the summary of various types of data-augmentation techniques with
reference to accuracy.

Table 2. Summary of various types of data-augmentation techniques with reference to accuracy. ‘w’ in
the accuracy column represents augmentation (employed where difference of with and without was
not provided) and ‘T’, ‘M’ and ‘P’ in the category column denote time domain, magnitude domain
and mixing patterns respectively.

Reference Augmentation Technique Category Dataset Activity
Type

Accuracy
Increase

zhang et al. [50] Time stratching, Spectrum shifting,
Scaling, Frequency filtering, Jittring T, M CSI data atomic 11%

Rashid et al. [64] Jittering, Scaling, Rotation and Time
warping T, M Equipment Activity

Recognition atomic w 97.9%

Steven et al. [65]
Jittering, Permuting, Scaling,
Rotating, Time-warping, Magnitude
warping

T, M UCI HAR atomic 2%

Uchitomi et al. [73]
Rotation, Jittering, Scaling,
Magnitude warping, Permutation,
Time warping and Cropping

T, M Parkinson’s disease
data atomic w 86.4%

huang et al. [82] Linear interpolation. T WISDM atomic w 95.7%

oh et al. [83] Linear interpolation T 85 UCR Archive
datasets

1%

cheng et al. [72]
Rotation, Jittering, Scaling,
Permutation, Flipping and
Resampling

T, M UCR Archive
datasets atomic 5–10%

shi et al. [84] Feature window M WISDM and
MHEALTH atomic 5%

guo et al. [74]
Manifold Mixup, Cutmix, Mixup,
Cutout, Rotation, Jittering, Scaling,
Permutation

T, M and P 5 UCR Archive
datasets atomic 2%
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3. Proposed Method

This section provides a brief overview of the data-augmentation approaches used
in comparative analysis to deal with the inadequacy problem of labeled data. The paper
investigates three distinct data-augmentation categories. Later, it presents an ensemble
model, namely MHyCoL which fuses the characteristics of both CNN and LSTM networks.
The proposed model is evaluated using two benchmark datasets: CogAge and UniMib-
SHAR. Figure 4 shows the flow of activity classification by our proposed work.

Figure 4. Flow of activity classification performed with our proposed approach.

3.1. Augmentation Techniques

This section provides the details of data-augmentation techniques employed on time series
multimodal sensory data. These techniques are divided into three broad categories, namely
magnitude domain transformations, time domain transformations and mixing patterns.

3.1.1. Augmentation Based on MDTs

The set of techniques in this domain involves the application of transformations to the
values of time series. A crucial attribute of magnitude transformations is that they maintain
constant time steps and modify only the values of each element.

• Jittering: This is a process of introducing noise to time series. It is an example of a
transformation-based data-augmentation method that is both straightforward and
efficient. Equation (1) represents mathematical notation of jittering.

X̂j = x1 + ϵ1, . . . , xt + ϵt, . . . , xT + ϵT (1)

where ϵ belongs to Gaussian noise (N) injected to each time step t and ϵ ∈ N(0, σ2).
The standard deviation σ2 is set to 0.1. Figure 5 demonstrates the actual and trans-
formed data after applying jittering on CogAge atomic (bending) activity.

Figure 5. A visual representation of actual and transformed data after applying jittering on a CogAge
atomic dataset (bending activity). The X-axis represents time in milliseconds, while the y-axis
represents data sequences for bending activity.
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• Scaling: A random scalar number is used in scaling to alter a time series’ global
magnitude or intensity. Scaling involves multiplying the scaling parameter α by the
total time series. Equation (2) represents mathematical notation of scaling.

X̂s = αx1, . . . , αxt, . . . , αxT , (2)

The scaling parameter α is selected via a Gaussian distribution (N) α ∈ N(0.5, σ2) with
σ 1.5. Figure 6 demonstrates the actual and transformed data after applying scaling
on CogAge atomic (bending) activity.

Figure 6. A visual representation of actual data and transformed data after applying scaling on a
CogAge atomic dataset (bending activity). The X-axis represents time in milliseconds, while the
y-axis represents data sequences for bending activity.

3.1.2. Augmentation Based on TDTs

Transformations from the magnitude domain to the time domain are comparable with
the exception that the transformation occurs along the time axis. Alternatively stated, the
time series elements are displaced to distinct time steps from their initial position. In the
following, we explain different methods of time domain transformations.

• Time warping: This refers to the process of altering a pattern in the temporal dimen-
sion. This task accomplished by employing a seamless distortion trajectory [62,85].
Equation (3) represents the mathematical notation of time warping.

X̂t = xt(1), . . . , xt(t), . . . , xt(T) (3)

Here, τ(·) denotes a warping function that adjusts the time steps based on a smooth
curve. The curve’s smoothness is dictated by a cubic spline S(u) with knots
u = u1, . . . , ui, . . . , uI . The knot heights ui are determined from N(0.5, 1.5). This
transformation manipulates the time axis by compressing or expanding it at various
points in the time series, which introduces diversity and enhances the dataset. Figure 7
demonstrates the actual and transformed data after applying time warping on CogAge
atomic (bending) activity.

• Linear Interpolation: This calculates new values by fitting a straight line between
neighboring data points. The interpolated value X̂(t) between two existing data points
X(ti) and X(ti+1) at any time t can be calculated by the Equation (4).

