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Abstract: The production of cheese, a beloved culinary delight worldwide, faces challenges in
maintaining consistent product quality and operational efficiency. One crucial stage in this process is
determining the precise cutting time during curd formation, which significantly impacts the quality
of the cheese. Misjudging this timing can lead to the production of inferior products, harming a
company’s reputation and revenue. Conventional methods often fall short of accurately assessing
variations in coagulation conditions due to the inherent potential for human error. To address
this issue, we propose an anomaly-detection-based approach. In this approach, we treat the class
representing curd formation as the anomaly to be identified. Our proposed solution involves utilizing
a one-class, fully convolutional data description network, which we compared against several state-
of-the-art methods to detect deviations from the standard coagulation patterns. Encouragingly,
our results show F1 scores of up to 0.92, indicating the effectiveness of our approach.

Keywords: image processing; computer vision; machine learning; food industry; curd-firming
time detection

1. Introduction

Dairy products possess intrinsic qualities that enhance gastrointestinal tract health
and contribute to the well-being of the human microbiome. They play a pivotal role in
the food industry due to their rich content of protein, calcium, and micronutrients, all of
which are crucial for maintaining bone and muscle health. Among dairy products, cheese
stands out as one of the most widely consumed and versatile options globally. With its
diverse array of flavors and forms, cheese holds a prominent position in culinary culture,
contributing significantly to dietary diversity and enjoyment.

Cheese is a fundamental ingredient in numerous culinary recipes and is often enjoyed
on its own. Consequently, evaluating its quality becomes essential for consumers and the
industry [1].

In the cheese-manufacturing process, curd represents a crucial intermediate stage
achieved by heating milk and introducing rennet. Rennet induces the coagulation of
casein granules in the milk, resulting in the formation of curd, which settles at the bottom,
accompanied by the generation of whey. However, in many cheese varieties, the natural
separation of whey and curd does not occur spontaneously, necessitating the mechanical
cutting of the coagulated mass into small cubes, referred to as curd grains [2].

As demonstrated by Johnson et al. [3], the coagulation process induced by rennet
during cheese production, and consequently, the timing of curd cutting, significantly
impacts cheese quality. Furthermore, Grundelius et al. [4] investigated the influence of
parameters such as pH, rennet concentration, and curd granule size, highlighting that
granule size significantly impacts curd shrinkage, particularly in the early stages of the
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process: smaller curd granules result in more intense whey separation, a finding confirmed
by Thomann et al. [5]. The duration of cutting is known to be inversely related to the size of
the granules. Therefore, to automate the process, it is essential to identify the phase where
the granules start to become diffuse throughout the entire boiler [4].

Determining the cutting time is contingent upon the rheological and microstructural
properties of the curd gels, which are influenced by various factors, including milk pre-
treatment, composition, and coagulation conditions. Consequently, the identification of
the cutting time, manually performed by a diary operator, varies across different cheese
varieties and profoundly affects parameters such as moisture content, yield, and the overall
quality of the cheese, as well as losses in whey fat [2].

This challenge is notably accentuated in large-scale automated production facilities,
where the variability in coagulation conditions, process alterations, and the potential for hu-
man errors introduce complexities in maintaining precise control over cutting times [2,6,7].

For these reasons, integrating advanced methodologies, such as computer vision
(CV) techniques, become indispensable to mitigate the issues, improve the cheese-making
process, enhance production efficiency, and optimize product quality.

In light of the challenging task posed by identifying the optimal cutting time in
cheese production, we approach it through the lens of anomaly detection (AD). Given the
abundance of images depicting the normal condition of the milk before its cutting time,
we adopted an AD setup to discern anomalies within this dataset. Since an extensive
presence of curd spots indicates a possible optimal cutting time [2], we considered the
curd spot an anomaly, seeking to identify it amidst the distribution of normal curd images.
By leveraging this approach, we aim to effectively identify deviations from the standard
milk appearance, thereby facilitating the accurate determination of the curd and related
cutting time.

Specifically, we propose adapting a deep learning (DL) technique belonging to the
realm of one-class classification, termed the Fully Convolutional Data Description Network
(FCDDN). This method employs a neural network to reconfigure the data such that normal
instances are centered on a predefined focal point, while anomalous instances are situated
elsewhere. Additionally, a sampling technique transforms the data into images represent-
ing a heatmap of subsampled anomalies. Pixels in this heatmap distant from the center
correspond to anomalous regions within the input image. The FCDDN exclusively utilizes
convolutional and pooling layers, thereby constraining the receptive field of each output
pixel [8]. Moreover, we also compared our findings with more classical machine learning
(ML) approaches, specifically trained with handcrafted (HC) and deep features. The latter
were extracted by pre-trained convolutional neural network (CNN) architectures.

The contributions of this paper can be summarized as follows:

• Investigate the optimal cutting time: We conducted a feasibility study by introducing a
novel AD-based approach to determine the optimal cutting time during curd formation
in cheese production.

• Development of a one-class Fully Convolutional Data Description Network: We pro-
pose and implemented a one-class FCDDN to identify curd formation by treating it as
an anomaly to verify against the milk in its usual state.

• Comparison with shallow AD methods: We compared the proposed approach with
shallow learning methods to emphasize its robustness in this scenario on different sets
of images.

• High accuracy in AD: The proposed approach achieved encouraging results with F1
scores of up to 0.92, demonstrating the effectiveness of the method.

• Application in the dairy industry: This work investigates if the curd-firming time
identification can be achieved with an AD-based approach and, at the same, aims to
provide a non-invasive, non-destructive, and technologically advanced solution.

