Factors for Customers’ AI Use Readiness in Physical Retail Stores: The Interplay of Consumer Attitudes and Gender Differences
Abstract
:1. Introduction
2. Literature Review
3. Conceptual Framework and Hypothesis
4. Materials and Methods
4.1. Measurement Instrument
4.2. Sample
4.3. Validity and Reliability of Measurement Scales
5. Results
5.1. Invariance between Groups
5.2. Differences in the Latent Variable Impacts
6. Discussion
6.1. Theoretical Implications
6.2. Managerial Implications
6.3. Limitations and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Y.; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Liu, X.; Wu, Y.; Dong, F.; Qiu, C.-W.; et al. Artificial intelligence: A powerful paradigm for scientific research. Innovation 2021, 2, 100179. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J. Artificial Intelligence for Marketing: Practical Applications; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Bornet, P.; Barkin, I.; Wirtz, J. Intelligent Automation: Welcome to the World of Hyperautomation: Learn How to Harness Artificial Intelligence to Boost Business & Make our World More Human; World Scientific: Singapore, 2021. [Google Scholar]
- Anica-Popa, I.; Anica-Popa, L.; Rădulescu, C.; Vrîncianu, M. The integration of artificial intelligence in retail: Benefits, challenges and a dedicated conceptual framework. Amfiteatru Econ. 2021, 23, 120–136. [Google Scholar] [CrossRef]
- Mahmoud, A.B.; Tehseen, S.; Fuxman, L. The dark side of artificial intelligence in retail innovation. In Retail Futures; Emerald Publishing Limited: Leeds, UK, 2020; pp. 165–180. [Google Scholar]
- Buchanan, B.G. A (very) brief history of artificial intelligence. Ai Mag. 2005, 26, 53. [Google Scholar]
- Crittenden, W.F.; Biel, I.K.; Lovely, W.A. Embracing Digitalization: Student Learning and New Technologies. J. Mark. Educ. 2019, 41, 5–14. [Google Scholar] [CrossRef]
- Hansen, D.; Shneiderman, B.; Smith, M.A. Analyzing Social Media Networks with NodeXL: Insights from a Connected World; Morgan Kaufmann: Burlington, MA, USA, 2010. [Google Scholar]
- Nouraldeen, R.M. The impact of technology readiness and use perceptions on students’ adoption of artificial intelligence: The moderating role of gender. Dev. Learn. Organ. Int. J. 2023, 37, 7–10. [Google Scholar] [CrossRef]
- Martínez-López, F.J.; Casillas, J. Artificial intelligence-based systems applied in industrial marketing: An historical overview, current and future insights. Ind. Mark. Manag. 2013, 42, 489–495. [Google Scholar] [CrossRef]
- Grewal, D.; Guha, A.; Satornino, C.B.; Schweiger, E.B. Artificial intelligence: The light and the darkness. J. Bus. Res. 2021, 136, 229–236. [Google Scholar] [CrossRef]
- Meuter, M.L.; Bitner, M.J.; Ostrom, A.L.; Brown, S.W. Choosing among alternative service delivery modes: An investigation of customer trial of self-service technologies. J. Mark. 2005, 69, 61–83. [Google Scholar] [CrossRef]
- Mariani, M.M.; Perez-Vega, R.; Wirtz, J. AI in marketing, consumer research and psychology: A systematic literature review and research agenda. Psychol. Mark. 2022, 39, 755–776. [Google Scholar] [CrossRef]
- Pitardi, D.; Meloni, D.; Olivo, F.; Loprevite, D.; Cavarretta, M.C.; Behnisch, P.; Brouwer, A.; Felzel, E.; Ingravalle, F.; Capra, P.; et al. Alexa, she’s not human but… Unveiling the drivers of consumers’ trust in voice-based artificial intelligence. Psychol. Mark. 2021, 38, 626–642. [Google Scholar] [CrossRef]