X̂l i = X(ti) + (X(ti+1)− X(ti))×
t − ti

ti+1 − ti
(4)
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where X(ti) and X(ti+1) represent the values of sequences at time ti and ti+1, respec-
tively. Figure 8 demonstrates the actual and transformed data after applying linear
interpolation on CogAge atomic (bending) activity.

Figure 7. A visual representation of actual data and transformed data after applying time warping
on CogAge atomic (bending) activity. The X-axis represents time in milliseconds, while the y-axis
represents data sequences for bending activity.

Figure 8. A visual representation of actual data and transformed data after applying linear interpola-
tion on CogAge atomic dataset (bending activity). The X-axis represents time in milliseconds, while
the y-axis represents data sequences for bending activity.

• Exponential Moving Median Smoothing: This provides smooth data by exponentially
diminishing weights. To be resistant against outliers, it computes a weighted median
rather than a weighted average. Mathematically, it can be expressed by Equation (5).

X̂e = [med(x(t)), med(x(t + 1)), . . . , med(x(t + W − 1))] (5)

where x(t) represents the input data sequence. med represents the median function
and W represents window size. Figure 9 demonstrates the actual and transformed
data after applying smoothing on CogAge atomic (bending) activity.
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Figure 9. A visual representation of actual data and transformed data after applying exponential
moving median smoothing on CogAge atomic dataset (bending activity). The X-axis represents time
in milliseconds, while the y-axis represents data sequences for bending activity.

• Channel Permutation: This shuffles the channels (or features) of the complete se-
quence without changing the values inside each channel. Mathematically, it is repre-
sented by Equation (6).

X̂p = xπ(1), xπ(2), . . . , xπ(n) (6)

X is the rearranged version of the original data, where π is a function that changes
the order of the channels. This transformation preserves the chronological order of
the data but adds diversity by reorganising the channels. Figure 10 demonstrates the
actual and transformed data after applying channel permutation on CogAge atomic
(bending) activity.

Figure 10. A visual representation of actual data and transformed data after applying channel
permutation on CogAge atomic dataset (bending activity). The X-axis represents time in milliseconds,
while the y-axis represents data sequences for bending activity.

• Rolling Window Averaging: This helps to smooth or denoise the data while maintain-
ing its underlying structure. This method entails utilising a moving average process
on the time series data by employing a sliding window. Equation (7) represents the
mathematical notation of it.

X̂a = [ f (x(t)), f (x(t + 1)), . . . , f (x(t + W − 1))] (7)

where X̂a indicates the outcome of applying the rolling window operation on the
time series x(t) with a window size 10. f (x′(t) = 1

W ∑t+W−1
i=t x(i)) symbolises the
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window function applied to each subset of the time series data, t represents the
current time index and the rolling window progresses along the time axis. The rolling
window procedure produces a new time series by calculating each value using a
window function on consecutive portions of the original time series data. Figure 11
demonstrates the actual and transformed data after applying averaging smoothing on
CogAge atomic (bending) activity.

Figure 11. A visual representation of actual data and transformed data after applying rolling window
averaging on CogAge atomic dataset (bending activity). The X-axis represents time in milliseconds,
while the y-axis represents data sequences for bending activity.

3.1.3. Mixing Pattern

Pattern mixing is the process of combining two or more patterns to create new ones.
For random transformations, it is assumed that the transformation results are representative
of the dataset. Not every transformation, however, is appropriate for every dataset. Pattern
mixing has the advantage of not making this same assumption. Pattern mixing, on the other
hand, presupposes that similar patterns can be blended and produce good outcomes [74].

• Sub Averaging: This process involves the averaging of two patterns to produce a
unique pattern. This method includes averaging the temporal values of two sequences
belonging to the same class to generate a novel time series pattern, similar to the mixup
approach [33]. We integrate different subjects within the same class. Mathematically,
it is formulated as in Equation (8)

X̂sa = x′1, x′2, . . . , x′n (8)

The new time series pattern X̂sa is calculated by taking the average of the corre-
sponding values in X1 = [x11, x12, . . . , x1n] and X2 = [x21, x22, . . . , x2n]. This method
increases the diversity of the dataset and can help the generalisation of the model by
generating a wide range of training samples. Figure 12 demonstrates the actual and
transformed data after applying sub averaging on CogAge atomic (bending) activity.

• Sub Cutmix: This technique involves the random replacement of segments from
two different sequences belonging to different subjects. It improves dataset variety
by combining information from various time series, which can strengthen the re-
silience and generalisation capabilities of time series models. Mathematically, it can
be expressed by Equation (9)

X̂sc = x11, x12, . . . , x1i, x′2, x′3, . . . , x′k, x1k+1, . . . , x1n (9)

where x′2, x′3, . . . , x′k denote a segment that is substituted from X2 = [x21, x22, . . . , x2n]
in X1 = [x11, x12, . . . , x1n]. The indices i and k are randomly chosen to determine
the start and finish positions of the segment substitution. Figure 13 demonstrates
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the actual and transformed data after applying transformation on CogAge atomic
(bending) activity.