The rest of the manuscript is organized as follows. Section 2 provides a comprehen-
sive review of existing methodologies for analyzing milk coagulation and AD techniques.
Section 3 elucidates the details regarding the dataset, feature-extraction methodologies, clas-
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sifiers adopted, and evaluation measures. Section 4 delves into the experimental evaluation
conducted, offering a presentation of the undertaken experiments along with the corre-
sponding results and subsequent discussions. The concluding remarks of this study, along
with insightful suggestions for potential enhancements and avenues for future research
based on our findings, are given in Section 5.

2. Related Work

This section gives an overview of the existing automated methods in the dairy industry
(Section 2.1) and the AD techniques (Section 2.2).

2.1. Automated Methods in Dairy Industry

The analysis of milk-related products often demands specialized acquisition tech-
niques such as fluorescence spectroscopy, an effective spectral approach for determining
the intensity of fluorescent components in cheese, and near-infrared spectroscopy, aimed at
developing non-destructive assessment methods [1,9].

CV methods necessitate the utilization of cameras and controlled illumination setups to
capture images of dairy products. These techniques exhibit versatility, extending beyond the
assessment of optimal cutting times [10]. Combining CV methods with artificial intelligence
(AI) has found application in various tasks, including the classification of cheese ripeness
in entire cheese wheels [11] and the inspection and grading of cheese meltability [12].

Moreover, beyond production processes, the integration of AI in the analysis of dairy
products extends to estimating the shelf life of such products [13,14].

However, recent advancements, driven by the scarcity of dairy-related data, aim
to tackle challenging tasks such as detecting adulteration or identifying rare product-
compromising events through the utilization of AD approaches [15,16].

While existing studies have primarily concentrated on various methodologies for
monitoring the coagulation of milk and assessing cheese quality, the proposed research
endeavor introduces a novel and non-invasive AD-based approach explicitly tailored for
automating the detection of optimal cutting time during cheese formation, from images.
Prior investigations have delved into diverse techniques, such as electrical, thermal, op-
tical, and ultrasonic methods; however, our proposed methodology harnesses the potent
capabilities of CV and explainable DL. The innovation lies in the simplicity of the setup,
requiring only a camera connected to a computer, thereby offering a practical and accessible
solution for the food industry. In contrast to studies that primarily address cheese quality
parameters or maturation stages, our work is exclusively focused on the critical phase of
cheese production. This distinction positions our methodology as a pioneering contribution
to the field, addressing a crucial aspect of cheese production that has been less explored in
the existing literature.

2.2. Anomaly Detection

AD, the identification of patterns or instances that do not conform to expected behavior,
has garnered significant attention across various domains due to its critical importance
in identifying potential threats, faults, or outliers, with several key methodologies and
approaches [8,17,18]. In this subsection, we distinguish the main proposed approaches
into three different categories: statistical methods (Section 2.2.1), machine learning-based
(Section 2.2.2), and deep learning-based (Section 2.2.3).

2.2.1. Statistical Methods

These form the foundation of many AD techniques. One of the earliest approaches is
based on statistical properties such as the mean, variance, and probability distributions.
Techniques like the Z-score, Grubbs’, and Dixon’s Q-test utilize statistical thresholds to
identify outliers [19–21]. However, these methods often assume normality and may not
effectively capture complex patterns in high-dimensional data.
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2.2.2. Machine Learning-Based Methods

ML techniques have become increasingly prominent in AD due to their capability to
manage complex data patterns [22,23]:

Clustering-based methods and density estimation: Techniques such as k-means and
DBSCAN for clustering and Gaussian Mixture Models for density estimation are com-
monly used for AD without requiring labeled data. These methods detect outliers by
identifying deviations from normal data distributions. However, they can struggle with
high-dimensional or sparse data and are sensitive to parameter settings [24,25].

Unsupervised learning techniques: When labeled data are available, modifications of
classic ML algorithms are employed for AD. Notable examples include one-class SVM
(OCSVM) [26] and Isolation Forest (IF) [27,28], which are adaptations of Support Vector
Machines (SVMs) and Random Forest (RF), respectively.

Ensemble and hybrid approaches: Ensemble methods enhance AD performance and
robustness by combining multiple algorithms. Techniques such as IF [27,28] and the Local
Outlier Factor [29,30] utilize ensemble principles, aggregating results from several base
learners to identify anomalies. Hybrid approaches, which integrate various AD techniques,
further improve detection accuracy and reliability by leveraging the strengths of each
method [31]. In industrial applications, hybrid methods involving both ML and DL tech-
niques have been proposed. For instance, Wang et al. [32] introduced a loss switching
fusion network that combines spatiotemporal descriptors, applying it as an AD approach
for classifying background and foreground motions in outdoor scenes.

2.2.3. Deep Learning-Based Methods

DL techniques, particularly Artificial Neural Networks (ANNs) and their customiza-
tions provided throughout the last decade, process raw input data and independently
learn relevant feature representations [33]. This capability enables ANNs to outperform
traditional methods that rely on manually created rules or advanced feature-engineering
techniques [34], even in the context of AD [35]. An overview of the main architectures is
provided below:

Autoencoder-based architectures: Autoencoders, including Variational Autoencoders
(VAEs) [36], are a popular choice for AD in CV. VAEs learn to encode input data into
a compact latent representation and then reconstruct the data from this representation.
Anomalies are detected based on the reconstruction error, as anomalous data typically
result in higher reconstruction errors compared to normal data [37,38].

