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Abstract: Computational simulation models have been widely used to study the dynamics of COVID-
19. Among those, bottom-up approaches such as agent-based models (ABMs) can account for
population heterogeneity. While many studies have addressed COVID-19 spread at various scales,
insufficient studies have investigated the spread of COVID-19 within closed indoor settings. This
study aims to develop an ABM to simulate the spread of COVID-19 in a closed indoor setting
using three transmission sub-models. Moreover, a comprehensive sensitivity analysis encompassing
4374 scenarios is performed. The model is calibrated using data from Calabria, Italy. The results
indicated a decent consistency between the observed and predicted number of infected people
(MAPE = 27.94%, RMSE = 0.87 and χ2(1, N = 34) = (44.11, p = 0.11)). Notably, the transmission
distance was identified as the most influential parameter in this model. In nearly all scenarios, this
parameter had a significant impact on the outbreak dynamics (total cases and epidemic peak). Also,
the calibration process showed that the movement of agents and the number of initial asymptomatic
agents are vital model parameters to simulate COVID-19 spread accurately. The developed model
may provide useful insights to investigate different scenarios and dynamics of other similar infectious
diseases in closed indoor settings.

Keywords: agent-based modeling; COVID-19 transmission; sensitivity analysis; epidemiology

1. Introduction

COVID-19, caused by SARS-CoV-2, is a highly contagious disease that spreads through
various transmission pathways such as physical contact, inhalation of small particles spread
by coughing or sneezing, and even indirectly through contaminated surfaces [1,2]. A high
probability of infection is present inside closed indoor settings (e.g., schools, factories,
or offices) due to a higher likelihood of close contact [3]. It is expected that almost 90%
of transmissions occur within indoor settings [4]. Moreover, the infection risk in indoor
settings is around 18.7 times higher compared to outdoor environments [5]. Although many
studies have modeled COVID-19 transmission at the city and country scales, limited
research has investigated the spread of COVID-19 within a closed indoor setting.

Compartmental mathematical models have a long-standing history of application in
various epidemiological studies to predict and control epidemics [6]. These models are pri-
marily based on ordinary differential equations (ODEs); however, more complex variations
such as fractional or stochastic differential equations have also been developed [7]. Since the
onset of the COVID-19 pandemic, numerous studies have utilized mathematical methods
to investigate the behavior of this disease [8–10]. A major drawback of these compartmental
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mathematical models is population heterogeneity and the neglect of interactions among
individuals [11]. Moreover, these models overlook spatial components and individuals
movements, which can influence the transmission dynamics [12].

Cellular automata (CA) models can address some of these limitations by modeling the
spatio-temporal dynamics of diseases and reproducing the behavior of a system using local
interactions [13]. Common CA models are made up of regular grids, where each cell status
changes according to transition rules [14]. Their simplicity facilitates easy implementation,
making them suitable for visualizing disease transmission. However, the representation
of individual movements and interactions in space is not presented [15]. These models
have also been used to study the spread of COVID-19 (for example, the study by Li and
Yen [16]).

Agent-based modeling (ABM) is a widely employed bottom-up approach for modeling
complex systems [17]. ABMs offer the advantage of incorporating population heterogeneity
wherein heterogeneous agents interact with each other and the environment, leading to
an emergence of the overall behavior of the system [18]. Similar to compartment and CA
models, ABMs have been extensively used to simulate the spread of diseases, including
malaria [19], cutaneous leishmaniasis [20], mumps [21], avian influenza [22], AIDS [23],
and COVID-19 [1,24]. Besides ABMs, networked metapopulation models can also consider
population diversity and spatial aspects [25]. These methods have been applied to model
the spread of COVID-19 (e.g., the study by Humphries et al. (2021) [26] and the study
by Calvetti et al. (2020) [27]). Since ABMs can address the mentioned shortcomings and
limitations of other methods, they can provide valuable insights for modeling biological
phenomena such as the spread of COVID-19. These models (ABMs) generally entail higher
computational costs compared to other modeling methods [28].

In applying ABMs in COVID-19 research within indoor settings, Cuevas presented
one of the initial ABMs to simulate and evaluate transmission risk at the facility scale.
The model incorporated susceptible and infected agents based on four scenarios. However,
the model was based on unrealistic assumptions and did not consider recovered and
vaccinated cases [29]. Rodriguez et al. addressed these gaps and introduced a new ABM
that included external infection, asymptomatic individuals, and vaccinated agents. They
also examined five scenarios to evaluate re-opening policies in facilities, such as disinfection
protocols and mobility restrictions. They validated their model using weekly infection
data from McGill’s University, Canada [30]. In the US, Borjigin et al. examined policies
that transit agencies implemented during the early phases of COVID-19 for urban buses
based on two types of agents: passengers and virus agents. Each virus agent had mobility,
a life span, and a possibility of infection in case of direct contact with the passenger agents.
They concluded that the most effective prevention outcome involves the combination of
mask-wearing, open window policies, and half-capacity seating policy, particularly during
higher-frequency bus services [31]. In Tianjin, China, Zhang et al. simulated indoor COVID-
19 transmission in a supermarket with frequent human movements. They used the social
force model, a microscopic ABM approach, to simulate pedestrian movement and a simple
forcing method to simulate indoor airflow in their ABM. Their model included air-based
transmission and surface-based transmission. The results indicated that universal mask
usage was the most potent intervention while incorporating multiple exits was the most
effective among spatial interventions [5].