Figure 12. A visual representation of actual data and transformed data after applying sub averaging
on the CogAge atomic dataset (bending activity). The X-axis represents time in milliseconds, while
the y-axis represents data sequences for bending activity.

Figure 13. A visual representation of actual data and transformed data after applying sub cutmix
on CogAge atomic dataset (bending activity). The X-axis represents time in milliseconds, while the
y-axis represents data sequences for bending activity.

• AugMix: This uses three simultaneous augmentation chains with randomly selected
augmentation operations. Three transformed sequences (smoothing, scaling, time
warping) are created by consecutively applying these operations to the input sequence.
The altered data are mixed with original data to create a new sequence. Incorporation
of different transformation techniques directly into data increases the variability and
robustness of models. Figure 14 demonstrates the actual and transformed data after
applying AugMix on CogAge atomic (bending) activity.

• Mixup: This is used to combine two randomly selected time series to create new
sequences. During data blending, the mixing factor λ sets the fraction of values from
each sequence (λ ϵ [0, 1]) [32]. It is mathematically represented by Equation (10):

ˆXmu = λ · x1 + (1 − λ) · x2 (10)

Here, ˆXmu represents the augmented sequences generated by blending sequences
X1 = [x11, x12, . . . , x1n] and X2 = [x21, x22, . . . , x2n] based on the mixing factor λ. The
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values for λ are typically drawn from a beta distribution. Figure 15 demonstrates the
actual and transformed data after applying mixup on CogAge atomic (bending) activity.

Figure 14. A visual representation of actual data and transformed data after applying AugMix on
CogAge atomic dataset (bending activity). The X-axis represents time in milliseconds, while the
y-axis represents data sequences for bending activity.

Figure 15. A visual representation of actual data and transformed data after applying mixup on
CogAge atomic dataset (bending activity). The X-axis represents time in milliseconds, while the
y-axis represents data sequences for bending activity.

• Cutmix: This technique substitutes arbitrarily shaped segments from one image for
the other [75,76]. This can be stated mathematically by Equation (11).

ˆXcm = α · X1 + (1 − α) · X2 (11)

X1 and X2 are two initial data patterns. The new data pattern, ˆXcm, is produced by
combining X1 and X2 with a mixing coefficient of α. The amount of original patterns
that are kept in the blended pattern is controlled by α which is empirically set to
0.2. By adding variability to the data, this method increases the diversity of datasets
and may also strengthen the generalisation and robustness of the models. Figure 16
demonstrates the actual and transformed data after applying cutmix on CogAge
atomic (bending) activity.
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Figure 16. A visual representation of actual data and transformed data after applying cutmix on
CogAge atomic dataset (bending activity). The X-axis represents time in milliseconds, while the
y-axis represents data sequences for bending activity.

• Hide and Seek: This splits up sequences into a predetermined number of segments
or intervals using the hide and seek strategy. Next, a random selection process is
used to mask each segment with a specific probability, thus concealing its information.
Random parts of the time series are eliminated by substituting the average of all the
data points in the dataset for the masked segments. By replicating missing or noisy
data, this approach increases variability and can improve the robustness of time series
models. Figure 17 demonstrates the actual and transformed data after applying hide
and seek on CogAge atomic (bending) activity.

Figure 17. A visual representation of actual data and transformed data after applying hide and seek
on CogAge atomic dataset (bending activity). The X-axis represents time in milliseconds, while the
y-axis represents data sequences for bending activity.

3.1.4. Other Techniques

Apart from above-mentioned techniques, there are two other hybrid techniques that
we employed for data augmentation, namely tsaug [86] and sequential transformation.
These techniques use certain features from the above-mentioned categories of data
augmentation and combine them with other techniques to give results. Data visualisation
of these two techniques showing results of original and augmented data is given in
Figures 18 and 19 respectively.
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Figure 18. A visual representation of actual data and transformed data after applying tsaug on
CogAge atomic dataset (bending activity). The X-axis represents time in milliseconds, while the
y-axis represents data sequences for bending activity.

Figure 19. A visual representation of actual data and transformed data after applying sequential trans-
formation on CogAge atomic dataset (bending activity). The X-axis represents time in milliseconds,
while the y-axis represents data sequences for bending activity.

3.2. Model Architecture Design

We recall that the majority of the existing work does not effectively address the
management of data from various modalities. Each sensing modality produces data at a
distinct rate; for instance, smart glasses produce data at a rate of 20 Hz per second, whereas
smart watches produce 100 Hz per second. However, employing deep learning models
becomes futile once features have been derived from unprocessed data. We gravitated
toward these models due to the fact that they generate features directly from unprocessed
data. To cope up with this problem, implementation of an appropriate model for the data
type at hand is needed. This research presents the MHyCoL network which consists of a
multi-branch hybrid (CNN-LSTM) network, in which a distinct branch corresponds to each
modality. These branches receive data of variable length, process them to produce features,
concatenate these features at a subsequent stage and employ feature learning to perform
classification.