Generative Adversarial Networks (GANs): In a typical GAN setup, a generator network
creates synthetic data, while a discriminator network attempts to distinguish between real
and generated data. For AD, the generator learns to produce data that mimic the normal
data distribution. Anomalies can then be identified based on how well the discriminator
distinguishes the actual data from the generated data. High discriminator scores indicate
potential anomalies, as the generated data fail to accurately represent these outliers. GANs
have also been successfully applied to AD tasks [39,40].

Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks:
for sequential data, such as video frames or time series, RNNs and LSTM networks
are particularly effective due to their ability to capture temporal dependencies [41,42].
These networks maintain a memory of previous inputs, allowing them to understand
context over time. In the context of AD, RNNs and LSTMs can model the normal sequence
of events or patterns. Anomalies are detected when the predicted sequence deviates
significantly from the actual observed sequence [43].

Convolutional neural networks: CNNs are widely used, even in AD, for their powerful
feature-extraction capabilities from image data [44]. By learning hierarchical feature repre-
sentations, CNNs can detect subtle anomalies in visual data that may not be apparent to
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traditional methods. In AD, CNNs are often combined with other architectures, such as
autoencoders or GANs, to enhance detection accuracy [45].

Attention mechanisms and transformers: Attention mechanisms and transformer models,
initially proposed for natural language processing tasks, have been adapted for CV and
AD. These models can focus on relevant parts of the input data, improving the detection
of anomalies in complex scenes [46]. Transformers, with their self-attention layers, have
shown remarkable success in modeling dependencies and identifying anomalies in high-
dimensional data [47].

Self-supervised and unsupervised learning: DL methods for AD often rely on self-
supervised [48,49] and unsupervised [34,50] learning approaches, where the model learns
useful representations without requiring labeled data. Techniques such as contrastive
learning and pretext tasks enable the model to learn discriminative features that are
effective for identifying anomalies, for example in scenarios where labeled anomalous data
are scarce or unavailable.

Hybrid models: Recent advancements have explored hybrid models that combine multiple
DL architectures to leverage their individual strengths [50,51]. For instance, combining
CNNs with LSTMs allows the model to capture both spatial and temporal features, improv-
ing the robustness [52,53]. Similarly, integrating VAEs with GANs can enhance the model’s
ability to generate realistic data and detect anomalies based on reconstruction errors and
adversarial loss, particularly on time series data [54].

3. Materials and Methods

In this section, we first provide a description of the dataset analyzed (Section 3.1).
Following this, we elaborate on the methodology employed for the experiments con-
ducted. Section 3.2 offers a comprehensive explanation of the various features utilized
in our research, categorized into two main groups: handcrafted (HC) features and deep
features. The HC features were extracted from the images using established algorithms
(Section 3.2.1), while the deep features were derived from the activations of convolutional
neural networks (CNNs) (Section 3.2.2). Additionally, Section 3.3 details the classifiers used
in our study. Finally, Section 3.4 outlines the performance measures applied to evaluate the
classification results.

3.1. Dataset

The dataset was assembled by collecting images from a dairy company based in
Sardinia, Italy. The image-acquisition process involved using a Nikon D750 camera (Tokyo,
Japan) equipped with a CMOS sensor measuring 35.9 × 24.0 mm and a resolution of
24 megapixels. All images were in RGB format, with resolutions of 6016 × 4016 pixels.

This consisted of 12 distinct sets of images. Each one documents the coagulation
process as milk transforms from its initial liquid state to the curd stage. More specifically,
every set contains two distinct classes: one with images representing the normal curd
condition, identified as a non-target (i.e., the normal instances), and one with images
representing the optimal moments for cutting time, identified as the target (i.e., the
anomaly instances).

Table 1 provides a comprehensive summary of each set, numbered from 1 to 12,
including details such as the number of images and the class composition. As can be seen,
the dataset has a significant class imbalance, with most images falling into the non-target
class. Sets 1 and 2 depict the coagulation process of fresh whole sheep’s milk (Pecorino
Romano), while subsequent sets involve a blend of cow and sheep milk.
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Table 1. Comprehensive dataset details: the table provides information on the 12 distinct sets of
time-ordered images, denoted from 1 to 12. Each set is characterized by its number of images,
representing the number of images it contains, and their distribution between the two classes.

Set 1 2 3 4 5 6 7 8 9 10 11 12

Number of images 94 102 128 112 77 70 84 96 105 94 89 111
Non-target samples 77 90 108 89 54 45 63 72 68 59 60 77
Target samples 17 12 20 23 23 25 21 24 37 35 29 34

Figure 1 presents two sample images from set 11, highlighting the distinctions between
the two classes. Additionally, we include the peak response projection of the inverse
image, generated using a median filter of size 41 × 41, to comprehensively illustrate the
image structure.

Negative (non-target) class Positive (target) class
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Figure 1. Sample images from set 11: on the left, a picture representing the negative (non-target) class;
on the right, a picture representing the positive (target) class.

3.2. Feature Extraction

This section provides a comprehensive summary of the feature-extraction process
employed to train the ML methods used in this study as a comparison against the proposed
FCDDN. Section 3.2.1 illustrates the HC features, while Section 3.2.2 illustrates the deep
features. This study extracted HC and deep features from the images converted to grayscale
to simplify the analysis and computation process.

