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Abstract: In this paper, we present a data-driven model predictive control (DDMPC) framework
specifically designed for constrained single-input single-output (SISO) nonlinear systems. Our ap-
proach involves customizing a set-theoretic receding horizon controller within a data-driven context.
To achieve this, we translate model-based conditions into data series of available input and output
signals. This translation process leverages recent advances in data-driven control theory, enabling the
controller to operate effectively without relying on explicit system models. The proposed framework
incorporates a robust methodology for managing system constraints, ensuring that the control actions
remain within predefined bounds. By means of time sequences, the controller learns the underlying
system dynamics and adapts to changes in real time, providing enhanced performance and reliability.
The integration of set-theoretic methods allows for the systematic handling of uncertainties and dis-
turbances, which are common when the trajectory of a nonlinear system is embedded inside a linear
trajectory state tube. To validate the effectiveness of our DDMPC framework, we conduct extensive
simulations on a nonlinear DC motor system. The results demonstrate significant improvements
in control performance, highlighting the robustness and adaptability of our approach compared to
traditional model-based MPC techniques.

Keywords: set-theoretic model predictive control; data-driven control; iterative machine learning
algorithm; polytopic embedding

1. Introduction

Model predictive control (MPC) is a powerful control technique which relies on re-
peatedly solving an open-loop optimal control problem [1]. The key advantages of MPC
compared to other control methods are its applicability to nonlinear systems, the possibility
to include constraints on system variables, and desirable closed-loop guarantees on sta-
bility and performance. MPC is essentially a model-based control strategy, but the model
derivation is typically a laborious process, demanding expert knowledge. This challenge
has spurred growing interest in developing controllers directly from data, bypassing the
need for explicit model knowledge. Model predictive control strategies based on a data-
driven approach (DDMPC) represent, in fact, an emerging paradigm that harnesses the
vast amounts of data generated by modern systems to enhance control strategies without
necessitating explicit mathematical models of a plant [2–6]. This paradigm shift allows for
the development of robust control methods even in scenarios where obtaining an accurate
mathematical model is challenging or impractical and has garnered significant interest
due to several motivations stemming from its advantages over traditional model-based
control methods (see [7] for a general discussion on the matter). One of the most relevant
aspects is the reduced modeling effort since a data-driven approach circumvents the need
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for complex mathematical modeling, thus diminishing the effort required for controller
design [8]. Connected to this is the adaptability of a data-driven MPC scheme to complex
and nonlinear systems where traditional models may be inaccurate or impractical [9].
Model uncertainties and disturbances can also be efficiently managed, making a DDMPC
scheme robust to modeling errors and external disturbances; in addition, DDMPC allows
for real-time adaptation and learning from dynamic environments, thereby enhancing con-
troller performance over time [10]. Like other non-model-based methods, DDMPC offers
scalability and generalization capabilities, enabling controllers to be applied across different
systems and scenarios. This facilitates the integration of domain knowledge with data-
driven insights, leading to more effective control strategies [11]. DDMPC presents, then,
a promising scenario for advancing control theory and practice across various domains
such as robotics [12], manufacturing [13], energy systems [10], and transportation [14].
The common denominator is the practical relevance and impact of DDMPC in addressing
real-world control problems and improving system performance, eliminating the need for
explicit mathematical models [15,16].

Of interest for us are algorithmic schemes tailored specifically for DDMPC based on
data-driven optimization algorithms, reinforcement learning-based control strategies, and
adaptive learning algorithms: these computational schemes are designed to tackle the chal-
lenges posed by real-world data, ensuring robust and efficient control performance [17,18].
Performance evaluations and comparisons between DDMPC and traditional model-based
control methods have been conducted: the idea is assess the advantages and limitations of
DDMPC in terms of control quality, robustness, computational efficiency, and adaptability
to changing environments (see [19]). DDMPC relies on the basis that learning from data
approaches is of paramount interest mainly due to the strict link with artificial intelli-
gence [20,21] and that this relation can be exploited for control design purposes; see [22,23]
and references therein. Accordingly, it is of paramount relevance to comprehend how
data-driven schemes can substitute model-based approaches while preserving structural
system properties such as controllability and observability, alongside algorithmic properties
like feasibility and closed-loop stability. The contribution in [24] provides a crucial result
for linear systems: all the trajectories of a linear system can be represented by a finite set of
adequately excited system trajectories. Starting from this statement, in [25], the existence of
a parametrization of feedback control systems that allows one to reduce the stabilization
problem to an equivalent data-dependent linear matrix inequality (LMI) is proven. A more
recent contribution [26], even if not directly classifiable within a DDMPC context, is of
interest since it analyzes a data-driven simulation method applied to SISO bilinear systems
whose trajectory is embedded in the behavior of an LTI system. In the author’s words, the
key issue is an embedding result that is of independent interest: the behavior of a nonlinear
system (in this case bilinear) is included in the behavior of a linear time-invariant system. Notably,
these findings establish the existence of a linear time-invariant (LTI) embedding for a SISO
nonlinear system.