3.2.1. Convolutional Neural Network

A popular deep learning model for handling organised grid-like data, such as digital
images, is the CNN. The architecture of this model comprises several layers, namely con-
volutional layers, pooling layers and fully connected layers. CNNs employ convolutional
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operations to acquire hierarchical representations directly from the input data, facilitating
efficient feature extraction and pattern identification. A typical convolutional block is com-
posed of a convolutional layer, which is subsequently followed by a nonlinear activation
function, such as the Rectified Linear Unit (ReLU) and a pooling layer for the purpose of
down-sampling. The functioning of the CNN block can be mathematically represented by
Equation (12)

z(l)i,j =
K−1

∑
k=0

S−1

∑
s=0

T−1

∑
t=0

w(l)
k,s,t · x(l−1)

i+s,j+t,k + b(l)i (12)

where z(l)i,j is the output feature map at position (i, j) in layer l. x(l−1)
i+s,j+t,k represents the input

feature map at position (i + s, j + t, k) in layer (l − 1). The convolutional kernel (weight) at
position (k, s, t) in layer l is w(l)

k,s,t. b(l)i is the bias term for the i-th output channel in layer l.
K, S, and T are the dimensions of the kernel.

f (x) = max(0, x) (13)

Equation (13) represents an activation function which in most of the cases is ReLU. The
ReLU introduces nonlinearity to the network, facilitating the learning of intricate patterns.

y(l)i,j = max
s,t

(
x(l)Si,Sj

)
(14)

where yi,j represents the output feature map at position (i, j) in layer l, xSi,Sj denotes the
region of the input feature map covered by the pooling window at position (Si, Sj) in
layer l. maxs,t performs the computation of the highest value across the spatial dimensions
s and t within the pooling window. The utilisation of pooling layers is employed to
downsample the feature maps, hence diminishing the spatial dimensions of the data while
simultaneously retaining significant characteristics. Figure 20 represents CNN architecture
comprising of convolution, pooling and dense layer.

Figure 20. A visual representation showcasing CNN architecture comprising of convolution, pooling
and dense layer.

3.2.2. Long Short-Term Memory

LSTM is a variant of recurrent neural networks (RNNs) that is proficient in handling
temporal data. Time series data analysis usually explores long-term dependencies and
patterns. In contrast to conventional RNNs, LSTM models include memory cells capable
of retaining information for prolonged durations. This feature serves to address the issue
of disappearing gradients that might arise during the back-propagation process. In order
to retain information from the prior time stamp and the present one, the system utilised
input, forget and output gates [87]. The input gate manages the state of the cell by utilising
data from the current time stamp and the reserved information stored in the memory cell.
The forget gate is responsible for regulating the quantity of data that must be eliminated
from the memory cell. The sigmoid function is employed to ascertain the data that should
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be eliminated if it is no longer pertinent. The function of the output gate is to regulate the
selection of information from the cell state that will generate an output at the present time
stamp. Figure 21 showcases the internal arrangement of the LSTM architecture.

Figure 21. A visual representation showcasing the internal arrangement of the LSTM architecture.

Let xt denote an input at time stamp t, ht−1 represent the hidden state of the preceding
time stamp t − 1, W be the weight matrix and b be the bias vectors for gates. Furthermore,
the output gate is denoted as o, the input gate is represented by i and the forget gate denoted
by f . The memory cell combines the information from the previous memory cell state Ct−1
by multiplying the output of the forget gate ft with the new candidate information it ⊙ C̃t.
The functioning of the gates can be mathematically represented by Equations (15)–(20):

ft = σ(W f · [ht−1, xt] + b f ) (15)

it = σ(Wi · [ht−1, xt] + bi) (16)

ot = σ(Wo · [ht−1, xt] + bo) (17)

C̃t = tanh(Wc · [ht−1, xt] + bc) (18)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (19)

ht = ot ⊙ tanh(Ct) (20)

where Ct denotes the state of the cell at time t, ⊙ represents the point-wise multiplication
operations and represents the activation functions used to compress the cell’s information.
The LSTM’s output for the current time stamp t is determined by applying a hyperbolic
tangent function tanh to the output gate ot, which corresponds to the memory cell state Ct.

3.2.3. Multi-Branch Hybrid Conv-LSTM (MHyCoL)

Many individual models in the field of deep learning have been suggested in previous
studies to extract a suitable feature representation from temporal sensory data. However,
these models are restricted to encoding only one aspect of the data and are not capa-
ble of capturing the intricate relationships between the patterns. This paper introduces
an ensemble model that effectively captures intricate patterns and interdependencies in
temporal data. A powerful approach in machine learning involves combining multiple
models, leveraging their individual strengths to create a more robust and efficient solution.
To this end, we proposed an ensemble MHyCoL network to classify human activities of
daily living using multimodal data of different wearable smart devices. The proposed
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ensemble MHyCoL model utilises a Hybrid (ConvLSTM) branch network to recognise
human activities. This cutting-edge architecture consists of two unique models inside
the paradigm. The primary model is around the utilisation of a branched CNN to model
time series multimodal sensory data. This CNN operates simultaneously with changeable
input. Each CNN branch in the model corresponds to a unique sensor modality having
different frequencies. The CNN comprises of two convolutional layers utilising 32 and 16
filters, respectively, with a kernel size of 3 and l2 regulariser and activation function as ‘relu’
followed by two 1D pooling layers (Max pooling, pool size 2). The output of this layer is
fed to a flatten layer followed by a dense layer with l2 regulariser and ‘relu’ activation for
the computation of spatial characteristics. This layer is followed by a dropout layer with
50% dropout units. Subsequently, the combined spatial characteristics from all the CNN
branches are inputted into the LSTM model. The LSTM model, specifically developed to
capture temporal characteristics, is comprised of two layers. These layers specialise in
acquiring sequential knowledge by utilising 128 and 64 memory units, enabling the storing
and retrieval of information across sequential data. The LSTM layers utilise the ‘relu’ acti-
vation function. The softmax activation function is used in the output layer for multi-class
classification. Figure 22 represents the architecture of proposed ensemble MHyCoL model.