3.2.1. Handcrafted Features

HC features encompass diverse techniques and methodologies to extract morphologi-
cal, pixel-level, and textural information from images. These features can be categorized
into three primary categories: invariant moments, textural features, and color-based fea-
tures [55]. Each category is briefly described below, while every parameter has been set by
considering approaches in similar contexts [11].
Invariant moments: Denoted as the weighted averages of pixel intensities within an image,
these are used to extract specific image properties, aiding in characterizing segmented
objects. In this study, three distinct types of moments were used:

• Chebyshev moments (CHs): Introduced by Mukundan and Ramakrishnan [56] and
derived from Chebyshev polynomials, they were employed with both first-order
(CH_1) and second-order (CH_2) moments of order 5.

• Legendre moments (LMs): Initially proposed by Teague [57] and derived from Legen-
dre orthogonal polynomials [58], they were used with second-order of order 5.

• Zernike moments (ZMs): Introduced by Oujaoura et al. [59] and derived from Zernike
polynomials, they were applied with order 6 and a repetition of 4.
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Texture features: They focus on fine textures with different approaches. Here, the following
were used:

• Haar features (Haar): Consisting of adjacent rectangles with alternating positive
and negative polarities, they were used in various forms, such as edge features,
line features, four-rectangle features, and center-surround features. Haar features
play a crucial role in cascade classifiers as part of the Viola–Jones object-detection
framework [60].

• Rotation-invariant Haralick features (HARris): Thirteen Haralick features [61], de-
rived from the Gray-Level Co-occurrence Matrix (GLCM), were transformed into
rotation-invariant features [62]. This transformation involved computing GLCM varia-
tions with the parameters set to d = 1 and angular orientations θ = [0◦, 45◦, 90◦, 135◦].

• Local Binary Pattern (LBP): As described by Ojala et al. [63], the LBP characterizes
texture and patterns within images. In this work, the histogram of the LBP, converted
to a rotation-invariant form (LBP_ri) [64], was extracted using a neighborhood defined
by a radius r = 1 and a number of neighbors n = 8.

Color features: They aim to extract color intensity information from images. In this study,
these descriptors were calculated from images converted to grayscale, simplifying the
analysis and computation process. More precisely, as the color histogram characterizes the
global color distribution within images, seven statistical descriptors, the mean, standard
deviation, smoothness, skewness, kurtosis, uniformity, and entropy, were computed from
the grayscale histogram features (Hist) (Table 2) .

Table 2. Employed convolutional neural networks’ details including reference paper, number of
trainable parameters in millions, input shape, feature-extraction layer, and related feature vector size.

Ref. Params (M) Input Shape Feature Layer # of Features

AlexNet [65] 60 224 × 224 Pen. FC 4096
DarkNet-53 [66] 20.8 224 × 224 Conv53 1000
DenseNet-201 [67] 25.6 224 × 224 Avg. Pool 1920
GoogLeNet [68] 5 224 × 224 Loss3 1000
EfficientNetB0 [69] 5.3 224 × 224 Avg. Pool 1280
Inception-v3 [70] 21.8 299 × 299 Last FC 1,000
Inception-ResNet-v2 [71] 55 299 × 299 Avg. pool 1536
NasNetL [72] 88.9 331 × 331 Avg. Pool 4032
ResNet-18 [73] 11.7 224 × 224 Pool5 512
ResNet-50 [73] 26 224 × 224 Avg. Pool 1024
ResNet-101 [73] 44.6 224 × 224 Pool5 1024
VGG16 [74] 138 224 × 224 Pen. FC 4096
VGG19 [74] 144 224 × 224 Pen. FC 4096
XceptionNet [75] 22.9 299 × 299 Avg. Pool 2048

3.2.2. Deep Features

CNNs have demonstrated their effectiveness as deep feature extractors in different
contexts [76–78], as well as in AD setups [79–81]. CNNs excel at capturing global features
from images by processing the input through multiple convolutional filters and progres-
sively reducing dimensionality across various architectural stages. For our experiments,
we selected several architectures pre-trained on the Imagenet1k dataset [82], as presented
in Table 2, along with comprehensive details regarding the selected layers for feature
extraction, input size, and the number of trainable parameters for each architecture.

3.3. Classification Methods

This section presents the ML and DL classification methods employed in our analysis.
As suggested in Section 2, we selected three classifiers that could cope with the data to ana-
lyze, taking into account that each set is unique and potentially requires different methods
for analysis. Also, we aimed to compare three baseline methods to obtain insights into a
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novel dataset with limited images. For this reason, we avoided using more complex DL-
based methods, such as VAEs or GANs, as we faced a relatively small-sample-size dataset.

More specifically, we selected two ML-based classifiers: the OCSVM and the IF. Finally,
we chose the FCCDN from the DL-based approaches. The former two were trained with
every single feature described in Section 3.2, while, being a DL approach, the latter was
trained end-to-end. A brief description of these methods is now given.

3.3.1. One-Class SVM

As introduced in Section 2, this ML algorithm belongs to the family of SVMs and is
primarily designed for AD in datasets where only one class, typically the majority class
(normal instances), is available for training.

It aims to learn a decision boundary that encapsulates the normal instances in the
feature space. This boundary is constructed in such a way that it maximizes the margin be-
tween the normal instances and the hyperplane, while minimizing the number of instances
classified as outliers. Unlike traditional SVMs, which aim to find a decision boundary that
separates different classes, the one-class SVM focuses solely on delineating the region of
normality [83].

After training, the one-class SVM can classify new instances as either normal or
anomalous based on their distance from the decision boundary. Instances within the
margin defined by the support vectors are considered normal, while those outside the
margin are classified as anomalies.