The ABMs developed for modeling the spread of COVID-19 in indoor environments
share common elements. Almost all studies in this field have examined the impact of
interventions on mitigating the risk of disease. The behavior of agents is simpler in some
studies and more complex in others. For example, in the Cuevas study [29], the agents’
behaviors are simpler compared to the study by Gunaratne et al. [32]. In the study by
Gunaratne et al., they utilized two agent-based models: one for creating a contact network
and the other an agent-based SIR model. Additionally, a relatively complex scheduling
program was considered for the agents. The movement of people indoors significantly
influences the spread of respiratory infectious diseases [33,34]. In research related to ABMs
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for simulating agent movement, various methods have been utilized. In some models,
agents’ movements are considered random (e.g., studies by Rodriguez et al. [30] and
Karimian et al. [35]). Other studies have utilized more complex models, such as pedestrian
models. For instance, Reveil and Chein used their own movement algorithm, which
includes a navigation network within the simulation environment [36]. Another element
is the simulation environment. The environment in ABMs simulates the spatial layout
of buildings. Studies have shown that spatial layout can have a considerable impact on
the spread of contagious diseases [37,38]. In some studies, the simulation environment
is simple and box-like (such as Karimian et al. [35]), while in others, it is highly detailed.
For example, Reveil and Chen [36] used detailed floor plans in their study to create a
simulation environment. Therefore, it can be observed in the literature that agent-based
models have been implemented at different resolutions, and there is always a trade-off
between the complexity of the model and its execution speed.

In this study, we developed an ABM to simulate the spread of COVID-19 in indoor
environments. We calibrated the model with real data to mimic the actual behavior of
COVID-19 spread. The created model integrates features from previous models to enhance
its reliability. This model can be used to analyze the dynamics of the disease in indoor
settings (such as schools, offices, universities, and hospitals) and to examine the behavior of
the disease under different scenarios. In the presented model, we assumed that COVID-19
may be transmitted in three ways: (1) transmission through direct contact with agents,
(2) external transmission outside the environment, and (3) indirect disease transmission
through contaminated surfaces. While previous studies focused less on indirect disease
transmission through contaminated surfaces, we developed and investigated this trans-
mission sub-model in our study. Additionally, in most previous studies on agent-based
modeling of COVID-19 spread, sensitivity analysis of the developed models was either
overlooked or not conducted thoroughly. Many of these studies only examined a limited
number of scenarios to assess the impact of parameters on the results, creating a research
gap in the sensitivity analysis of ABMs [39]. Sensitivity analysis can help assess the robust-
ness of ABMs and understand how model parameters influence the final results. In this
study, we examined the sensitivity of our model to nine parameters, resulting in 4374 differ-
ent scenarios, which distinguishes our work from similar studies. To achieve this goal, we
used a lower-resolution model compared to some of the high-resolution models mentioned.
We demonstrated that in ABMs, it is essential to carefully examine the model’s sensitivity
to its parameters. This not only increases the model’s reliability but also allows for a more
comprehensive examination of the dynamics of disease spread, which, in turn, reveals new
insights into disease prevention strategies.

2. Materials and Methods
2.1. Study Area and Data

We retrieved publicly available epidemiological data from the Calabria region in
Italy [40]. The data include the number of diagnosed COVID-19 cases and the total number
of conducted tests. Figure 1 shows the geographic location of the study area. The population
of Calabria is over 1.8 million [41], and it spans between 15.6◦ E to 17.2◦ E longitude and
37.9◦ N to 40.14◦ N latitude, covering an area of 15,222 km2. These regional-level data
from Calabria were employed for meticulous model calibration, to better represent indoor
disease spread dynamics, which is elaborated on in Section 2.3. The proposed ABM was
implemented in NetLogo 6.2.2 open-source modeling software.
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Figure 1. Geographic location of the study area.

2.2. The Agent-Based Model

The developed model incorporates human agents who can contract COVID-19 through
direct and indirect contacts, as well as external infection from sources outside the defined set-
ting. The specifications and descriptions of the ABM are presented based on the Overview,
Design concepts, Details (ODD) protocol [42–44]. ODD is a protocol used to standardize
the description of ABMs. Utilizing this protocol ensures the reproducibility of an ABM and
prevents arbitrary descriptions of such models (something observed in previous literature),
making the models comparable.

2.2.1. Purpose and Patterns

The objective of the proposed ABM is to simulate the dynamics of COVID-
19 in closed indoor settings. Given the variability of the transmission parameters
of COVID-19 across various strains [45], we need to evaluate the parameters under different
simulation scenarios.

2.2.2. Entities, State Variables, and Scales

The developed model includes two types of entities: dynamic human agents and static
cells. The state variables of human agents are shown in Table 1. It should be noted that the
cells can only have location and ‘VirusConcentration’ variables. ‘VirusConcentration’ is a real
number and indicates contamination of each cell.

Table 1. The state variables of human agents.