Figure 22. A visual representation showcasing the architecture of the proposed ensemble model.

4. Experiments and Results
4.1. Dataset Description

The performance of the proposed ensemble MHyCoL model was evaluated using
two widely recognised publicly accessible datasets, namely CogAge [34] and UniMiB-
SHAR [35]. The subsequent section provides a concise overview of each dataset.

4.1.1. CogAge

We employed the CogAge dataset in our experiments. The dataset is divided into
two parts: CogAge-atomic and CogAge-composite [34]. The dataset was acquired from
IMUs of smartphones, smartwatches and smartglasses. Each data instance is made up of
nine sensor modalities, each with three sensor channels (x, y and z). The following sensor
modalities are used:
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1. Smartphone Accelerometer (sp-acc);
2. Smartphone Gyroscope (sp-gyro);
3. Smartphone Gravity (sp-grav);
4. Smartphone Linear Accelerometer (sp-linAcc);
5. Smartphone Magnetometer (sp-magn);
6. Smartwatch Accelerometer (sw-acc);
7. Smartwatch Gyroscope (sw-gyro);
8. Smartglasses Accelerometer (sg-acc);
9. Smartglasses Gyroscope (sg-gyro).

The CogAge-atomic dataset is divided into two further categories of short-term ac-
tivities: postural and behavioural activities. Posture actions, such as standing, sitting and
walking, indicate a subject’s state. Behavioural activities, such as drinking, sweeping the
floor and opening the door, show the task that a person is completing. Table 3 presents the
summary of the CogAge dataset activity type and classes.

Table 3. Summary of CogAge dataset activity type and classes.

CogAge
Dataset

Activity
Type Classes

Atomic Postural Standing, Sitting, Lying, Squatting, Walking, Bending

Behavioural

Sit down, Stand up, Lie down, Get up, Squat down,
Stand up from squatting, Open door, Close door, Open
drawer, Close drawer, Open small box, Close small
box, Open big box, Close big box, Open lid by rotation,
Close lid by rotation, Open other lid, Close other lid,
Open bag, Take from floor, Put on floor, Bring, Put on
high position, Take from high position, Take out, Eat
small thing, Drink, Scoop and put, Plug in, Unplug,
Rotate, Throw out, Hang, Unhang, Wear jacket, Take
off jacket, Read, Write, Type, Talk using telephone,
Touch smartphone screen, Open tap water, Close tap
water, Put from tap water, Put from bottle, Throw out
water, Gargle, Rub hands, Dry off hands by shake,
Dry off hands, Press from top, Press by grasp, Press
switch/button, Clean surface, Clean floor.

Composite
Brushing Teeth, Cleaning Room, Handling Medication,
Preparing Food, Styling Hair, Using Phone, Washing
Hands

For each atomic activity instance, data were gathered for five seconds. However, due
to data-transmission problems, not all channels must be exactly five seconds long. The
dataset was collected by eight participants and contains 9029 occurrences of 61 atomic ac-
tivities, 886 of which are state activities while the remaining 8143 are behavioural activities.
Figure 23 shows a visual representation of the distribution of samples across various atomic
activities in the CogAge dataset.
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Figure 23. A visual representation of the distribution of samples across various atomic activities
in the CogAge dataset. The X-axis represents example counts for each activity, while the Y-axis
represents activities.
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In contrast, the CogAge-composite dataset includes data on composite activities, where
a participant engages in many tasks of daily life such as brushing teeth, cleaning a room
and preparing food. The duration of each composite activity fluctuates in accordance with
natural circumstances. The dataset was obtained from six individuals and comprises about
900 occurrences of seven composite activities. Figure 24 shows a visual representation of
the distribution of samples across various composite activities in the CogAge dataset.
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Washing Hands

Figure 24. A visual representation of the distribution of samples across various composite activities
in the CogAge dataset. The X-axis represents example counts for each activity, while the Y-axis
represents activities.

4.1.2. UniMiBSHAR

The UniMiB-SHAR dataset contains information from 30 people (6 men and 24 women),
captured with the 3D accelerometer of a Samsung Galaxy Nexus I9250 smartphone col-
lected at 50 Hz. The dataset was further divided into eight “falling” actions and nine ADLs
among the seventeen classes. The smartphone was carried out twice or six times for every
activity, depending on which pocket it is in (left or right). This dataset is balanced, even
though three ADL classes are more represented than the others. It also does not contain a
null class. Table 4 represents the classification of UniMiB-SHAR data according to activity
type and classes.

Table 4. Summary of UniMiB-SHAR data classification according to activity type and classes.