3.3.2. Isolation Forest

This is an ensemble-based AD algorithm that operates on the principle of isolating
anomalies rather than modeling normal data points. It is particularly effective in identifying
anomalies in high-dimensional datasets and is capable of handling both numerical and
categorical features [84].

The main idea behind the Isolation Forest algorithm is to isolate anomalies by con-
structing random decision trees. Unlike traditional decision trees, which aim to partition the
feature space into regions containing predominantly one class, the Isolation Forest builds
trees that partition the data randomly. Specifically, each tree is constructed by recursively
selecting random features and splitting the data until all instances are isolated in leaf nodes.

The anomaly score assigned to each instance is based on the average path length in the
trees. Anomalies are expected to have shorter average path lengths compared to normal
instances, making them distinguishable from the majority of data points. The anomaly
score can be thresholded to identify outliers, with instances exceeding the threshold consid-
ered anomalies.

3.3.3. FCDD Network

This is a DL technique originally proposed by Liznerski et al. [8] for AD, particularly
within the framework of one-class classification. The FCDDN employs a backbone CNN
composed solely of convolutional and pooling layers devoid of fully connected layers.

At its core, the FCDDN aims to transform the input data such that normal instances are
concentrated around a predetermined center while anomalous instances are situated else-
where in the feature space. This transformation enables the model to effectively distinguish
between normal and anomalous patterns in the data distribution.

One distinctive feature of the FCDDN is its utilization of a sampling method to convert
data samples into images representing heatmaps of subsampled anomalies. These heatmaps
visualize the anomalies present in the input data, with pixels farther from the center cor-
responding to anomalous regions within the original images. In the current scenario, this
means a correct classification of the target class. An example is shown in Figure 2.

By employing convolutional and pooling layers exclusively, the FCDDN restricts the
receptive field of each output pixel, allowing for localized feature extraction and preserving
spatial information within the data. This characteristic makes the FCDDN particularly
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suitable for processing image data, where spatial relationships and local patterns play a
crucial role in AD. In this setting, the FCDDN was trained with color images to maintain
coherence with the classical CNN training scenario.

Figure 2. Schematic representation of generating full-resolution anomaly heatmaps using the FCDD
approach. On the left, the original input image is taken as the input by the backbone CNN. An up-
sampling procedure is then applied to the scaled CNN’s output, by means of a transposed Gaussian
convolution, to obtain a full-size heatmap [8].

3.4. Evaluation Measures

Consider a binary classification task, where each example e is represented by a pair
⟨i, t⟩, with i denoting the feature values and t representing the target category. A dataset D
comprises such examples. In this binary scenario, the categories are typically labeled as
negativeand positive.

The performance evaluation of a binary classifier on dataset D involves labeling each
instance as negative or positive based on the classifier’s output. The evaluation is based on
the following metrics:

• True negatives (TNs): instances correctly predicted as negative.
• False positives (FPs): instances incorrectly predicted as positive.
• False negatives (FNs): instances incorrectly predicted as negative.
• True positives (TPs): instances correctly predicted as positive.

These metrics lead to the following definitions:

• Precision (P): the fraction of positive instances correctly classified among all instances
classified as positive:

P =
TP

TP + FP
(1)

• Recall (R) (or sensitivity): measures the classifier’s ability to predict the positive class
against FNs (also known as the true positive rate):

R =
TP

TP + FN
(2)

• F1 score (F1): the harmonic mean between precision and recall:

F1 = 2 · P · R
P + R

(3)

4. Experimental Results

In this section, we comprehensively explore the interpretation and implications of
the results derived from our study. We structure our analysis into three distinct sections:
Firstly, we present the outcomes obtained using various shallow learning classifiers with
handcrafted features and deep learning-based features. Following this, we discuss the
results achieved by employing an FCDDN as an AD method. However, to simplify our
discussion, we report only the best-performing pairs of classifiers and features. This sys-
tematic approach provides a detailed examination of the efficacy and nuances of each
method employed, highlighting valuable insights into their respective performance. Finally,
we provide a global experiment result analysis.
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4.1. Experimental Setup

In this research, all the selected classifiers were trained with default parameters to
prevent the generalization capability of the trained models from being influenced. For the
sake of brevity, we report only the results obtained with the best ML classifier based on
the F1 score value obtained on the target class, which is the OCSVM. We also provide the
outcomes achieved through the FCDDN.

The experiments conducted with the ML techniques have been carried out over eight
HC feature categories and fourteen deep features extracted from off-the-shelf, pre-trained
CNNs. Both categories are described in Section 3.2. Moreover, the classifiers were trained
on the non-target class only, following the one-class classification paradigm [18].

The evaluation strategy was five-fold cross-validation. The FCDDN was composed of
a ResNet-18 as the backbone. It was trained with the following splits: 50%, 10%, and 40%
for training, calibration, and testing for the normal (non-target) class.Each training was
repeated five times. Moreover, the training procedures were executed for a maximum of
100 epochs, with early stopping based on the calibration set performance. A batch size of
32, the Adam optimizer, and a learning rate of 0.001 were employed.

Relevant performance measures have been reported for each experiment. In particular,
for both classes, we report the precision, recall, and F1 score, as described in Section 3.4.

The experiments were executed on a workstation equipped with the following hard-
ware: an Intel(R) Core(TM) i9-8950HK @ 2.90GHz CPU, 32 GB of RAM, and an NVIDIA
GTX1050 Ti GPU with 4GB of memory.