Manuscript Contribution

Based on these premises, in this paper, which is an extension of [27] in terms of com-
plete introduction rewriting, linear embedding technicality clarification, and the deepest
analysis of the more recent literature by adding two new numerical examples with compar-
isons with a model-based competitor nonlinear MPC scheme (absent in [27]), set-theoretic
and deep learning arguments are merged within a data-driven receding horizon control
(RHC) framework tailored for nonlinear single-input single-output (SISO) systems. Specifi-
cally, we adapt the low-demanding algorithm outlined in [28], which is the MPC core of
our approach, to suit within a data-driven context by extending the results from [25,26] by
proving the existence of a data-driven multi-model polytopic state-tube which entraps the
trajectories of the nonlinear SISO model describing the plant (polytopic embedding) [29].
Then, the so-called terminal pair complying with the available equilibrium is designed by
exploiting feedback linearization arguments and a proper customization of the regulation
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linear controller of [25] by also adding data-driven formulas for input and output con-
straints. We resort to a deep learning data-driven modeling technique where a nonlinear or
uncertain system is represented as a convex combination of linear models. Essentially, the
system behavior is described by a convex set of polytopes, with each polytope representing
a possible linear dynamic of the system. This technique has proven extremely useful
for analysis and controller design problems for nonlinear systems and/or linear systems
with uncertainties or parameter variations [30]. Through the authors’ best intention and
acknowledgment, the contribution represents, in contrast to the cited literature, a first step
towards mixing an efficient and computationally low-demand scheme with the possible
potentiality of data-driven control. To prove the benefits of the proposed scheme, two
numerical experiments have been proposed: the first one is the angular velocity regulation
problem of a nonlinear DC motor model, and the second one is the Reactant concentration
regulation problem for a Continuous Stirred Tank Reactor (CSTR) nonlinear model. As
previously stated, for both examples, comparisons in terms of regulation performance
(controlled variable time trend) with a model-based ad hoc nonlinear MPC scheme [31]
have been shown and discussed in detail.

2. Notations, Definitions, and Problem Formulation

0d and Ir denote the vector of d zero entries and the identity matrix of order r, respec-
tively.

The convex hull [30] of a finite set of real matrices A = {Ai ∈ Rν×µ}L
i=1 is the set of all

convex combinations of the elements of A

Co
(
{Ai}L

i=1

)
= {λ1 A1 + · · ·+ λ1 AL, λi ≥ 0,

λ1 + · · ·+ λL = 1} (1)

Co
(
{Ai}L

i=1

)
is defined as a polytope of A, and Ai, i = 1, . . . , L denote the related vertices.

Consider the following discrete time-linear, time-varying system:

x(t + 1) = Φ(λ(t))x(t) + G(λ(t))u(t) (2)

where t ∈ ZZ+ := {0, 1, . . . }, x(t) ∈ IRn is the state, u(t) ∈ IRm the control input, and λ(t) is
a time-varying parameter, in general not known in advance, belonging to the following set
∀t ∈ ZZ+:

Λ :=

{
λ ∈ IRL :

L

∑
j=1

λj = 1, λj ≥ 0

}
(3)

(Φj, Gj) denotes the polytope vertex, viz. (Φ, G) ∈ Co
({

Φj, Gj
}L

j=1

)
.

Definition 1 ([32]). A set Ξ ⊆ X is said to be robust positively invariant (RPI) for (2) and (3)
under (5) if there exists a control law u(t) := h(x(t)) ∈ U such that ∀ x(0) ∈ Ξ one has

Φ(λ(t))x(t) + G(λ(t))h(x(t)) ∈ Ξ, ∀λ(t) ∈ Λ, ∀t ∈ Z+

Given a set S ⊆ X × Y ⊆ IRn × IRm, the projection of the set S onto X is defined as
ProjX(S) := {x ∈ X | ∃y ∈ Y s.t. (x, y) ∈ S}.

Problem Formulation

In the sequel, we consider a plant described by a discrete time-invariant nonlinear
system model state space representation:{

x(t + 1) = f (x(t), u(t))
y(t) = C x(t)

(4)
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where x(t) ∈ IRn is the state of the system, u(t) ∈ IRm is the command input, and y(t) ∈ IRp

is the measurement vector with C ∈ IRp×n in the output matrix (linear map). More-
over, it is assumed that the plant actuator input and states are prescribed to satisfy the
following constraints:

u(t) ∈ U := {u ∈ IRm | uTu ≤ ū2}, ∀t ≥ 0
x(t) ∈ X := {x ∈ IRn | xTx ≤ x̄2}, ∀t ≥ 0,

(5)

with U , X convex and compact subsets of IRm and IRn, respectively. The following assump-
tion on the nonlinear map f (·, ·) is given:

Assumption 1. The one-step-ahead transition-state map f : IRn × IRm → IRn is uniformly
Lipschitz in (x, u) ∈ X × U , i.e.,

∥ f (x, u)− f (x̂, u)∥ ≤ γx∥x − x̂∥, ∀(x, x̂) ∈ X ×X ,

∥ f (x, u)− f (x, û)∥ ≤ γu∥u − û∥, ∀(u, û) ∈ U × U ,

with γu, γx ∈ IR, γu ≥ 0, γx ≥ 0 as known Lipschitz constants.

Moreover, it is assumed that 0n ∈ IRn is an equilibrium point for (4) with u = 0m, i.e.,
f (0n, 0m) = 0n.