Activity Type Classes

Fall
Falling forward, Falling right, Falling backward, Falling left, Hitting
obstacle, Falling with protection strategies, Falling backward sitting
on chair, Syncope

ADLs
Standing up from sitting, Standing up from lying, Walking, Running,
Going upstairs, Jumping, Going downstairs, Lying down from stand-
ing, Sitting down

Figure 25 represents the breakdown of various activities recorded in the UniMiB-
SHAR dataset. The activities were performed over 3 s with a set length 151. The dataset
has 11,771 example points in total.
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Figure 25. A visual representation of the distribution of samples across various composite activities
in the UniMiB-SHAR dataset. The X-axis represents example counts for each activity, while the Y-axis
represents activities.

4.2. Pre-Processing

All the datasets were pre-processed to make them suitable for the proposed model.
While performing pre-processing on the CogAge atomic activity dataset, due to data-
transmission problems related to unavailability of exactly five seconds of data instance,
we opted to use the first four seconds of each data instance. The reason for selecting four
seconds was that this was the size available for all data instances contrary to five seconds.
CogAge composite activity data were synchronised first to keep all modality data in the
same time because every modality starts producing data at a different time. We align
the data for each modality based on the latest start time and earliest end time among all.
Further, the data rate varies for each modality. For instance, smart glasses produce data at
a rate of 20 Hz per second, smart watches produce data at a rate of 100 Hz per second and
smart phones generate data at a rate of 200 Hz per second. We have meticulously separated
each activity into data non-overlapping windows of five seconds. The UniMiB-SHAR
dataset was provided in the window of three seconds, so we followed the same duration.

4.3. Datasetting

In order to assess the model’s ability to generalise the CogAge dataset, we allocated
half the data for training and the other half for testing. However, for the UniMibShar
dataset we applied two different settings. The first setting used the initial 20 subjects
for training and the last 10 subjects for testing. In the second setting, the entire dataset
was distributed in a 60–40 ratio. Since our experiments were twofold, we performed data
augmentation using fifteen different techniques resulting in double the amount of data in
every case. The same distribution was followed after data augmentation.

4.4. Experimental Setup

The experimental evaluation is carried out on a 13th Gen Intel (R) Core (TM) i9-13900K
3.00 GHz processor, 64 GB RAM running on Windows 10 operating system, HP, Lahore,
Pakistan. Tables 5 and 6 show the experimental settings for both UniMiB-SHAR and
CogAge datasets.
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Table 5. Summary of experiments carried out on UniMiB-SHAR dataset.

Experiment Description

AF-17-1
This experiment involves classifying 17 different activities, including
falls and activities of daily living (ADLs), with a data distribution of
20–10.

AF-17-2 This experiment falls under the classification of 17 activities, encompass-
ing both fall and ADL classes, with a data distribution of 60–40.

ADL-9 This task evaluates the performance of recognising activity sequences
from 9 ADL classes, with a data distribution of 60–40.

F-8 This task evaluates the performance of recognising activity sequences
from 8 different Fall classes, using a data distribution of 60–40.

A-17
This experiment was conducted on a total of 17 activities. The testing
was conducted by dividing into two sets: 8 Fall classes (AF8) and 9 ADL
classes (AF9), with a 60–40 distribution.

Table 6. Summary of experiments carried out on CogAge dataset.

Experiment Description

CC-7 This experiment falls under the classification of 7 composite activities
with an equal distribution of subject data.

CA-61 This experiment falls under the classification of 61 atomic activities.

CAB-55 This task evaluates the performance of recognising atomic activity se-
quences across 55 different behaviour classes.

CAP-6 This task evaluates the performance of recognising atomic activity se-
quences across 6 different posture classes.

CA-2
This experiment was conducted on 61 atomic activities and subse-
quently tested on 6 posture classes (CA-6) and 55 behaviour classes
(CA-55) individually.

The model is trained for 200 epochs for the CogAge dataset and 300 epochs for the
UniMiB-SHAR dataset. While compiling the model, the optimiser is configured as ‘adam’
and the loss function ‘sparse categorical crossentropy’ is employed, indicating a meticulous
and advanced approach in the construction of the deep learning model. Mathematically, it
can be described as in Equation (21):

L(y, ŷ) = −
n

∑
i=1

yi log(ŷi) (21)

where L(y, ŷ) is the sparse categorical cross-entropy loss. The number of samples denoted
by n. yi is the true class label for sample i, whereas ŷi represents the predicted probability
assigned to the true class label for sample i.

4.5. Results and Discussion

This section presents the results of our experiments discussed in Section 4.4 using our
proposed MHyCoL with fifteen different augmentation techniques in order to identify the
most suitable technique for time series multi modal sensory data. Furthermore, to show
how the overfitting problem is resolved with data augmentation the training and validation
accuracy before and after augmentation is depicted in Figures 26 and 27.



Information 2024, 15, 343 26 of 33

Figure 26. Training and validation accuracy graph of actual data for CogAge atomic activities.

Figure 27. Training and validation accuracy graph of augmented data for CogAge atomic activities.