4.2. Quantitative Results

This section presents the results achieved using the best ML-based approach, the
OCSVM, when trained with either HC (Section 4.2.1) or deep features (Section 4.2.2), as well
as the performance of the FCDDN (Section 4.2.3). Three tables are provided to display the
optimal quantitative results obtained with these approaches. Specifically, the tables present
the results across different image sets from the dataset, with each set representing a distinct
cheese coagulation process, which may involve varying types of milk, environmental
conditions, or production batches. Table 3 highlights the best performing HC feature for
each set, while Table 4 identifies the CNNs from which the most effective deep features
were extracted. Finally, Table 5 shows the results obtained with the FCDDN approach.

Table 3. Results obtained with the best ML-based approaches (one-class SVM) trained on each set
with HC features. Average performance over the k folds (k = 5) and standard deviation (the latter
within round brackets) for each set and class are reported. The feature column reports the best HC
feature for the specific set.

Non-Target Target
Set Features Precision Recall F1 Precision Recall F1

1 ZM 0.97 (0.07) 0.61 (0.08) 0.74 (0.08) 0.75 (0.02) 0.99 (0.01) 0.85 (0.02)
2 ZM 0.94 (0.03) 0.62 (0.03) 0.75 (0.03) 0.62 (0.03) 0.93 (0.02) 0.75 (0.02)
3 CH_2 0.81 (0.11) 0.76 (0.09) 0.78 (0.10) 0.75 (0.02) 0.80 (0.02) 0.77 (0.02)
4 ZM 0.88 (0.07) 0.48 (0.27) 0.62 (0.14) 0.71 (0.06) 0.95 (0.02) 0.81 (0.09)
5 Haar 1.00 (0.05) 0.11 (0.35) 0.2 (0.15) 0.71 (0.06) 1.00 (0.01) 0.83 (0.03)
6 ZM 0.40 (0.03) 0.16 (0.03) 0.21 (0.03) 0.76 (0.03) 0.94 (0.03) 0.84 (0.04)
7 ZM 1.00 (0.03) 0.38 (0.03) 0.52 (0.03) 0.73 (0.04) 1.00 (0.01) 0.84 (0.03)
8 ZM 1.00 (0.02) 0.25 (0.03) 0.40 (0.03) 0.69 (0.14) 1.00 (0.01) 0.82 (0.03)
9 Hist 0.82 (0.03) 0.70 (0.04) 0.75 (0.03) 0.90 (0.00) 0.93 (0.01) 0.91 (0.01)

10 ZM 0.69 (0.14) 0.22 (0.07) 0.30 (0.09) 0.79 (0.04) 0.98 (0.01) 0.87 (0.02)
11 Hist 1.00 (0.04) 0.30 (0.14) 0.45 (0.11) 0.78 (0.04) 1.00 (0.01) 0.87 (0.02)
12 ZM 0.40 (0.03) 0.39 (0.03) 0.39 (0.03) 0.72 (0.02) 0.72 (0.02) 0.72 (0.02)
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Table 4. Results obtained with the best ML-based approaches (one-class SVM) trained on each set
with deep features. Average performance over the k folds (k = 5) and standard deviation (the latter
within round brackets) for each set and class are reported. The feature column reports the best deep
feature for the specific set.

Non-Target Target
Set Features Precision Recall F1 Precision Recall F1

1 XceptionNet 1.00 (0.01) 0.47 (0.07) 0.64 (0.04) 0.67 (0.02) 1.00 (0.01) 0.81 (0.01)
2 ResNet-18 1.00 (0.01) 0.41 (0.11) 0.57 (0.09) 0.54 (0.04) 1.00 (0.01) 0.70 (0.05)
3 EfficientNetB0 1.00 (0.01) 0.56 (0.07) 0.71 (0.08) 0.68 (0.03) 1.00 (0.01) 0.81 (0.01)
4 EfficientNetB0 1.00 (0.01) 0.54 (0.04) 0.68 (0.06) 0.75 (0.05) 1.00 (0.01) 0.85 (0.01)
5 XceptionNet 0.79 (0.02) 0.68 (0.03) 0.72 (0.02) 0.86 (0.01) 0.90 (0.02) 0.87 (0.02)
6 EfficientNetB0 0.80 (0.01) 0.31 (0.14) 0.44 (0.12) 0.80 (0.02) 1.00 (0.01) 0.89 (0.02)
7 XceptionNet 1.00 (0.01) 0.27 (0.04) 0.41 (0.03) 0.70 (0.02) 1.00 (0.01) 0.82 (0.02)
8 Inception-ResNet-v2 1.00 (0.01) 0.32 (0.09) 0.48 (0.03) 0.71 (0.04) 1.00 (0.01) 0.83 (0.02)
9 XceptionNet 1.00 (0.01) 0.29 (0.02) 0.43 (0.03) 0.80 (0.01) 1.00 (0.01) 0.89 (0.02)

10 XceptionNet 1.00 (0.01) 0.50 (0.00) 0.66 (0.02) 0.86 (0.01) 1.00 (0.01) 0.92 (0.03)
11 XceptionNet 1.00 (0.01) 0.27 (0.02) 0.41 (0.01) 0.77 (0.03) 1.00 (0.01) 0.87 (0.02)
12 XceptionNet 1.00 (0.01) 0.65 (0.03) 0.78 (0.01) 0.87 (0.03) 1.00 (0.01) 0.93 (0.03)

Table 5. Results obtained with the DL approach, i.e., the FCDD network. Average performance over
the k folds (k = 5) and standard deviation (the latter within round brackets) for each set and class
are reported.