The goal is to find a state feedback regulation strategy u(t) = g(x(t)) that asymptot-
ically stabilizes the system described by (4) to the origin while satisfying the constraints
given in (5). The proposed approach can be outlined as follows: assume there exists a
sequence of N + 1 (N > 0) regions {Ti}N

i=0, where T0 is an arbitrary target set with an
associated stabilizing state feedback law u0(x) ∈ U (refer to [28] for details on this strategy).
The objective is to compute an admissible control strategy that can drive any initial state
x(0) ∈ ⋃N

i=0 Ti to the terminal (target) robust positively invariant (RPI) set T0 in finite time.
Thus, the problem statement is as follows:

MPC Problem—Given the nonlinear system (4), a sequence of regions {Ti}N
i=0 and an

initial state x(0) ∈
N⋃

i=0

Ti, compute at each time instant t and on the basis of the current

state x(t) a control strategy , compatible with (5), such that there exists a finite time instant
t̄ ≥ 0 so that x(t̄) ∈ T0 is achieved while a performance index is minimized.

3. Background

In this section, we summarize the set-theoretic receding horizon control (RHC) scheme
for addressing the MPC Problem for linear system models (2). Using the ellipsoidal calculus
methods [33], the target set T0, which satisfies RPI Definition 1, is initially computed.
Subsequently, the algorithm’s working-state region is extended by deriving sets of states
that can be steered into T0 within a finite number of steps. Specifically, the pair (K, E), with
E ⊂ Rn being an ellipsoidal set and K ∈ Rm×n the gain matrix of the stabilizing control law
u(t) = Kx(t), satisfies

(Φj + GjK)E ⊂ E ⊆ X , ∀j = 1, . . . , L,

and can be computed by solving the following linear matrix inequality (LMI) optimization:

min
Q,Y,ρ,

ρ (6)

subject to [
1 x(t)T

x(t) Q

]
≥ 0 , (7)
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
Q ∗ ∗ ∗

Φj Q + Gj Y Q ∗ ∗
R1/2

x Q 0 ρ In ∗
R1/2

u Y 0 0 ρ Im

 ≥ 0 ∀j = 1, . . . , L, (8)

[
Q ∗

Φj Q + Gj Y x̄2 In

]
≥ 0, j = 1, . . . , L, (9)[

ū2 In ∗
YT Q

]
≥ 0, P = ρ Q−1 , K = Y Q−1 (10)

As a consequence,
E := {x ∈ IRn | xT Px ≤ 1}, Q = QT ≥ 0, (11)

is a RPI region for the closed-loop collection of states

x(t + 1) = (Φ(λ(t)) + G(λ(t))K)x(t), ∀λ(t) ∈ Λ,

complying with the prescribed constraints, viz. E ⊂ X and KE ⊂ U .

Regarding the set sequence {Ti}, it is computed using the concept of the one-step
state-ahead controllable set:

Definition 2. Given the set T ⊆ X , the predecessor set Pre(T ) is the set of states for which
there exists a causal control u(t) ∈ U such that the resulting one-step state transition lies within
T . Specifically,

Pre(T ) := {x ∈ X :∃u∈ U : Φjx+Gju∈T , ∀j = 1, . . . , L} (12)

Let E be the target set; it is possible to determine the sets of states that are i-step controllable
to E using the following recursion (see [32]):

T0 := E , Ti := Pre(Ti−1) ∀i > 0 (13)

The recursion (13) can be implemented via LMIs leading to inner ellipsoidal approximations
of {Ti}. Notice that

{x ∈ X | ∃u ∈ U : ∀λ ∈ Λ, Φ(λ)x + G(λ)u ∈ Ti}
= {x ∈ X | ∃u ∈ U : ∀j = 1, . . . , L, Φjx + Gju ∈ Ti}
⊃ {x ∈ X | ∃u ∈ U : ∀j = 1, . . . , L, Φjx + Gju ∈ In[Ti]}
= Projx

{
[x u] | u ∈ U and ∀j = 1, . . . , L, [x u] ∈ Ẽ j

i−1

}
where In[·] is the inner ellipsoidal approximation operator and Ẽi−1 the ellipsoidal set
defined in the extended space (x, u). Then, by expressing without loss of generality the
constraint set U as the intersection of ellipsoidal sets (see [28,33] for details)

U = ∩i EU
i

one obtains
{x ∈ X | ∃u ∈ U : ∀λ ∈ Λ, Φ(λ)x + G(λ)u ∈ Ti}

⊃ Projx

In

 L⋂
j=1

Ẽi−1

 ∩
⋂

i
(IRn ×EU

i )

 =: Ei
(14)

Hence, an MPC Algorithm 1 can be straightforwardly outlined:
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Algorithm 1 Set-theoretic Model Predictive Control (ST-MPC) Algorithm

Input: {Ei}N
i=0;

Output: u(t)
1: Compute i(t) = min {i : x(t) ∈ Ei};
2: if i(t) = 0 then u(t) = Kx(t);
3: else

u(t) = arg min Ji(t)(x(t), u)
such that
Φjx + Gju ∈ Ei−1, j = 1, . . . , L; u ∈ U

4: end if
5: Apply u(t);
6: t → t + 1; Goto Step 1;

Notice that the cost Ji(t)(x(t), u) can be arbitrarily chosen without affecting the feasi-
bility and closed-loop stability of the Algorithm 1; see [28] for technical details.

4. A Data-Driven Low-Demand Algorithm

In the following, attention will be restricted to single-input single-output (SISO)
systems, i.e., m = p = 1 in (4). Furthermore, following the reasoning outlined in [25], it
is assumed that the system state is fully accessible. The novel approach here consists in
tailoring the Algorithm 1 within a data-driven scenario, which involves characterizing the
terminal pair (K, E) and the family {Ti} for the nonlinear context by deriving the polytopic
model, instrumental for Algorithm 1 by means of a machine learning-based algorithm.