Variable Variable Type (Units) Meaning

x Real number (meters) position of human agentsy

PInfection Real number The probability of infection for normal human agents
(Not vaccinated and without previous infection)

PReinfected Real number The probability of infection of reinfected human agents

PVaccinated Real number The probability of infection of vaccinated human agents

secretionRate Real number The amount of SARS-CoV-2 secretion by the
infected agent

PFatality Real number The probability of death of human agents
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Table 1. Cont.

Variable Variable Type (Units) Meaning

PMove Real number The probability of movement of human agents in
the environment

PSmallMove Real number The probability of small movement of human agents
in the environment

τIncubation Integer; days Incubation time

τRecovery Integer; days Recovery time

State Integer The state of human agents (susceptible, exposed,
infected, recovered, deceased, quarantined)

Vaccinated Boolean Vaccinated and unvaccinated flag

Asymptomatic Boolean Symptomatic and asymptomatic flag

Reinfected Boolean Reinfection flag

In the present model, each time step corresponds to a single day, and the total simula-
tion duration is one year. Human agents can be placed anywhere in this space. The simu-
lation environment is nontoroidal. The dimensions of each cell are 1 × 1 meters, and the
spatial extent of the model in the basic scenario is 36 × 36 meters. The dimensions of the
environment are determined according to the study of Rodriguez et al. [30] (simulation
environment: 1300 m2, time period: one year starting at 24 February 2020).

2.2.3. Process Overview and Scheduling

In all steps of the simulation, the sequence of agent-driven processes occurs randomly.
Figure 2 outlines the procedures of the model through a flowchart diagram. At the begin-
ning of the simulation, human agents and cells are initialized. Then, the model examines
direct contacts between the agents with the potential for infection transmission. Agents can
move in each time step, and after the movement procedure, surface contamination occurs
when the infected agents come into contact with cells. SARS-CoV-2 has a pre-defined half-
life on the cells, and its concentration on cells decreases with each time step [2]. If human
agents are placed on contaminated cells, they could become infected. Lastly, our model
incorporates an external infection procedure, capturing the potential for agents to contract
the infection beyond the immediate simulated environment.

Initialize cells

Initialize human
agents

• Setup agents

Direct infection

Small movement

Distant movement

• Indirect transmission

Concentration

Indirect infection

Decay

External infection

Incubation,
symptom onset and

quarantine

Death

Recovery

• Movement of agents

Figure 2. Procedures of the proposed model.
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The clinical state of the agent is updated based on the states of the SEIRQD (Susceptible-
Exposed-Infectious-Recovered-Quarantined-Deceased) model. This model includes suscep-
tible, exposed, infected, recovered, quarantined, and dead states [46]. These state transitions are
graphically depicted in Figure 3.

Susceptible Exposed Infected

Recovered

Quarantined

Dead

S E I

R

Q

D

• Normal agents

• Asymptomatic agents

• Vaccinated agents

• Recovered agents

Infection Incubation time

Figure 3. State of human agents in the SEIRQD model.

2.2.4. Design Concepts
Sensing

In ABMs, “sensing” refers to the ability of agents to perceive and gather information
from their environment or from other agents within the system. Sensing mechanisms
enable agents to interact with their surroundings, make decisions, and adapt their behaviors
based on the information they receive. In our model, susceptible human agents can sense
infected agents within a specific distance (transmission distance) that can be infected.
Moreover, these agents can sense the cellular agents below them, leading to indirect disease
transmission through contaminated surfaces. In other words, agents interact with other
agents when they are within the transmission distance and, also, with their immediate
environment. Cellular agents can sense infected human agents placed on them, contributing
to the contamination of the environmental surface.

Interaction

In the proposed model, there are two types of interactions between agents. In the
first type, infected agents can infect susceptible agents through direct physical contact.
In the second type, infected agents can cause environmental contamination, and susceptible
agents can become infected through cells.

Stochasticity

Stochasticity can introduce heterogeneity among agents [47]. In our model, the ini-
tialization of some state variables of agents (such as PInfection and τIncubation) are stochastic.
Moreover, the state change of agents is based on the probabilities of transition rules,
and their movement is stochastic.

Observation

During the simulation, the agents and environment of the model are dynamically
displayed in the user interface. The color of each agent shows its clinical state, and the
color of the cells shows the concentration of SARS-CoV-2. We have displayed the statistics
(for example, the number of cumulative infected agents) in charts in the user interface (see
Appendix A—Figure A1).

2.2.5. Initialization

At the beginning of the simulation, state variables of agents were initialized. We
considered 200 agents as the initial population of the base scenario. Table 2 presents the
state variables of human agents along with the range of possible values in the base sce-
nario. To calculate the parameters of disease transmission probabilities (PInfection, PReinfected,
and PVaccinated), we utilized the secondary attack rate calculated in other studies. It should
be noted that this value is dependent on the population under study and the disease variant,
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with different values being suggested in previous studies. Since our calibration data pertain
to the onset of the epidemic, these values were extracted from relevant studies. The only
state variable for cells is the concentration of SARS-CoV-2, with an initial value of 0.

Table 2. The initial values of state variables for human agents in the baseline scenario.