Non-Target Target
Set Precision Recall F1-Score Precision Recall F1-Score

1 1.00 (0.00) 0.75 (0.05) 0.86 (0.03) 1.00 (0.00) 0.83 (0.03) 0.96 (0.03)
2 1.00 (0.01) 0.92 (0.01) 0.96 (0.02) 0.75 (0.02) 1.00 (0.00) 0.86 (0.01)
3 1.00 (0.01) 0.89 (0.01) 0.94 (0.02) 1.00 (0.01) 0.80 (0.02) 0.89 (0.01)
4 1.00 (0.00) 0.83 (0.03) 0.96 (0.03) 1.00 (0.00) 0.80 (0.02) 0.89 (0.01)
5 1.00 (0.01) 0.75 (0.02) 0.86 (0.03) 1.00 (0.01) 0.83 (0.03) 0.96 (0.03)
6 1.00 (0.01) 0.80 (0.02) 0.89 (0.02) 1.00 (0.01) 0.80 (0.02) 0.89 (0.01)
7 1.00 (0.01) 0.86 (0.01) 0.92 (0.02) 1.00 (0.01) 0.75 (0.02) 0.86 (0.01)
8 1.00 (0.01) 0.88 (0.03) 0.94 (0.01) 1.00 (0.01) 0.80 (0.02) 0.89 (0.01)
9 1.00 (0.01) 0.88 (0.03) 0.94 (0.01) 1.00 (0.01) 0.86 (0.01) 0.92 (0.01)

10 1.00 (0.01) 0.83 (0.03) 0.96 (0.03) 1.00 (0.01) 0.86 (0.01) 0.92 (0.01)
11 1.00 (0.01) 0.86 (0.01) 0.92 (0.01) 1.00 (0.01) 0.83 (0.03) 0.96 (0.03)
12 1.00 (0.01) 0.88 (0.03) 0.94 (0.02) 1.00 (0.01) 0.86 (0.04) 0.92 (0.01)

4.2.1. Results with ML Approaches and HC Features

The results of this approach are summarized in Table 3. In this setting, the OCSVM
consistently outperformed the IF on every single set. Significant differences were observed
in the F1 values for the target class, ranging from 0.72% (set 12) to 0.91 (set 9), indicating
how some sets were more challenging than others. Even though the precision for the target
class was not particularly high (constantly below 0.80% except for set 9), the recall scores
basically confirmed the discrete results on this class.

However, the main issue with this setting lies in the classification of the non-target
class, which can determine the identification of the wrong cutting time and, therefore, a
sub-optimal product. Despite some high precision scores (e.g., 1.00 on sets 5, 7, 8, and 11),
the recall values demonstrated several misclassification, since no one surpassed 0.76.

From a feature point of view, the invariant moments, the ZMs in particular, resulted in
the best in 8 out of the 12 sets, demonstrating superior performance compared to the other
HC features.

4.2.2. Results with ML Approaches and Deep Features

The summarized results are presented in Table 4. In this setting, the OCSVM outper-
formed the IF on 9 out of the 12 sets. In fact, we acknowledge that the IF obtained scores
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between 0.98 and 0.99 for both classes on sets 7, 8, and 9. However, the OCSVM obtained a
higher F1 score on average in the target class. For this reason, we report the results obtained
with the OCSVM.

Even in this case, the performance varied across different sets and classes. For the
target class, the precision values ranged from 0.54 to 0.87, with recall scores varying between
0.90 and 1.00. Similarly, for the non-target class, the precision scores ranged from 0.79 to
1.00, with corresponding recall scores ranging from 0.27 to 0.68.

Even though the deep features showcased notable performance improvements com-
pared to the handcrafted ones, particularly in the target class, the disastrous results obtained
with the recall scores on the non-target classes almost confirmed the results already obtained
with the HC features.

Considering the architectures, XceptionNet produced the best features in 7 sets out of
the 12, followed by EfficientNetB0 with 3.

4.2.3. Results with FCCDN

The results obtained by the FCDDN are presented in Table 5. In general, the perfor-
mance was higher than the OCSVM and IF as this approach achieved the best results
for both classes, demonstrating its ability to address the issue of low recall shown in the
previous approaches. It also significantly improved the result’s stability across different
sets and demonstrated near-perfect precision scores for each set except for the target class
of set 2. The results showed an average F1 score of 0.91 for the non-target class and 0.89 for
the target class, indicating an increase of 34% and 5%, respectively, compared to shallow
learning approaches using deep features.

The outcomes obtained through the FCDDN are detailed in Table 5. Generally, the
performance surpassed that of the OCSVM and IF algorithms, as the FCDDN achieved
superior results for both classes. This underscores its efficacy in addressing the issue of low
recall observed in prior methodologies. Additionally, the FCDDN enhanced the stability of
the results across various sets, exhibiting near-perfect precision scores for each set except
for the target class of set 2. Specifically, the average F1 scores for the non-target and target
classes were 0.91 and 0.89, respectively. These findings denote an enhancement of 34% and
5%, respectively, compared to ML approaches trained with deep features.

4.3. Qualitative Results

Given the importance of relying solely on the diffusion of granules and their size to
identify the optimal cutting time, as indicated in Section 1, it is desirable for the FCDDN to
exploit only these indicators for making predictions. Consequently, activation maps should
primarily highlight the multitude of curd grains.

This reason motivated the conduction of the qualitative assessment of the results
produced by the FCDDN, also to enhance transparency. Visual explanations with the
produced heatmaps are calculated. The network generated coarse localization maps that
highlighted regions in the image crucial for predicting the target class.