To this end, the following ingredients will be exploited:

• Data-based state-feedback control [25];
• Linear time-invariant embedding for SISO nonlinear models [26].

4.1. Stabilizing Control and Positively Invariant Set

Under the hypothesis that the equilibrium (x̄, ū) is known a priori, feedback lineariza-
tion arguments can be used together with the [25] derivations adapted to comply with the
prescribed state and input constraints (5).

Let
U0,1,T := [ ud(0) ud(1) · · · ud(T) ]
X0,T := [ xd(0) xd(1) · · · xd(T) ]
X1,T := [ xd(1) xd(2) · · · xd(T) ]

(15)

where the subscript d accounts for sample data. Under the hypothesis that the system has
linear time-invariant representation, in [25], it has been proved that

x(t + 1) = X1,T

 U0,1,T

X0,T

†[
u(t)
x(t)

]
(16)

with † being the Penrose pseudo inverse operator. Then, the following linear system
description comes out:

[Φ G] = X1,T

 U0,1,T

X0,T

†

(17)

In what follows, the concept of a persistently exciting input sequence is exploited.
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Definition 3. A persistently exciting input sequence ud,[0,T−1] of order n+ 1 satisfies the following
condition:

Rank

 U0,1,T

X0,T

 = n + 1 (18)

Therefore, for the linear system description (17) subject to (5), a stabilizing state
feedback controller and the associated positively invariant region can be achieved under
the following result.

Theorem 1. Assume that (18) holds true. Then, the constrained linear system (17), (5) is asymp-
totically stabilizable by

K = U0,1,TY(X0,TY)−1 (19)

with
E = {x ∈ IRn | xT(X0,TY)−1x ≤ 1} ⊂ X (20)

a positively invariant region for the closed-loop trajectories such that KE ⊂ U , if the following
matrix inequalities conditions are satisfied:

X1,TY(X0,TY)−1YTXT
1,T − X0,TY < 0 (21)

X0,TY > 0 (22)

U0,1,TY = KX0,TY (23)

(X0,TY)−1YTUT
0,1,TU0,1,TY(X0,TY)−1 ≤ ū2 I (24)

(X0,TY)−1YTXT
1,TX1,TY(X0,TY)−1 ≤ x̄2 I (25)

Proof. By exploiting the arguments developed in [25], the proof straightforwardly follows
by introducing an auxiliary symmetric and positive defined matrix P such that

X0,TY = P
U0,1,TY = KP

Remark 1. Notice that (21)–(25) is a non-convex bilinear matrix inequality (BMI) feasibility
problem in the matrix variable P. Although computationally complex, it can be addressed off-line
via ad hoc BMI local solvers (see PENBMI [34] as an example).

4.2. Polytopic Embedding and Data-Set Machine Learning-Based Algorithm

A polytopic linear difference inclusion (PLDI) description of the nonlinear system
(4) is first derived [30]. In the present context, this can be achieved thanks to a very
recent result outlined in [26]. There, it is proved (Lemma 11, pg. 1104) that the state
trajectories resulting from (4) can be embedded into an linear time-invariant (LTI) system
in an extended state/input space. This argument makes it possible to consider a more
complex PLDI instead of a single LTI system:

F =
{

x+ ∈ X | x+ = Φ x + G u,

[Φ, G] ∈ Co({[Φ1 G1], . . . , [ΦL GL]}),
∀(x, u) ∈ X × U} (26)

such that all ∀(x, u) ∈ X × U
f (x, u) ∈ F (27)
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(all the state successors f (x, u) according to (4) are entrapped inside Fext). The matrix ver-
tices [Φi Gi], i = 1, . . . , L have been computed by a machine learning-based approach [35]
which is proven to converge w.p.1 to the desired polytope Co({[Φ1 G1], . . . , [ΦL GL]}) as
the number of episodes tends to be arbitrarily large. To this end, the following iterative
machine learning-based scheme, whose flowchart is depicted in the following Figure 1,
is introduced:

The following definition, instrumental for the scheme in Figure 1, states how the
state/equilibrium pair is managed:

Equilibria search

x    ,eq u   eq
i i{ }

i=1

r

Vertex  computation

{ }
i=1

r
[Φ ,G  ]i i

Determine 
~
SS

Monte carlo simulation

Check (16)
YES

NO

Add equilibrium

[Φ ,G  ]s s

Exit

Figure 1. Iterative machine learning algorithm: the flowchart.

Definition 4. An input-state pair (us, xs) ∈ IRm+n is an equilibrium pair of the nonlinear system
(4) if the sequence {ū(t), x̄(t)}t≥0 = (us, xs) is a an admissible trajectory of (4).