Variable Value Reference/Source

x [0, SettingWidth] -
y [0, SettingHeight] -

PInfection [0.02, 0.03] [30,48,49]
PReinfected [0.006, 0.0065] [30,50]
PVaccinated [0.0045, 0.005] [30,51]

secretionRate 0.008 [2]
PFatality [0.007, 0.07] [30]
PMove [0.3, 0.5] [30]

PSmallMove [0.7, 0.9] [30]
τIncubation [5, 6] [52]
τRecovery 14 [52]

State Susceptible -

2.2.6. Input Data

The proposed model does not use input data to represent variations in the environment
and agents. However, we have used actual data to calibrate our model as described
in Section 2.3.

2.2.7. Sub-Models

We have developed several sub-models to simulate the dynamics of disease spread,
with each sub-model performing a specific task. The following sub-models follow the
flowchart in Figure 2.

Model Initialization

This sub-model initializes agents and the simulation environment. The parameters of
the model that are initialized in this step are presented in Table 3, along with their corre-
sponding values in the base scenario. The movement parameters (i.e., ‘maxMovementsPer-
Day’ and ‘maxRadiusLocalMovement’) have been adapted from the study of Rodriguez et al.
within the base scenario [30]. The ‘externalInfectionParameter’ indicates the probability of
external infection, and ‘indirectTransmissionParameter’ represents the probability of indirect
infection. ‘maxMovementsPerDay’ and ‘numberOfAsymptomaticAgents’ are considered for
model calibration as described in Section 2.3.

Table 3. The initialization parameters of the model.

Parameter Value

populationSize 200
facilityWidth 36
facilityHeight 36

simulationDays 365
maxMovementsPerDay 350

maxRadiusLocalMovement 5
distanceOfContagion 1.5

initialNumberOfInfectedAgents 0
numberOfVaccinatedAgents 0

numberOfAsymptomaticAgents 100
externalInfectionParameter 0.015

indirectTransmissionDistance 2
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Table 3. Cont.

Parameter Value

decayRate 0.25
secretionRate 0.008

indirectTransmissionParameter 0.015

Direct Transmission Process

This sub-model simulates disease transmission via direct contact. When susceptible
agents are within a specific distance (‘distanceOfContagion’) from infected agents, they could
become infected with a certain probability (PInfection). The probability of infection is also
proportional to the agents’ states. For agents who have previously recovered, the probability
of infection is lower due to increased immunity (PReinfected). Vaccinated agents have the
least infection probability (PVaccinated).

Movement of Agents

This sub-model simulates the movement of agents within a setting. The movement of
agents is the primary reason for their interaction with each other and consequently for dis-
ease transmission. For this reason, one of the earliest and most effective non-pharmaceutical
interventions for disease prevention is social distancing. Various studies have employed
different models to simulate agent movement. In studies conducted on smaller scales (such
as cities and countries), agent movement is often not explicitly modeled, and instead, dis-
ease transmission networks are used (as in the study by Kerr et al. [53]). In network-based
models (such as metapopulation models), it is the movement and migration of the popula-
tion that ultimately leads to the spread of the disease [25,54,55]. Given the large number of
agents in these studies, a precise definition of agent movement at a finer temporal resolution
may not be feasible. However, in indoor studies, agent movement is usually modeled. This
practice leads to simulations that closely resemble reality. In indoor environments (such as
schools or offices), individuals typically engage in various movements throughout the day
(such as going to the restroom or picking up a tool). To model the movement of individuals,
similar to the Rodriguez et al. model, we considered two types of movement for agents:
small and large movements [30]. In each time step (one day), agents must perform a
certain number of movements determined by a parameter, ‘maxMovementsPerDay’. In this
sub-model, each agent first decides, based on a probability PMove, whether to move or
remain stationary. If the decision is to move, it then decides, with probability PSmallMove,
whether to make a small or large movement. The probability of making a small movement
is higher than that of making a large movement. In a small movement, the agent moves
in a random direction within a radius ‘maxRadiusLocalMovement’. In a large movement,
the agent’s position is randomly determined within the simulation space. This process
is repeated for all agents multiple times until, ultimately, in each time step, simulation,
‘maxMovementsPerDay’ movements are performed.

Indirect Transmission Process

This sub-model accounts for disease transmission through contaminated surfaces.
The infected agents contaminate their environment by releasing droplets containing SARS-
CoV-2 at a rate of ‘secretionRate’ within a radius of ‘indirectTransmissionDistance’. The ‘de-
cayRate’ is considered based on the half-life of SARS-CoV-2 on surfaces. The agents could
be infected based on indirect transmission probability, determined by the probability of
‘indirectTransmissionParameter’ multiplied by ‘virusconcentration’.

External Infection Process

Assuming external infection outside the immediate setting, ‘externalInfectionParameter’
is the probability of transmission outside the setting. At each step, agents could be infected
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through external sources which simulate the contagion dynamics of locality (city, state,
country) [30].

Incubation and Quarantine Process

Exposed agents are initially asymptomatic and may develop symptoms after the
incubation period. Asymptomatic agents remain in the setting when infected, while
symptomatic agents are quarantined after the incubation period until they recover and
cannot transmit the disease during the quarantine period.

Agents’ Mortality Process

This sub-model simulates the mortality process. Since asymptomatic agents have
mild symptoms, only quarantined agents may die. The probability of death for vaccinated
agents is decreased by 90% [56].