- Lobschat, L.; Mueller, B.; Eggers, F.; Brandimarte, L.; Diefenbach, S.; Kroschke, M.; Wirtz, J. Corporate digital responsibility. J. Bus. Res. 2021, 122, 875–888. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Qadri, M.A.; Singh, R.P.; Suman, R. Artificial intelligence (AI) applications for marketing: A literature-based study. Int. J. Intell. Netw. 2022, 3, 119–132. [Google Scholar] [CrossRef]
- Flavián, C.; Pérez-Rueda, A.; Belanche, D.; Casaló, L.V. Intention to use analytical artificial intelligence (AI) in services–the effect of technology readiness and awareness. J. Serv. Manag. 2022, 33, 293–320. [Google Scholar] [CrossRef]
- Tavera-Mesías, J.F.; van Klyton, A.; Collazos, A.Z. Technology readiness, mobile payments and gender-a reflective-formative second order approach. Behav. Inf. Technol. 2023, 42, 1005–1023. [Google Scholar] [CrossRef]
- Tehrani, A.N.; Ray, S.; Roy, S.K.; Gruner, R.L.; Appio, F.P. Decoding AI readiness: An in-depth analysis of key dimensions in multinational corporations. Technovation 2024, 131, 102948. [Google Scholar] [CrossRef]
- Strube, M.J.; Lott, C.L.; Lê-Xuân-Hy, G.M.; Oxenberg, J.; Deichmann, A.K. Self-evaluation of abilities: Accurate self-assessment versus biased self-enhancement. J. Personal. Soc. Psychol. 1986, 51, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.W.K. AI Is Revolutionizing the Retail Industry. ResearchGate. 2023. Available online: https://www.researchgate.net/publication/370266715_AI_is_revolutionizing_the_retail_industry (accessed on 19 March 2024).
- Chen, J.; Chang, Y.W. How smart technology empowers consumers in smart retail stores? The perspective of technology readiness and situational factors. Electron. Mark. 2023, 33, 1. [Google Scholar] [CrossRef] [PubMed]
- Murugan, T.S.; Kumar, C.M. Unveiling the Evolution: Impact of Artificial Intelligence on Consumer Buying Behaviors in Online Retail Purchase. Educ. Adm. Theory Pract. 2024, 30, 1072–1078. [Google Scholar]
- Beyari, H.; Garamoun, H. The effect of artificial intelligence on end-user online purchasing decisions: Toward an integrated conceptual framework. Sustainability 2022, 14, 9637. [Google Scholar] [CrossRef]
- Moore, S.; Bulmer, S.; Elms, J. The social significance of AI in retail on customer experience and shopping practices. J. Retail. Consum. Serv. 2022, 64, 102755. [Google Scholar] [CrossRef]
- Gursoy, D.; Chi, O.H.; Lu, L.; Nunkoo, R. Consumers acceptance of artificially intelligent (AI) device use in service delivery. Int. J. Inf. Manag. 2019, 49, 157–169. [Google Scholar] [CrossRef]
- Pillai, R.; Sivathanu, B.; Dwivedi, Y.K. Shopping intention at AI-powered automated retail stores (AIPARS). J. Retail. Consum. Serv. 2020, 57, 102207. [Google Scholar] [CrossRef]
- Lv, X.; Luo, J.; Liang, Y.; Liu, Y.; Li, C. Is cuteness irresistible? The impact of cuteness on customers’ intentions to use AI applications. Tour. Manag. 2022, 90, 104472. [Google Scholar] [CrossRef]
- Ho, M.T.; Mantello, P.; Ghotbi, N.; Nguyen, M.H.; Nguyen, H.K.T.; Vuong, Q.H. Rethinking technological acceptance in the age of emotional AI: Surveying Gen Z (Zoomer) attitudes toward non-conscious data collection. Technol. Soc. 2022, 70, 102011. [Google Scholar] [CrossRef]
- Sharma, S.; Islam, N.; Singh, G.; Dhir, A. Why do retail customers adopt artificial intelligence (AI) based autonomous decision-making systems? IEEE Trans. Eng. Manag. 2022, 71, 1846–1861. [Google Scholar] [CrossRef]