Let S̃S be the set of matrix pairs [Φi, Gi], i = 1, . . . , r, characterizing the linearized
model of (4) around the equilibrium (ui

eq, xi
eq). Then, the iterative machine learning-based

algorithm sketched in Figure 1 is capable of deriving a PLDI (26) and is detailed here.
According to Definition 4, a set of equilibrium points {(ui

eq, xi
eq)}r

i=1 is determined by
exhaustive research on the admissible system space U ×X . Then, the data-based open-loop
linearized couple [Φi Gi] is computed under the hypothesis that the equilibrium input ui

eq
is perturbed with zero mean white Gaussian noise so that the rank condition (18) holds.
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As a consequence, a persistently exciting input sequence (ũi
eq)[0,T−1] is generated and the

sequence of Equations (15)–(17) is then performed. Hence, a convex hull S̃S of the achieved
dynamic/actuator matrix pairs is derived. Next, the well-posedness of S̃S must be checked:
this is achieved by a Monte Carlo approach [36] by computing sequences of state trajectories
{us, xi

s(t)}Ns
i=1 and checking their membership to the state trajectory tube arising from the

candidate embedding S̃S. If (26) holds true, then the procedure ends; otherwise, a new
equilibrium is added for updating S̃S.

All the above developments allow us to write down the following computable
Algorithm 2:

Algorithm 2 Iterative Machine Learning (IML) Algorithm

1: Find {(ui
eq, xi

eq)}r
i=1, via an exhaustive search on the space U ×X ;

2: Perturb the equilibrium inputs ui
eq, i = 1, . . . , r, and generate the persistently exciting

input sequence (ũi
eq)[0,T−1], i = 1, . . . , r, comply with (18);

3: Apply Formulas (15)–(17) and obtain the data-based open-loop realization [Φi Gi], i =
1, . . . , r;

4: Compute the convex hull

S̃S := Co({[Φ1 G1], . . . , [Φr Gr]})

5: Perform Monte carlo simulations: compute sequences of state trajectories {us, xi
s(t)}Ns

i=1
and verify

xi
s(t) ∈ S̃S, ∀i;

6: if YES then Exit;
7: else
8: Find a new equilibrium (ur+1

eq , xr+1
eq ); r ↔ r + 1;

9: end if
10: Goto Step 4 and update S̃S;

5. Illustrative Examples

In this section, we present two examples that illustrate the benefits of the proposed
Algorithm 1 endowed with the machine learning Algorithm 2. The data-driven MPC
algorithm will be contrasted in terms of regulation performance results with an ad hoc
model based on the nonlinear MPC scheme, NMPC [31]. For both these examples, the
following solvers have been used:

• Algorithm 1

– Yalmip parser (available at the following: https://yalmip.github.io/download/
(accessed on 20 May 2024))/MOSEK © Optimization package (LMI procedures).

– MATLAB Reinforcement Learning toolbox © and the MATLAB Deep learning
toolbox © (Algorithm 2).

• fmincon MATLAB Optimization Toolbox © function used for the NMPC competitor.

A software repository related to Set Theoretic Data-Driven MPC can be found at
the following https://github.com/PreCyseGroup/Data-Driven-ST-MPC (accessed on 20
May 2024).

5.1. DC Motor

In this example, we will consider the angular speed regulation of a separately excited
DC motor nonlinear model [37]. Nonlinearities come from cross-product terms in the state

https://yalmip.github.io/download/
https://github.com/PreCyseGroup/Data-Driven-ST-MPC
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space description, and the result is an inverse bond in the steady-state relationship between
the control input and the regulated state variable. The model is as follows:

d I f

d t
= −

R f

L f
I f (t) +

1
L f

Vf (t)

d Ia

d t
= −Ra

La
Ia(t)−

Km L f

La
ω(t) Ia(t) +

1
La

Va(t)

d ω

d t
= −Bm

Jm
ω(t) +

Km La L f

Jm
ω(t) I f (t) Ia(t)−

1
Jm

τ(t)

(28)

where the following definitions apply:

• I f and Ia are the field and armature currents, and Vf and Va are the related voltages;
• ω is the shaft rotor angular speed;
• τL is the shaft rotor torque load;

and the systems parameters are

• R f = 5 Ω, L f = 1 H, which are the field resistance/inductance, and Ra = 10 Ω,
La = 1 H, which are the armature resistance/inductance;

• Jm = 0.2 Kg m2, Bm = 0.011 Kg m2

sec , which are the inertia and friction coefficient;
• Km = 30 N m

A2 , which is the motor torque constant.

Note that the voltage and shaft rotor torque load inputs are linear terms inside the
system flow, whereas the zero input is a nonlinear map in the system variables. This is not
so uncommon when deriving a mathematical model from a phenomenon by resorting to
basic physics laws, since the external sources (forces/torques, voltages, external flows, etc.)
do enter in a linear fashion inside the system flow. Also, the presence of a linear input term
is a good test to check if the input matrix of the obtained polytopic embedding is compliant
with the physical nonlinear model at hand.

The proposed control strategy adheres to a standard two-loop approach, i.e., the motor
is operated in the following way: the inner controller is in charge of imposing a prescribed
constant field current I f ,re f = 4 A, and the external loop regulates the behavior of the
angular speed by considering Va(t) as the control input and τL(t) as a disturbance which
for nominal operating conditions is kept constant to 18 N m. The inner loop is characterized
by a simple, fast first-order controller:

d Vf

d t
= −25 Vf (t) + 1250 (I f ,re f − I f (t)) (29)

and the resulting nonlinear model is then characterized by a four-state variable model in
the form of 

d x
d t

= f (x, u)

y(t) = x4(t)
(30)

where x =
[
Vf , I f , Ia, ω

]T
, u = Va, and the shaft rotor load torque signal, assumed to be

constant, could be regarded as a fictitious parameter of the system flow f (·, ·) (the choice
makes the nonlinear system at hand consistent with the Equation (4), Section 3, problem
general formulation). The following safety constraints are imposed on the field, angular
speed rotation, and armature voltage input:

0.01 ≤ I f (t) ≤ 0.1 (31)

100 ≤ ω(t) ≤ 150 (32)

190 ≤ Va(t) ≤ 210 (33)
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In the sequel, the following operating scenario is considered: under the hypothesis that the
control voltage Va(t) is held constant at a 200 V level, the task consists of keeping the equilibrium
of the shaft angular speed (regulation output) at the corresponding value 132.8373 rad

sec despite
the torque load time trend. Notice that the data-set-based Algorithm 2 can be implemented
off-line on the box space search (31)–(33) because the DC motor parameter values and the
shaft load torque are assumed to be constant during the simulation; this obviously implies
that the regulation target is an equilibrium.

The nonlinear plant dynamic has been discretized with a forward-Euler scheme by
choosing the sampling time equal to Ts = 0.01 s and, according to Section 4 prescriptions, a
polytopic embedding of the nonlinear plant (28) inside the box (31)–(33) has been derived
off-line by applying the Algorithm 2. To this end, r = 30 equilibria have been exploited by
means of a gridding selection procedure to achieve a multi-model description (26), com-
patible with Ns = 105 data sequences {us, xi

s(t)} generated by the Monte Carlo simulation
unit. The resulting matrix vertices are

Φ1 =


8.683e − 01 −5.771e + 00 1.152e − 19 3.915e − 20
4.617e − 03 9.606e − 01 3.683e − 21 2.595e − 22
−3.037e − 08 −1.318e − 05 −5.127e − 05 −3.755e − 04
8.905e − 05 3.687e − 02 1.364e − 01 9.988e − 01

,

G1 =


0
0

9.998e − 01
1.194e − 04



Φ2 =


8.683e − 01 −5.771e + 00 1.152e − 19 3.915e − 20
4.617e − 03 9.606e − 01 3.683e − 21 2.595e − 22
−3.037e − 08 −1.318e − 05 −4.754e − 05 −3.755e − 04
8.905e − 05 3.687e − 02 1.364e − 01 9.988e − 01



G2 =


0
0

9.995e − 01
1.196e − 04



Φ3 =


8.683e − 01 −5.771e + 00 1.152e − 19 3.915e − 20
4.617e − 03 9.606e − 01 3.681e − 21 2.514e − 22
−2.790e − 08 −1.312e − 05 −5.120e − 05 −3.750e − 04
8.248e − 05 3.671e − 02 1.362e − 01 9.976e − 01

,

G3 =


0
0

9.992e − 01
1.186e − 04



Φ4 =


8.683e − 01 −5.771e + 00 1.152e − 19 3.915e − 20
4.617e − 03 9.606e − 01 3.683e − 21 2.650e − 22
−3.202e − 08 −1.322e − 05 −5.131e − 05 −3.758e − 04
9.345e − 05 3.698e − 02 1.365e − 01 9.996e − 01

,

G4 =


0
0

9.989e − 01
1.201e − 04


To empirically verify that the generated state tube entraps the nonlinear motor state

trajector we have depicted in the following Figure 2 the unbiased time trend of the following
3D curve: (t, Ia(t)− Ia,re f , ω(t)− ωre f ), 0 ≤ t ≤ 0.1, sec. This represents the free response
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of the motor (blue color curve, nonlinear model) and the four vertices (magenta color
curves) depicting the boundaries of the state tube evolution that originates from a random
unbiased initial state belonging to the box (31), (32). The choice of the third and fourth state
variables is driven by the consideration that these state variables are the boxed ones; the
voltage input has been kept constant to its reference value (0 in its unbiased version) since
the actuator matrices Gi are practically identical for each vertex.

Figure 2. (t, Ia(t)− Ia,re f , ω(t)− ωre f ), 0 ≤ t ≤ 0.1, sec. free evolution. Motor nonlinear model time
trend (blue line), linear vertices time trend (magenta lines).

Starting from the design knobs Rx = diag(0, 0, 0, 1) and Ru = 0.1, a sequence of 50
predecessor sets has been computed via recursions (13) and (14), and, for the sake of compar-
isons, the proposed Algorithm 1, based on the data-driven Algorithm 2, has been contrasted
with a traditional model-based nonlinear MPC scheme NMPC [31]. The time horizon is
20 s and the motor initial state has been chosen as equal to x0 = [100, 20, 0.1, 50]T

The on-line numerical results are collected in Figures 3–5, where the boxed motor
variables that regulate armature current, angular velocity, and voltage control input for
the two strategies are depicted. The prescribed constraints are denoted by dashed hori-
zontal lines, and the dash–dotted line represents the given equilibrium level. In order to
understand how the regulated system behaves, let us start from Figure 4 (shaft angular
velocity ω(t) and output target): the starting rotating regime, ω(0) = 50 rad