Recovery Process

As COVID-19 patients usually recover within a few days, in this sub-model, the in-
fected agents recover after the recovery period. The recovered agents may be reinfected,
but their probability of infection is lower due to their enhanced immunity [57].

2.3. Model Calibration

We calibrated our model similar to the study of Bouchnita and Jebrane [2]. They
calibrated their multi-scale model with a population of 250 agents using data from the
Calabria region, Italy. Given the limited number of calibration parameters in our model,
we calibrated the model manually.

The calibration data were for the early days of the epidemic and were collected for
35 days starting from 24 February 2020. Our preliminary descriptive statistics showed that
a total of 614 infected cases have been recorded (max = 101, min = 0, mean = 18 per day,
standard deviation = 23). In addition to the daily infections, this dataset included daily
total tests. We used the infected population rate to align the data population with our
simulation population.

Figure 4 shows the daily counts of infected cases and the corresponding histogram for
calibration and real data. We considered the average results of 1000 simulation runs in cali-
bration. Two parameters were estimated in the calibration process: ‘maxMovementsPerDay’
and ‘numberOfAsymptomaticAgents’. The corresponding values are mentioned in Table 3.
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Figure 4. Infected cases: (a) Calabria daily data and (b) data distribution.
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To compare the simulation results with the actual data, three evaluation metrics,
including RMSE (Root-Mean-Square Error), normalized RMSE (NRMSE), and MAPE
(Mean Absolute Percentage Error) were used. Also, we used the Chi-square goodness-of-fit
test to assess how close the values predicted by the model are to the actual data [24].

2.4. Sensitivity Analysis

The sensitivity analysis methodology employed in our proposed model is similar to
the protocol provided by Borgonovo et al. [39]. This protocol is more comprehensive than
the usual scenario-based methods used in many studies that examine a limited number
of scenarios. In our sensitivity analysis, we explored a substantial number of scenarios
and visualized the results using simple ICE (Individual Conditional Expectation) diagrams.
The sensitivity analysis parameters, their values, and base scenario values are presented
in Table 4.

Table 4. The sensitivity analysis parameters of the model.

Parameter Values Base Scenario Value

distanceOfContagion 1.5, 2 1.5
recoveryTime 10, 14, 18 14
facilityWidth 30, 36, 40 36
facilityHeight
maxMovementsPerDay 250, 305, 350 350
incubationTimeRange [3, 4], [5, 6], [7, 8] [5, 6]
initialNumberOfInfectedAgents 0, 5, 10 0
numberOfVaccinatedAgents 0, 20, 40 0
numberOfAsymptomaticAgents 50, 100, 150 100

According to Table 4, all combinations of sensitivity analysis parameters of the model
produced 4374 different scenarios. Comparing these scenarios with each other allows for
checking the effect of the parameters in the model. It should be noted that due to the
stochastic nature of the model, scenarios need to be repeated multiple times to overcome
randomness, and conclusions are based on the average results. To address this, we repeated
each scenario 20 times and based our analysis on the average of these results. Furthermore,
since only the effect of the parameter under investigation was to be examined, correspond-
ing scenarios were executed using the same random seed. Finally, the total number of runs
equals 4374 × 20 = 87480. The execution time of each scenario can be different according to
its parameters (such as ‘maxMovementsPerDay’ and ‘facilityWidth’). However, the execution
time of all scenarios, along with their repetitions, was about 24 h on a machine with an
Intel® Core™i5-8250U processor and 12 GB of RAM.

3. Results
3.1. Calibration

The Kolmogorov–Smirnov test showed that the data do not follow a normal distribu-
tion, D(35) = 0.63, p = 0.00. According to the calibration analysis, the values for the evalu-
ation of the model were RMSE = 0.87 infected people, NRMSE = 6%, and MAPE = 27.94%
which indicates a decent consistency between the actual data and results [47]. Also, the Chi-
square test revealed that the simulation results and actual data are not significantly different
[χ2(1, N = 34) = (44.11, p = 0.11)].

In Figure 5, the real data from Calabria, Italy, are shown alongside the results obtained
from averaging 1000 simulation repetitions. During the calibration process, it was found
that the ‘maxMovementsPerDay’ parameter is the most crucial parameter aligning the model
with reality. The curvature of the simulation results in this figure is heavily influenced
by this parameter, and without considering this parameter, the cumulative growth rate of
infected cases is almost linear. This shows the importance of the ‘maxMovementsPerDay’
parameter and the movements of agents in the spread of COVID-19.
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We have plotted the maximum, minimum, and interquartiles of the simulation to
show that the model is very sensitive to randomness. At the beginning of the simulation,
the interquartiles are close to the average, but in the next time steps, their distance from
the average significantly increases. The minimum (which is zero in all these 35 days) and
maximum simulation curves are very different from the average curve. The stochasticity of
the model justifies this significant differences between the simulation runs. In this figure,
we can visually observe that the model demonstrates a better alignment with the actual data
in the final days (day 20 onwards). The data from Calabria, Italy, include COVID-19 tests
conducted as well. Testing conducted in the early days of the outbreak is comparatively
lower than in later days, which is likely why the model fits better in the later days. It
is crucial to acknowledge, however, that the model’s design and overall accuracy also
significantly impact its performance.