- Kelly, S.; Kaye, S.A.; Oviedo-Trespalacios, O. What factors contribute to the acceptance of artificial intelligence? A systematic review. Telemat. Inform. 2023, 77, 101925. [Google Scholar] [CrossRef]
- Song, C.S.; Kim, Y.K. The role of the human-robot interaction in consumers’ acceptance of humanoid retail service robots. J. Bus. Res. 2022, 146, 489–503. [Google Scholar] [CrossRef]
- Borau, S.; Otterbring, T.; Laporte, S.; Fosso Wamba, S. The most human bot: Female gendering increases humanness perceptions of bots and acceptance of AI. Psychol. Mark. 2021, 38, 1052–1068. [Google Scholar] [CrossRef]
- Ameen, N.; Tarhini, A.; Reppel, A.; Anand, A. Customer experiences in the age of artificial intelligence. Comput. Hum. Behav. 2021, 114, 106548. [Google Scholar] [CrossRef]
- Guha, A.; Grewal, D.; Kopalle, P.K.; Haenlein, M.; Schneider, M.J.; Jung, H.; Moustafa, R.; Hegde, D.R.; Hawkins, G. How artificial intelligence will affect the future of retailing. J. Retail. 2021, 97, 28–41. [Google Scholar] [CrossRef]
- Sweeney, J.C.; Soutar, G.N.; Johnson, L.W. The role of perceived risk in the quality-value relationship: A study in a retail environment. J. Retail. 1999, 75, 77–105. [Google Scholar] [CrossRef]
- Gao, S.; Li, Y.; Guo, H. Understanding the adoption of bike sharing systems: By combining technology diffusion theories and perceived risk. J. Hosp. Tour. Technol. 2019, 10, 464–478. [Google Scholar] [CrossRef]
- Jacoby, J.; Kaplan, L.B. The Components of Perceived Risk. In Purdue Papers in Consumer Psychology; ACR Special Volumes SV-02; Purdue University: West Lafayette, IN, USA, 1972. [Google Scholar]
- Wu, L.; Chiu, M.L.; Chen, K.W. Defining the determinants of online impulse buying through a shopping process of integrating perceived risk, expectation-confirmation model, and flow theory issues. Int. J. Inf. Manag. 2020, 52, 102099. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, C.; Zhu, S.; Xue, H.; Chen, F. Online purchase intention of fruits: Antecedents in an integrated model based on technology acceptance model and perceived risk theory. Front. Psychol. 2018, 9, 1521. [Google Scholar] [CrossRef] [PubMed]
- Han, M.C.; Kim, Y. Why consumers hesitate to shop online: Perceived risk and product involvement on Taobao.com. J. Promot. Manag. 2017, 23, 24–44. [Google Scholar] [CrossRef]
- Hasan, R.; Shams, R.; Rahman, M. Consumer trust and perceived risk for voice-controlled artificial intelligence: The case of Siri. J. Bus. Res. 2021, 131, 591–597. [Google Scholar] [CrossRef]
- Panadero, E.; Brown, G.T.; Strijbos, J.W. The future of student self-assessment: A review of known unknowns and potential directions. Educ. Psychol. Rev. 2016, 28, 803–830. [Google Scholar] [CrossRef]
- Eva, K.W.; Regehr, G. “I’ll never play professional football” and other fallacies of self-assessment. J. Contin. Educ. Health Prof. 2008, 28, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.A. The reliability, validity, and utility of self-assessment. Pract. Assess. Res. Eval. 2019, 11, 10. [Google Scholar]
- Klenowski, V. Student self-evaluation processes in student-centred teaching and learning contexts of Australia and England. Assess. Educ. 1995, 2, 145–163. [Google Scholar] [CrossRef]