sec , is below the
desired target level ωre f = 132.8373 rad

sec (dash-dotted horizontal line), and as a consequence,
the voltage control input V(t) (Figure 5) generates the highest possible voltage equal to
210 V, consistent with the imposed constraints (upper-level horizontal green dashed line in
Figure 5), thus achieving an acceleration of the angular velocity towards the desired target.
Whenever the angular velocity transient is near the end, the voltage control input starts
decreasing towards the related equilibrium value (dash–dotted orange line in Figure 5).
The armature current behavior Ia(t) (Figure 3) complies with the voltage time trend, which
is higher with regard to the equilibrium level during the initial time instants and then
converges to the desired target value (dash–dotted orange line in Figure 3). In summary,
all the prescribed constraints are satisfied at each time instant and the desired equilibrium
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levels are asymptotically reached. In Figures 3 and 4, it can be noticed that the proposed
Algorithm 1 and the NMPC competitor seem indistinguishable: to this end, the time trend of
these variables have been properly zoomed (subplot graphs) with regard to a time window,
the subset of the simulation horizon, to put into context how the two strategies differ. In
particular, the difference between the proposed Algorithm 1 and the NMPC competitor can
be can be understood by starting with Figure 5 (voltage control input): here, as expected,
NMPC performs better (ad hoc scheme) by pushing the voltage level towards the upper sat-
uration constraint (upper-level horizontal green dashed line in Figure 5) for a time interval
longer than the proposed Algorithm 1. The NMPC’s better regulation of the performance
with regard to the proposed Algorithm 1 is reflected on the regulated shaft angular velocity
and armature current, even if it is slight; look at the zoomed subplots in Figures 3 and 4 in
terms of transient time trends. It must be noted that the two schemes have significantly
different on-line computational complexities, as will be clear in the forthcoming analysis of
the one-step-ahead controllable set Ti time behavior.

Figure 3. Armature current-regulated time trend: Algorithm 1 strategy (blue line) and NMPC strategy
(red line), prescribed constraints (dashed horizontal lines), and equilibrium level (dash–dotted line).
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Figure 4. Angular velocity-regulated time trend: Algorithm 1 strategy (blue line) and NMPC strategy
(red line), prescribed constraints (dashed horizontal lines), and equilibrium level (dash–dotted line).

Figure 5. Voltage control input time trend: Algorithm 1 strategy (blue line) and NMPC strategy (red
line), prescribed constraints (dashed horizontal lines), and equilibrium level (dash–dotted line).

The switching signal taking care of the one-step state-ahead controllable sequence set
membership level, showing that the regulated state trajectory converges in finite time (the
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first 45 sampling time steps and the initial state belongs to i(t0) = 23) to the RPI region E , is
depicted in Figure 6. This figure represents nothing more than an experimental validation
of the asymptotic stability of the regulated system in terms of Lyapunov arguments. The
set-membership integer-valued function that decreases monotonically as the sampling step
increases indicates in fact that the Lyapunov function, associated with the level curves
generated from the shaping matrices of the one-step-ahead ellipsoidal sets Ti(k), also
decreases monotonically along the trajectory of the regulated system. The figure has a
direct interpretation regarding the computational burdens of the proposed Algorithm 1
strategy that requires solving a QP optimization problem for 15 consecutive sampling steps,
starting from the initial time instant. From the next sampling step onwards, Algorithm 1
reduces to a linear-state feedback control law without any computational burden. The
NMPC competing strategy, on the other hand, requires solving a QP optimization problem
(in the best case) at every sampling step [31].

0

5

10

15

20

25

i(
t k

)

0 5 10 15 20 25 30 35 40 45

Sampling time index k

Figure 6. Algorithm 1 strategy set-membership level signal (DC motor example).

In summary, it can be noted for the DC motor (Example nr. 1) that the proposed
Algorithm 1 strategy and the competitor NMPC perform similarly (but not identically)
with respect to the depicted regulated state variables (Figures 3 and 4). As expected, the
competitor NMPC strategy outperforms the proposed Algorithm 1 in terms of voltage
control time behavior (Figure 5). The two strategies differ significantly in terms of compu-
tational burdens: the proposed data-driven Algorithm 1 is preferable due to the practically
negligible computational burden starting from a given finite time instant that is always
guaranteed to exist (see [28] for details).

5.2. Continuous Stirred Tank Reactor

Consider the highly nonlinear model of a continuous stirred tank reactor (CSTR) [31].
Under the hypothesis of constant liquid volume, the CSTR for an exothermic, irreversible
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reaction A → B is described by the following dynamic model based on a component
balance for reactant A and an energy balance:

d CA
d t

=
q
V

(
CA f − CA(t)

)
− k0 CA(t) e

− ∆E
R TA(t)

d TA
d t

=
q
V

(
Tf − TA(t)

)
+

−∆H
ρCp

k0 e−
∆E

R T(t) CA(t)+

+
ρc Cp,c

V ρ Cp
Tc(t) (1 − e

− HA
ρc Cp,c Tc(t) ) (Tc,0 − TA(t))

(34)

where the following definitions apply:

• CA(t) is the concentration of A in the reactor;
• TA(t) is the reactor temperature;
• Tc(t) is the temperature of the coolant stream.

and the model parameters are q = 100 l
min , V = 100 l, k0 = 7.2 × 1010 min−1, T0 = 350 K;

E
R = 104 K; ρ = ρc = 1000 g

l ; ∆H = −2 × 105 J
mol , Cp = Cp,c = 1 J

g K HA = 7 × 105 J
min K ,

CA f = 1 J
g K , Tf = 350 K (see [38] for details on the meanings of these parameters). The

resulting nonlinear model is then characterized by a two-state variable model in the form
d x
d t