Table 7 shows the performance of the MHyCoL on CogAge datasets while employing
different data-augmentation techniques discussed in Section 3.1. This way, we can identify
which technique is better for what kinds of activities of daily living (ADLs). Using our
actual non-augmented data, our model reported considerably low values of accuracies for
all types of ADLs. For CAP-6 data, interpolation and median smoothing produced the best
augmentation results with an accuracy of 99.75%. For CAB-55 data, time warping gave the
best results with an accuracy of 92.5%. For the CA-61 dataset, time warping gave the best
results with an accuracy of 84.73%. For the CC-7 dataset, scaling showed the best results,
giving an accuracy of 84.12%.
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Table 7. Summary of results from various data-augmentation techniques on CogAge dataset following
the experimental setting of Table 6.

Augmentation Techniques CAP-6 CAB-55 CA-61 CC-7

Actual 92.71 62.45 55.04 79.29
Interpolation 99.75 71.53 76.09 82.43
Jittering 96.84 74.66 73.34 80.65
Scaling 99.51 86.58 80.68 84.12
Median Smoothing 99.75 70.78 76.32 81.28
Rowling Mean Smoothing 93.8 62.51 60.58 76.19
Time Warping 98.54 92.5 84.73 82.16
AugMix 91.05 64.04 60.4 73.2
Cutmix 91.29 57.53 56.97 79.52
Hide and Seek 89.83 57.01 51.43 75.24
Mixup 87.89 59.43 63.18 78.87
Sequential Transformation 90.56 62.11 63.42 78.23
TSaug 91.29 50.87 51.26 80.38
Subject Mix 85.67 63.85 62.74 78.34
Subject Cutmix 23.72 38.23 40.88 63.53

Table 8 shows the performance of the MHyCoL on the UniMiB-SHAR dataset while
employing different data-augmentation techniques discussed earlier. Using our actual
non-augmented data, our model reported considerably low values of accuracies for fall and
ADLs. For AF-17-1 data, median smoothing produced the best augmentation results with
an accuracy of 72.41%. For AF-17-2 data, jittering and scaling gave the best results with
an accuracy of 92.% and 91.63%, respectively. For the ADL-9 dataset, jittering and scaling
produced the best results with an accuracy of 89.44% and 88.61%, respectively. Similarly,
for the F-8 dataset, jittering showed the best results, giving an accuracy of 98.89%.

Table 8. Summary of results from various data-augmentation techniques on the UniMiB-SHAR
dataset following the experimental setting of Table 5.

Augmentation Techniques AF-17-1 AF-17-2 ADL-9 F-8

Actual 68.64 84.47 67.33 96.71
Interpolation 69.27 80.79 63.83 93.17
Jittering 70.71 92 89.44 98.89
Scaling 71.31 91.63 88.61 98.81
Median Smoothing 72.41 88.1 81.53 97.61
Rowling Mean Smoothing 70.69 86.6 84.23 96.05
Time Warping 71.3 88.01 75.32 97.81
AugMix 71.56 85.97 86.02 93.14
Cutmix 70.02 89.17 78.78 97.64
Hide and Seek 70.59 74.84 71.82 86.11
Mixup 69.76 79.57 80.03 65.89
Sequential Transformation 68.71 79.86 64.49 87.95
TSaug 69.79 85.04 70 97.15
Subject Mix 68.36 89.22 80.28 96.69
Subject Cutmix 62.33 78.82 50.32 85.23

A thorough analysis of the results shows that TDTs and MDTs played an important role
in reducing the overfitting of the model for both datasets. Time warping performed well
for the CogAge dataset, while jittering performed well for the UniMiB-SHAR dataset. The
results further show that the subject cutmix is the worst technique for the time series multi
modal sensory data. In fact most of the mixing pattern techniques that are very useful for
image data augmentation did not perform well for the time series multi modal sensory data.
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Because of basic differences in data structure and characteristics, these image-augmentation
methods are designed to work only with images and not with time series data. Time series
data are not appropriate for random augmentations due to their sequential nature and
intricate temporal connections. Unlike pictures, time series do not have features that are
localised in space, which makes it hard to figure out what these modifications mean. Using
picture-enhancement methods on time series data messes them up with temporal patterns
and makes the model less accurate.

Similarly, tsaug, which was built exclusively for time series data, does not perform
well with time series sensory data due to its distinctive characteristics and requirements.
Sensory data often consist of complicated temporal patterns and small changes that general
augmentation techniques may not fully capture. The semantic meaning and temporal
dependencies that are essential for the processing of sensory data are not preserved by tsaug,
which leads to a decrease in model performance. In addition, sequential transformation
does not work well for time series sensory data because of how complicated the temporal
patterns are. These sequential changes mess up small temporal trends and add noise
to the data that makes it hard to see important information. The complicated temporal
dependencies of sensory input could not be kept well.

Table 9 shows the results of ADL-9, F-8 and A-17 (AF8 and AF9) from the UniMiB-
SHAR dataset. Experiments show that when Fall and ADL data are trained on the model
independently, the model shows good results but when the model is trained on combined
data a sudden decline in the accuracy of these activities can be witnessed. This could be due
to conflicting patterns or features between the two types of data. Table 10 shows the results
for posture (CAP-6) and behaviour (CAB-55) data from the CogAge atomic data when
trained individually, and it also presents results when the model is trained on 61 activities
(posture and behaviour combined) and tests for posture (CA-6) and behaviour (CA-55)
separately. It can be seen clearly that when the model was trained on posture and behaviour
data individually, it presented better results but when it was trained on combined data,
posture results drastically decreased while behaviour results show improvement. This leads
to another research gap with respect to learning these activities simultaneously. Similarly,
composite activity results by any of these handcrafted augmentation techniques are not
promising as compared to atomic activities. This creates another dimension to explore
techniques specifically designed to handle composite activities.