- Epstein, R.M.; Siegel, D.J.; Silberman, J. Self-monitoring in clinical practice: A challenge for medical educators. J. Contin. Educ. Health Prof. 2008, 28, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Varma, S.; Marler, J.H. The dual nature of prior computer experience: More is not necessarily better for technology acceptance. Comput. Hum. Behav. 2013, 29, 1475–1482. [Google Scholar] [CrossRef]
- Gallivan, M.J.; Spitler, V.K.; Koufaris, M. Does information technology training really matter? A social information processing analysis of coworkers’ influence on IT usage in the workplace. J. Manag. Inf. Syst. 2005, 22, 153–192. [Google Scholar] [CrossRef]
- Harrison, A.W.; Rainer, R.K.; Hochwarter, W.A., Jr.; Thompson, K.R. Testing the self-efficacy-performance-linkage of social-cognitive theory. J. Soc. Psychol. 1997, 137, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Choi, H. What drives the acceptance of AI technology? The role of expectations and experiences. arXiv 2023, arXiv:2306.13670. [Google Scholar]
- Taylor, S.; Todd, P. Assessing IT Usage: The Role of Prior Experience. MIS Q. 1995, 19, 561–570. [Google Scholar] [CrossRef]
- Sohn, S. Consumer perceived risk of using autonomous retail technology. J. Bus. Res. 2024, 171, 114389. [Google Scholar] [CrossRef]
- Abed, S.S. Literature Review of Theory-Based Empirical Research Examining Consumers’ Adoption of IoT. In Proceedings of the International Working Conference on Transfer and Diffusion of IT, Nagpur, India, 15–16 December 2024; Springer: Cham, Switzerland, 2024; pp. 3–14. [Google Scholar]
- Bandeira, F.; Cardoso, A.; Cairrão, Á. The wearable world in the palm of our hand: The perceived importance of augmented reality in marketing strategies. Int. J. Bus. Soc. Res. (IJBSR) 2013, 3, 117–124. [Google Scholar]
- Liu, R.; Balakrishnan, B.; Saari, E.M. How AR Technology is Changing Consumer Shopping Habits: From Traditional Retail to Virtual Fitting. Acad. J. Sci. Technol. 2024, 9, 140–144. [Google Scholar] [CrossRef]
- Chen, H.; Chan-Olmsted, S.; Kim, J.; Mayor Sanabria, I. Consumers’ perception on artificial intelligence applications in marketing communication. Qual. Mark. Res. Int. J. 2022, 25, 125–142. [Google Scholar] [CrossRef]
- Schepman, A.; Rodway, P. Initial validation of the general attitudes towards Artificial Intelligence Scale. Comput. Hum. Behav. Rep. 2020, 1, 100014. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Pani, A.; Sahu, P.K.; Majumdar, B.B.; Tavasszy, L. Gender and generational differences in omnichannel shopping travel decisions: What drives consumer choices to pick up in-store or ship direct? Res. Transp. Econ. 2024, 103, 101403. [Google Scholar] [CrossRef]
- Donepudi, P.K. Robots in Retail Marketing: A Timely Opportunity. Glob. Discl. Econ. Bus. 2020, 9, 97–106. [Google Scholar] [CrossRef]
- Liang, Y.; Lee, S.H.; Workman, J.E. Implementation of artificial intelligence in fashion: Are consumers ready? Cloth. Text. Res. J. 2020, 38, 3–18. [Google Scholar] [CrossRef]
- Wang, I.C.; Liao, C.W.; Lin, K.P.; Wang, C.H.; Tsai, C.L. Evaluate the consumer acceptance of AIoT-based unmanned convenience stores based on perceived risks and technological acceptance models. Math. Probl. Eng. 2021, 2021, 4416270. [Google Scholar] [CrossRef]
- Choung, H.; David, P.; Ross, A. Trust in AI and its role in the acceptance of AI technologies. Int. J. Hum. Comput. Interact. 2023, 39, 1727–1739. [Google Scholar] [CrossRef]