0 5 10 15 20 25 30 35
Time Steps (Day)

0.00

0.02

0.04

0.06

0.08

0.10

R
el

at
iv

e 
In

fe
ct

ed

Actual Data
Mean
Min
Max
Interquartile

Figure 5. Comparison chart of calibration results and data from Calabria, Italy.

3.2. Base Scenario Dynamics

In Figure 6a, depicting the dynamics of mortality, infection cases, and the number of
individuals in quarantine during the spread of COVID-19 (results obtained from averaging
1000 model runs), at the onset of the outbreak, due to the lack of immunity among indi-
viduals, the disease spreads rapidly. The peak of the outbreak occurs on average on day
75, and 27.25 new cases are infected with COVID-19 on this day. The basic reproduction
number calculated for the simulation results was 2.414, while for the real data, it was 2.934.
We used the Initial Exponential Growth Method to calculate these values [58,59]. These
numbers are consistent with previous studies that suggest values for Italy in the range
of 2.5 to 3.0 [60]. In calculating this value, quarantined agents that did not play a role in
disease transmission were not considered. The peak of quarantined and dead agents is also
in this time step. After the peak, the number of daily cases, quarantined agents and deaths
decrease due to increased immunity of the agents.

The results show that most agents were infected through direct contact. 94.28% of
cases were infected through direct transmission, while 5.30% of cases were through external
infection, and only 0.42% were through indirect infection. Figure 6b shows that the number
of infected cases through external infection is decreasing during the simulation, and the
peak of the number of infected cases through indirect infection occurs at the same time as
the peak of outbreak.
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Figure 6. Base scenario simulation results: (a) dynamics of simulation and (b) external and indirect
transmission dynamics.

3.3. Sensitivity Analysis

In the sensitivity analysis, we compared the results of each scenario with other sce-
narios from three points of view: (1) the total number of infected cases, (2) the number of
infected cases at the outbreak peak, and (3) the time step of the outbreak peak. Figure 7
illustrates the changes in the total number of infected cases with respect to each parameter
of the sensitivity analysis. Each blue or red line corresponds to two scenarios that differ
only in the parameters of the diagram. The horizontal axis corresponds to the values
considered for the sensitivity analysis parameters, and the vertical axis shows the ratio of
the total number of infected agents in each scenario to the initial population. This ratio is
shown with black solid circles created as vertical lines in diagrams. The larger black solid
circles show the average of this ratio for each parameter value. Similarly, the diagrams of
the number of infected cases at peak and the time of the outbreak peak are produced (see
Appendix B—Figure A2 and Appendix B.2—Figure A3).

Figure 7. Cont.



Information 2024, 15, 362 13 of 21

Figure 7. Comprehensive sensitivity analysis results: (The red lines from left to right show an
increase in the total number of infected agents, and the blue lines show a decrease in infected agents.
The numbers above each diagram indicate the percentage of red lines for each pair of parameters).

To quantitatively examine the effect of each parameter, we have used the average
differences between the corresponding scenarios. The greater the difference, the greater the
effect of that parameter in the model. Table 5 presents the sensitivity analysis statistics.

Table 5. Results of model sensitivity analysis.

Parameters *
Total Infected Infected at Peak Peak Time

% Red Lines Avg Diff % Red Lines Avg Diff % Red Lines Avg Diff

P1 100 0.89 100 37.38 12.52 −23.28
P2 99.45 99.03 0.29 0.28 97.18 96.02 9.95 8.09 65.70 66.94 1.69 1.80
P3 0.00 0.00 −0.81 −0.24 0.00 0.14 −25.13 −13.12 90.26 79.01 14.16 8.72
P4 99.51 99.03 0.29 0.26 98.42 99.24 9.48 7.89 32.92 15.43 −1.92 −7.11
P5 99.72 99.65 0.22 0.21 100 99.93 13.46 13.40 36.07 33.19 −5.24 −4.03
P6 50.68 44.17 0.012 0.00 76.13 88.34 1.63 3.27 0.07 0.27 −46.23 −17.83
P7 1.17 0.82 −0.14 −0.14 1.30 2.19 −9.00 −8.37 71.87 75.50 3.49 3.52
P8 100 100 0.44 0.50 99.93 100 21.80 25.86 48.35 36.21 −4.28 −5.18

* Parameters are: P1: Distance of Contagion, P2: τRecovery, P3: Facility Width, P4: Max Movements Per Day,
P5: τIncubation, P6: Initial Number of Infected Agents, P7: Number of Vaccinated Agents and P8: Number of
Asymptomatic Agents.