Figure 3 shows the heatmaps obtained for some sets (4, 5, 10) for both the non-target
and target classes using the proposed FCDDN. The FCDDN classified the target class by
utilizing a high number of curd grains, particularly in contrast to the non-target class. This
distinction is logical since the target class in the examined dataset represents the optimal
cutting time, which occurs when the coagulated milk mass consists of small curd grains.

Finally, considering that the nature of the proposed system is entirely based on a
non-invasive and non-destructive visual inspection through a picture acquired by a digital
camera, there are no other indicators, e.g., moisture or flavor, that can determine the
appropriate cutting time. However, this aspect opens the field to the introduction of further
non-invasive and non-destructive sensors for future work.
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Figure 3. FCDDN heatmaps generated for some sample sets obtained for both classes.

4.4. Discussion

Based on the results, the FCDDN achieved an average F1 score of 0.91 and 0.89 for
the non-target and target classes, respectively. This demonstrates its ability to accurately
identify standard coagulation patterns and deviations, outperforming other evaluated
methods. It also showed more stable prediction across different sets.

With ML classifiers, the deep features generally outperformed the HC features, and
XceptionNet provided the best performance. Furthermore, the OCSVM outperformed the
IF for all sets except three in the deep features setting. Despite the key advantage of the IF
and OCSVM in their efficiency in handling high-dimensional data, the results have clearly
shown that the IF struggled with datasets containing structured anomalies, which may be
the case. Similarly, the OCSVM’s performance on the non-target class may be sensitive to
the choice of the kernel function and parameters, such as the nu parameter, which controls
the trade-off between the margin size and the number of outliers.

The evaluated FCDDN provides a promising solution for automatically determining
optimal cutting time. However, it is important to note that this work is a feasibility study
relating to the problem under consideration. We must consider how similar datasets do not
exist for the state of the art and that, to verify the generalizability of the proposed solution,
additional datasets must be refined, even with synthetic data, as already in use in other
contexts, from from video surveillance [85,86] to healthcare [87] and face detection [88].

Synthetic data are being used in CV tasks for object and AD. This provides a controlled
environment for generating diverse data when real-world data are scarce [89]. In the context
of cheese production, simulating the cheese-formation process and creating synthetic
images could improve the models’ generalization capabilities. However, synthetic data
should closely resemble real-world conditions to ensure effective knowledge transfer to
real-world scenarios. This aspect is particularly challenging in this scenario due to the
physical and chemical changes that occur during cheese formation.

An additional consideration pertains to the potential necessity of re-training the
system after its deployment in the dairy industry. Specifically, under the acquisition
conditions outlined in this study, re-training the system is not required as the proposed
pipeline is robust and not susceptible to domain shift, given that the acquisition condition
is consolidated within the system pipeline. However, re-training may become essential to
preserve accuracy and effectiveness under varying acquisition conditions. For instance,
if the system is deployed in a dairy industry with different operational conditions, the
production variables may change, potentially impacting the performance of the anomaly-
detection model. Consequently, re-training the model with new data in such contexts will
enable it to adapt to these changes, ensuring the detection of the optimal cutting time and
maintaining the cheese quality.
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In any case, with the refinement of additional datasets, real-world industrial imple-
mentation has the potential to enhance production efficiency and quality control.

5. Conclusions

This study aimed to create an automated approach for determining the optimal cutting
time during cheese formation. One key finding was that deep learning-based algorithms,
particularly the FCDDN, outperformed ML-based classifiers for this task. They achieved
an average F1 score of 0.91 and 0.89 for the non-target and target classes, respectively.
This demonstrates their ability to accurately identify standard coagulation patterns and
deviations, surpassing other evaluated methods. Additionally, these algorithms showed
more stable predictions across different sets.

Future research will focus on exploring and evaluating the proposed approach with
more extensive and diversified potential industrial datasets, aiming to confirm the general-
izability of the findings. In fact, the main further objective is the experimentation of the
proposed system in the real-world scenario of the dairy industry that provided the dataset.

Also, the inclusion of data from a wide array of cheese varieties and production envi-
ronments has the potential to yield valuable insights. Furthermore, integrating additional
modalities, such as thermal imaging, could offer a more comprehensive understanding
of the coagulation process, potentially enhancing detection performance within multi-
modal frameworks.

To address challenges stemming from limited labeled data availability, apart from the
possible introduction of variations in factors like lighting conditions and camera angles to
create synthetic data, adapting self-supervised and semi-supervised learning paradigms
may prove advantageous, particularly through pre-training models on extensive unlabeled
datasets. Moreover, the development of uncertainty estimation techniques and the investi-
gation of further backbones could facilitate the calibration of predictions based on input
ambiguity, thereby enhancing practical deployment in real-world scenarios.

Focusing on efficiency and deployability factors, designing embedded targeted net-
works tailored to considerations like model size and latency could streamline on-device
implementation for integrated inspection systems. Finally, exploring domain adaptation
and transfer learning approaches holds promise for generalizing models in this context.
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Abbreviations
The following abbreviations are used in this manuscript:

CV computer vision
AD anomaly detection
DL deep learning
FCDDN Fully Convolutional Data Description Network
HC handcrafted
CNN convolutional neural network
CH Chebyshev moment
LM Legendre moment
ZM Zernike moment
Haar Haar feature
HARri rotation-invariant Haralick features
LBP Local Binary Pattern
Hist grayscale histogram feature
OCSVM one-class SVM
IF Isolation Forest
VAE Variational Autoencoder
GAN Generative Adversarial Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
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