- Chang, Y.W.; Chen, J. What motivates customers to shop in smart shops? The impacts of smart technology and technology readiness. J. Retail. Consum. Serv. 2021, 58, 102325. [Google Scholar] [CrossRef]
- Alam, S.S.; Susmit, S.; Lin, C.Y.; Masukujjaman, M.; Ho, Y.H. Factors affecting augmented reality adoption in the retail industry. J. Open Innov. Technol. Mark. Complex. 2021, 7, 142. [Google Scholar] [CrossRef]
- Park, H.J.; Zhang, Y. Technology readiness and technology paradox of unmanned convenience store users. J. Retail. Consum. Serv. 2022, 65, 102523. [Google Scholar] [CrossRef]
- Jan, I.U.; Ji, S.; Kim, C. What (de) motivates customers to use AI-powered conversational agents for shopping? The extended behavioral reasoning perspective. J. Retail. Consum. Serv. 2023, 75, 103440. [Google Scholar] [CrossRef]
- Shim, H.S.; Han, S.L.; Ha, J. The effects of consumer readiness on the adoption of self-service technology: Moderating effects of consumer traits and situational factors. Sustainability 2020, 13, 95. [Google Scholar] [CrossRef]
- Yin, D.; Li, M.; Qiu, H. Do customers exhibit engagement behaviors in AI environments? The role of psychological benefits and technology readiness. Tour. Manag. 2023, 97, 104745. [Google Scholar] [CrossRef]
- Wang, Q.; Ji, X.; Zhao, N. Embracing the power of AI in retail platform operations: Considering the showrooming effect and consumer returns. Transp. Res. Part E Logist. Transp. Rev. 2024, 182, 103409. [Google Scholar] [CrossRef]
- Chung, H.; Park, C.; Kang, W.S.; Lee, J. Gender bias in artificial intelligence: Severity prediction at an early stage of COVID-19. Front. Physiol. 2021, 12, 778720. [Google Scholar] [CrossRef] [PubMed]
- Noor, N.; Rao Hill, S.; Troshani, I. Artificial intelligence service agents: Role of parasocial relationship. J. Comput. Inf. Syst. 2022, 62, 1009–1023. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Hensler, J.; Ringle, M.C.; Sarstedt, M. A new criterion for assesing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Steenkamp, J.B.E.; Baumgartner, H. Assessing measurement invariance in cross-national consumer research. J. Consum. Res. 1998, 25, 78–90. [Google Scholar] [CrossRef]
Items and Constructs | Mean | Standard Deviations | Factor Loadings | CR | AVE |
---|---|---|---|---|---|
Prior experience with AI technologies | |||||
I use many products and services supported by artificial intelligence. | 4.23 | 1.67 | 0.88 | ||
I do not have much experience using artificial intelligence technologies. | 4.52 | 1.78 | 0.65 | 0.84 | 0.63 |
In everyday life, I usually use many artificial intelligence technologies. | 4.28 | 1.69 | 0.84 | ||
Perceived risks with AI technologies | |||||
The use of artificial intelligence technologies invades my privacy. | 4.30 | 1.85 | 0.87 | ||
I am afraid that the use of artificial intelligence technologies in physical stores reduces the confidentiality of my data. | 4.57 | 1.88 | 0.78 | 0.86 | 0.68 |
In general, the use of artificial intelligence technologies is risky. | 4.45 | 1.75 | 0.82 | ||
Self-assessment of consumer’ ability to manage AI technologies | |||||
I am confident in my ability to use artificial intelligence technologies. | 5.01 | 1.65 | 0.87 | ||
I am fully capable of using artificial intelligence technologies. | 5.06 | 1.67 | 0.84 | ||
I do not feel that I am skilled enough for the task of using artificial intelligence technologies. | 5.14 | 1.66 | 0.68 | 0.88 | 0.59 |