3.3.1. Total Infections

The “Total Infected” column in Table 5 represents the COVID-19 infection rate. The re-
sults show that ‘DistanceOfContagion’ is the most influential parameter on total infections.
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In 100% of scenarios, the increase in this parameter has increased the total number of
infected people by 89% of the initial population. It can be observed from this table that
increasing the dimensions of the environment (‘facilityWidth’) from 30 to 36 results in a
reduction in the infection rate by 0.81, reaching 38 individuals. Morover, the results show
that increasing this parameter is less effective in larger environments to control the total
infections. In other words, increasing the dimensions of the environment from 36 to 40
has only reduced the infection rate by 0.24. ‘numberOfAsymptomaticAgents’ parameter is
identified as the third most influential parameter; increasing the number of asymptomatic
agents from 100 to 150 leads to a 0.5 increase in the infection rate. In other words, in this
scenario, the number of infected individuals increases by 100. The parameters τRecovery,
‘maxMovementsPerDay’, and τIncubation have had a nearly equal effect on the total infection
rate. On average, they have increased the infection rate by 0.25 (equivalent to 40 individu-
als). ‘numberOfVaccinatedAgents’ has reduced the total infection rate by 0.14 (equivalent to
28 individuals). ‘initialNumberOfInfectedAgents’ has almost no effect on the total number of
infected cases.

3.3.2. Number of Infected Cases at Peak

The second column of Table 5 represents the number of individuals infected at the peak
of the epidemic. In the baseline scenario, during the peak time step of the epidemic, there
were approximately 27 cases of infection. ‘DistanceOfContagion’ was the most influential
parameter as we mentioned in the last section. The increase in this parameter led to an
increase in infected cases in the peak by an average of 37.38 people (139% of the base
scenario). The results indicate that with an increase in the number of asymptomatic agents
(‘DistanceOfContagion’) from 100 to 150, on average, an additional 25.86 individuals became
infected during the peak time step of the disease (up to about 95% of the results of the
base scenario). The effect of the ‘facilityWidth’ parameter was similar to its effect on the
total number of infected cases. Moreover, the three parameters of τIncubation, τRecovery and
‘maxMovementsPerDay’ had a similar performance, but unlike the previous section, the effect
of τIncubation was greater than the other two parameters in peak cases. The effect of the
‘numberOfVaccinatedAgents’ on the number of peak cases was more than the total number
of cases, and it was the same as the three mentioned parameters. This parameter reduced
the number of cases in the peak by an average of nine people (33% compared to the base
scenario). The ‘initialNumberOfInfectedAgents’ had the least effect in cases of peak infection
(about 7% compared to the base scenario).

3.3.3. The Peak Time Step

The third column of Table 5 depicts the time step at which the epidemic peaks, which
was on day 75 in the baseline scenario. Unlike the two previous sections, the most influen-
tial parameter in determining the peak time step was the ‘initialNumberOfInfectedAgents’.
Increasing the initial infected from 0 to 5 resulted in a reduction of 46.23 time steps in the
peak time step of the disease (a 61% decrease compared to the baseline scenario). The ‘Dis-
tanceOfContagion’ parameter also showed the same behavior (31.4% compared to the base
scenario). Increasing the ‘facilityWidth’ parameter delayed the peak time step by 14.16 days
(18.88% compared to the base scenario). The impact of other parameters was less than 10%
compared to the base scenario, but in general, the increase in the ‘numberOfVaccinatedAgents’
and τRecovery parameters caused the delay of the peak day, and the ‘numberOfAsymptomat-
icAgents’, τIncubation, and ‘maxMovementsPerDay’ parameters accelerated reaching the peak.

4. Discussion

This study proposed an ABM to simulate COVID-19 spread in closed indoor settings,
employing three different sub-models. Within this framework, agents could interact with
each other and the environment and become infected through direct, indirect and external
contacts. However, most infections were through the direct transmission sub-model.
Infection rates decreased over time as people developed immunity in all three transmission
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sub-models. The developed model could evaluate different scenarios, and by modifying the
parameters of the model, it could investigate the dynamics of other strains of COVID-19 (or
even similar infectious diseases), each with distinct characteristics. Therefore, the proposed
model can be used to make appropriate decisions to control or reduce the spread of
the disease.

A total of 4374 different scenarios were examined, and the results implied that the
distance of contagion was the most influential parameter. This massive number of scenarios
allowed for a more thorough exploration of the parameter space and its influence on the
results. This compelled us to strike a trade-off between the complexity of the model and its
computational cost, resulting in a lower resolution of our results. While using more complex
sub-models could potentially lead to a more accurately calibrated model, the possibility of
sensitivity analysis of its parameters to this extent was not feasible, distinguishing our work
from other studies. While there are limited studies on closed indoor settings using ABM,
the proposed model is consistent with the prevailing findings. For instance, like Bouchnita
and Jebrane [2], we concluded that by reducing the mobility of the agents, the number of
total infection cases decreased, and the epidemic curve became flatter.

Rodriguez et al. examined the mobility restrictions scenario in their model and con-
cluded that this measure did not significantly reduce the risk of contagion which is similar
to our results [30]. Social distancing and mask-wearing scenarios were implemented by
altering the inherent parameters of the disease in the study conducted by Mahdizadeh
Gharakhanlou and Hooshangi [52]. Similarly, we showed that these parameters signifi-
cantly influence the dynamics of COVID-19. Zhang et al. indicated that the unreasonable
spatial layout of the setting, leading to congestion of people, could significantly increase the
risk of infection [5]. In the same way, we identified that the spatial layout of the setting is
one of the most influential parameters affecting the infection results. Furthermore, in their
model, disease transmission from surfaces occurs rarely. During the calibration process,
we identified, through testing appropriate values for the calibration parameters, that for
closer alignment of the model with reality, it is necessary for the probability of disease
transmission through surfaces to be very low, which is consistent with their results.