Table 9. Overview of findings from experiments conducted on the A-17, ADL-9 and F-8 from the
UniMiB-SHAR dataset.

Augmentation Techniques AF9 AF8 ADL-9 F-8

Actual 67.16 94.61 67.33 96.71
Interpolation 61.29 91.89 63.83 93.17
Jittering 83.58 96.79 89.44 98.89
Scaling 80.86 97.36 88.61 98.81
Median Smoothing 73.96 96.16 81.53 97.61
Rowling Mean Smoothing 69.51 95.39 84.23 96.05
Time Warping 60.65 91.75 75.32 97.81
AugMix 75.18 92.11 86.02 93.14
Cutmix 77.1 96.34 78.78 97.64
Hide and Seek 61.84 81.44 71.82 86.11
Mixup 68.76 64.67 80.03 65.89
Sequential Transformation 60.67 91.82 64.49 87.95
TSaug 68.08 94.98 70 97.15
Subject Mix 77.74 96.05 80.28 96.69
Subject Cutmix 56.75 88.32 50.32 85.23
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Table 10. Overview of findings from experiments conducted on the CAP-6, CAB-55 and CA-2 from
CogAge dataset.

Augmentation Techniques CAP-6 CAB-55 CA-6 CA-55

Actual 92.71 62.45 62.14 54.25
Interpolation 99.75 71.53 79.36 75.53
Jittering 96.84 74.66 75.24 73.13
Scaling 99.51 86.58 71.35 81.7
Median Smoothing 99.75 70.78 77.71 76.19
Rowling Mean Smoothing 93.8 62.51 63.62 59.14
Time Warping 98.54 92.5 77.42 85.53
AugMix 91.05 64.04 59.82 57.41
Cutmix 91.29 57.53 61.92 56.4
Hide and Seek 89.83 57.01 52.94 51.26
Mixup 87.89 59.43 65.32 62.94
Sequential Transformation 90.56 62.11 66.53 63.07
TSaug 91.29 50.87 50.32 55.48
Subject Mix 85.67 63.85 67.99 62.16
Subject Cutmix 23.72 38.23 39.32 37.88

4.6. Performance Comparison with Existing State-of-the-Art Techniques

We also evaluated the performance of the proposed ensemble model by comparing it to
other recently developed state-of-the-art models. The evaluation of all existing techniques
was conducted on the CogAge and UniMiB-SHAR datasets, ensuring that the training and
testing instances were distributed in the same manner. The outcomes of the recognition
process are condensed and shown in Table 11. The proposed algorithm demonstrated
superior performance compared to existing techniques, with Transformer [88], Random
Forest [39], Rank pooling + SVM [34], CNN-transfer [6] and GILE [89] models achieving
the highest recognition scores. The exceptional performance of the proposed ensemble
model confirms its supremacy in accurately identifying human activities.

Table 11. The proposed model’s recognition accuracy compared to recent state-of-the-art techniques
using the CogAge and UniMib-SHAR datasets. The symbol ‘–’ signifies that the technique is either
not applicable to this dataset or the authors have not disclosed the results. The highest scores are
emphasised in bold.

Method Year CogAge Atomic CogAge Composite UniMiB-SHAR

Transformer [88] 2022 – 73.36% –
Random Forest [39] 2021 – 79% –
Rank pooling + SVM [34] 2020 – 68.65% –
CNN-transfer [6] 2020 state—95.94%, behaviour—71.8% – –
GILE [89] 2021 – – 70.31%
Fusion [3] 2018 – – 74.66%
CNN [72] 2023 – – 78.83%
HM + RF [90] 2022 – – 80.27%
Proposed Model 2024 state—98.54%, behaviour—92.5% 82.16% 88.01%

5. Conclusions

This study introduces the MHyCoL network to recognise time series multimodal
sensory activity sequences. In addition, we conducted a systematic evaluation of fifteen
different random transformation based data-augmentation techniques used on time series
multimodal sensory data to solve the inadequacy problem of labeled data. An extensive
evaluation of ensemble models is performed on two well-known benchmark datasets:
CogAge and UniMiB-SHAR. These techniques produced a 5% improvement in accuracy
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for composite activities and a significant 30% boost for atomic activities. The increase in
time series sensory data poses distinct challenges and possibilities in improving model
resilience and generalisation. Although typical image-augmentation techniques like cut-
mix and mixup may not be directly suitable, domain-specific approaches such as time
domain transformations and magnitude domain transformations demonstrate potential.
These techniques maintain important changes over time and patterns related to frequency,
effectively dealing with the intricate features of sensory data. However, the efficacy of
augmentation approaches relies on their capacity to uphold semantic significance and
temporal inter-dependencies. In the future, we are going to fill the gap of the model learn-
ing multiple activities simultaneously. Furthermore, exploration of deep learning-based
data-augmentation models for composite activities to handle their long term dependencies
can be a substantial research area for the future.
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