My past experiences increase my confidence that I will be able to successfully use artificial intelligence technologies. | 4.76 | 1.71 | 0.61 | ||
The use of artificial intelligence technologies is within my capabilities. | 5.24 | 1.57 | 0.81 | ||
AI use readiness (for specific technologies) | |||||
Autonomous shopping processes | 4.76 | 2.08 | 0.78 | ||
Data collection | 3.89 | 1.88 | 0.60 | ||
Self-service terminals | 5.76 | 1.53 | 0.66 | 0.86 | 0.50 |
Electronic mirrors | 4.73 | 2.05 | 0.71 | ||
Chatbots | 3.96 | 2.16 | 0.72 | ||
Smart shelves | 4.98 | 1.81 | 0.76 |
1. | 2. | 3. | 4. | |
---|---|---|---|---|
1. Prior experience with AI technologies | 0.795 | |||
2. Perceived risks with AI technologies | −0.362 *** | 0.822 | ||
3. Self-assessment of consumers’ ability to manage AI technologies | 0.661 *** | −0.430 *** | 0.767 | |
4. AI use readiness | 0.563 *** | −0.578 *** | 0.588 *** | 0.706 |
1. | 2. | 3. | |
---|---|---|---|
1. Prior experience with AI technologies | |||
2. Perceived risks with AI technologies | 0.366 | ||
3. Self-assessment of consumers’ ability to manage AI technologies | 0.688 | 0.459 | |
4. AI use readiness | 0.571 | 0.595 | 0.610 |
All | Sig. | Female | Sig. | Male | Sig. | |
---|---|---|---|---|---|---|
H1: Prior experience with AI technologies -> AI use readiness | 0.258 | p < 0.01 | 0.264 | p < 0.01 | 0.267 | p < 0.01 |
H2: Perceived risks with AI technologies -> AI use readiness | −0.374 | p < 0.001 | −0.431 * | p < 0.001 | −0.074 * | n.s. |
H3: Self-assessment of consumers’ ability to manage AI technologies-> AI use readiness | 0.257 | p < 0.01 | 0.204 * | p < 0.05 | 0.490 * | p < 0.01 |
Measurement Model | χ2 | df | χ2/df sig. | IFI | TLI | CFI | RMSEA |
Configural invariance | 346.082 | 226 | 0.938 | 0.924 | 0.936 | 0.050 | |
Full metric invariance | 360.217 | 239 | p = 0.364 | 0.937 | 0.927 | 0.936 | 0.049 |
Structural covariances | 377.631 | 249 | p = 0.110 | 0.933 | 0.926 | 0.932 | 0.049 |
Full scalar invariance | 422.674 | 266 | p > 0.001 | 0.917 | 0.915 | 0.917 | 0.053 |
Structural Model | χ2 | df | χ2/df sig. | IFI | TLI | CFI | RMSEA |
Free structural weights | 370.679 | 245 | 0.934 | 0.926 | 0.933 | 0.049 | |
Constrained structural weights | 377.606 | 248 | p = 0.074 | 0.932 | 0.925 | 0.931 | 0.050 |
Partially constrained structural weights | 372.412 | 246 | p = 0.188 | 0.934 | 0.926 | 0.933 | 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolar, N.; Milfelner, B.; Pisnik, A. Factors for Customers’ AI Use Readiness in Physical Retail Stores: The Interplay of Consumer Attitudes and Gender Differences. Information 2024, 15, 346. https://doi.org/10.3390/info15060346
Kolar N, Milfelner B, Pisnik A. Factors for Customers’ AI Use Readiness in Physical Retail Stores: The Interplay of Consumer Attitudes and Gender Differences. Information. 2024; 15(6):346. https://doi.org/10.3390/info15060346
Chicago/Turabian StyleKolar, Nina, Borut Milfelner, and Aleksandra Pisnik. 2024. "Factors for Customers’ AI Use Readiness in Physical Retail Stores: The Interplay of Consumer Attitudes and Gender Differences" Information 15, no. 6: 346. https://doi.org/10.3390/info15060346
APA StyleKolar, N., Milfelner, B., & Pisnik, A. (2024). Factors for Customers’ AI Use Readiness in Physical Retail Stores: The Interplay of Consumer Attitudes and Gender Differences. Information, 15(6), 346. https://doi.org/10.3390/info15060346