We found that the primary mode of infection is through direct transmission (94.28%) in-
side the setting, which is consistent with previous COVID-19 studies [4]. External infection
rarely occurs in the model, but the initiation of the outbreak is completely dependent on it.
Indirect transmission also occurs very little due to the low probability of infection and the
considered half-life. The sensitivity analysis results showed that the settings dimensions are
the most influential parameters on both the total number of cases and the number of cases
at the disease peak. Additionally, the initial number of agents affected by the disease is the
most influential parameter on the timing of the disease peak. Our analysis showed that the
intrinsic parameters of COVID-19 (such as incubation time, recovery period, and especially
distance of contagion) have a great impact on the epidemic curve. These results suggest
that measures related to these parameters (such as mask-wearing) can be very effective in
controlling COVID-19 in indoor settings. Also, according to the analysis, we realized that
the dimensions of the setting are one of the most important parameters. By increasing the
dimensions of the environment, the direct contact between the agents is reduced, and as a
result, the cases of infection are reduced. The results suggest that avoiding crowded closed
settings can greatly reduce the possibility of disease transmission. The more open the set-
ting, the less chance of infection. The number of asymptomatic agents is also very effective
in spreading the disease. After infection, these agents remain in the model environment
and are not quarantined, thus increasing the infection rate. Identification of asymptomatic
agents can effectively control epidemics within closed indoor settings.

There are some limitations in this study that should be acknowledged. Firstly, in this
study, we extracted the model parameters from previous studies. Although the model with
the current parameters can effectively replicate real-world data, these parameters do not
have consistent values across different studies and are not identical. Therefore, the values
used for model parameters are always subject to uncertainty and should be investigated.
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One of the objectives of the conducted sensitivity analysis was to assess how sensitive the
model is to the values of these parameters, but further investigation is required. Secondly,
we used a limited number of sub-models to produce COVID-19 dynamics to keep the
computational cost of the model as low as possible. The conducted sensitivity analysis
method is not applicable for models with high computational costs as it requires a high
number of scenarios. Using more complex sub-models and providing a method to control
the computational cost can help to increase the accuracy of the model. Also, we abstracted
the setting in a simple environment in the model, and it could be enriched by real spatial
data. Thirdly, while the conducted sensitivity analysis comprehensively describes the
model’s behavior, it is always possible to enrich the sensitivity analysis by adding new
parameters, examining parameters on a finer scale, and even exploring sensitivity analyses
of other sub-models. However, this expansion is somewhat limited by computational
constraints. Finally, we used data and methods from previous studies that could have
uncertainties not examined thoroughly. These uncertainties directly affect the results and
should be investigated more deeply.

The models developed in future works can be enriched by more data, such as spatial
data, as well as other sub-models, which can increase the computational complexity of these
models. Additionally, more parameters can be examined in sensitivity analysis to determine
their impact on the dynamics of the disease. Also, since running a large number of scenarios
in models with a high computational cost is challenging, developing a method to reduce
the number of scenarios or the necessary repetitions of each scenario can be helpful in more
complex models, which can be investigated in future research. Further investigation into the
spatial aspects, such as the positions of agents, the shape of the environment, the arrangement
of objects like shelves and chairs, the locations and number of rooms, the positions and
number of ventilation openings, and the number of floors, are all factors that, utilizing the
analyses conducted in this study, can be examined in a separate spatial study.

5. Conclusions

Our study aimed to employ agent-based models for simulating COVID-19 transmis-
sion dynamics in indoor closed settings. We conducted a thorough sensitivity analysis on
model parameters, offering a novel approach within the subject’s literature. The adapt-
able nature of the model allows for its application in studying various infectious diseases
by adjusting parameters. Our model’s flexibility facilitates its application across diverse
indoor environments through parameter modifications, including adjustments to agent
population, simulation environment, and disease transmission parameters. Our findings
underscore the significant impact of parameters such as the number of asymptomatic
agents, simulation environment dimensions, disease recovery time, and incubation period
on model dynamics. Through sensitivity analysis, the effects of other parameters can also
be examined, a practice often overlooked in the existing literature. Our study highlights
the necessity of assessing the sensitivity of agent-based models to parameter uncertainty,
particularly in epidemiological contexts.
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Appendix A

You can see the model user interface in Figure A1.

Figure A1. User interface of the proposed model. On the left are the model parameters and variables.
The center of the figure displays the epidemic charts and a summary of the model outputs. The right
side shows the simulation environment and agents. The color of the environment indicates the level
of contamination, while the color of the agents indicates their status.

Appendix B

Appendix B.1

Sensitivity results of peak time are depicted in Figure A2.

Figure A2. Cont.
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Figure A2. Sensitivityanalysis results (peak time step). The red lines indicate an increase in the peak
time of the disease, while the blue lines indicate a decrease.

Appendix B.2

Sensitivity results of total cases at peak are depicted in Figure A3.

Figure A3. Cont.
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Figure A3. Sensitivity analysis results (total cases at peak). The red lines indicate an increase in the
number of cases at the peak of the disease, while the blue lines indicate a decrease.
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