= f (x, u)

y(t) = C x(t)
(35)

where x = [CA, TA]
T (reactant concentration and temperature reaction), u = Tc (coolant

stream temperature, control signal) and the output is equal to the reactant concentration
CA (as a consequence C = [1 0]). Under the nominal operating condition, Tc,eq = 97.6794 K;
the reactor exhibits an unstable but desirable equilibrium in terms of the reactant concen-
tration value: [

CA,eq, TA,eq
]T

= [0.52, 398.792]T

(the other two asymptotically stable equilibria do exist, but in terms of the reactant con-
centration value, they are of no interest). The sampling time has been chosen as equal to
Ts = 0.1 min, and the plant behavior has been discretized according to a forward-Euler
scheme. The task consists of regulating the behavior of the reactant concentration around
the desired equilibrium value by acting on the coolant stream temperature Tc under the
action of initial state conditions acting as perturbations with regard to to the normal operat-
ing condition. An MPC strategy will be designed under the hypothesis that the state and
input variables belong to the following constraints box:

0.3 ≤ CA(t) ≤ 0.6 (36)

395 ≤ TA(t) ≤ 405 (37)

80 ≤ Tc(t) ≤ 120 (38)

A possible interpretation of the previous box could be in terms of reactor safety. According
to Section 4 prescriptions, a polytopic embedding of the nonlinear plant (28) inside the
box (36)–(38) has been derived off-line by applying the Algorithm 2. To this end, r = 50
equilibria have been exploited by means of a gridding selection procedure to achieve
a multi-model description (26), compatible with Ns = 108 data sequences {us, xi

s(t)}
generated by the Monte Carlo simulation unit. The resulting matrix vertices are

Φ1 =

[
2.3682 0.1303
1.4524 1.0461

]
, G1 =

[
−5e − 4
−4.9e − 2

]
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Φ2 =

[
2.5693 0.0415
−0.8275 0.8936

]
, G2 =

[
5e − 4

−4.6e − 2

]

Φ3 =

[
2.1213 −0.2886
−2.4767 1.4602

]
, G3 =

[
4.5e − 4
−4.3e − 2

]

Φ4 =

[
3.1508 −0.5255
1.0670 0.6757

]
, G4 =

[
4.5e − 4
−4.1e − 2

]

Φ5 =

[
2.7036 0.1576
−1.1885 0.8158

]
, G5 =

[
−5e − 4
−5.6e − 2

]
To empirically verify that the generated state tube entraps the nonlinear motor state tra-
jectory, we face a situation that is different with regard to the previous example since the
equilibrium is unstable and the obtained polytope LTI vertices are unstable too. As a
consequence, it is not possible to depict the state trajectory tube using a 3D representation
since the tube sides are numerically diverging at a fast rate. To overcome this practical
drawback and by considering that the system has a planar state, we have depicted in the
following Figure 7 the free response time evolution on the plane

[
CA − CA,eq. TA − TA,eq

]
of

an outer approximation of the state tube for three sampling instants, t = 0.1, 0.2, and 0.3 min
(a photo-shoot-like image). The polygonal figure vertices are vectors aligned along the
direction of the unstable eigenvectors of the polytope LTI matrices Φi, i = 1, 2, 3, 4, 5. The
bullet points are the sampled values of the unbiased free-state evolution CSTR discretized
nonlinear model for t = 0.1 min (asterisk), t = 0.2 min (cross), and t = 0.3 min (bullet). It
can be noticed that all the three points belong to the respective polygonal region.

t=0.1 min

t=0.2 min

t=0.3 min

t=0.1 min

t=0.2 min

t=0.3 min

Figure 7. Free response state tube outer approximation (polygonal regions) planar depiction in the

plane
[
CA − CA,eq, TA − TA,eq

]
, for t = 0.1, 0.2, and 0.3 min (free evolution). The bullet points are

representing the nonlinear CSTR free response, evaluated at t = 0.1 min (asterisk), t = 0.2 min (cross),
and t = 0.3 min (bullet).
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Starting from the design knobs Rx = diag(1, 0) and Ru = 0.01, a sequence of 30 pre-
decessor sets has been computed via recursions (13), and (14) and, similarly to the previous
experiment, the proposed Algorithm 1 scheme has been compared with the NMPC com-
petitor. The time horizon is 10 min and the CSTR initial state has been chosen as equal to
x0 = [0.3, 402]T ; notice that for this particular choice, the concentration initial value has
been chosen as equal to the left boundary of the admissible region (36).

The on-line numerical results are collected in Figures 8–10, where the boxed CSTR
variables of concentration CA(t), reactor temperature TA(t), and coolant stream temper-
ature (control input) Tc(t) for the two strategies are depicted. The prescribed constraints
are denoted by dashed horizontal lines, and the dash–dotted line represents the given
equilibrium level. All the prescribed constraints are satisfied at each time instant, and the
desired equilibrium levels are asymptotically reached. Unlike the previous example, it can
be noticed that the proposed Algorithm 1 and the NMPC are no longer indistinguishable
and it can be noticed that, for all the time trends, the NMPC regulated state variables (as
expected) are performing better than the proposed Algorithm 1 competitor. In addition,
it can be also noted, thanks to the particular choice of the initial state that both strategies,
Algorithm 1, which was proposed, and NMPC, which is the competitor, saturate their state
values on the initial time instants of the CA(t) graphical depiction (Figure 8). Similarly to
the previous example, in order to have a regulated system behavior comprehension, let us
start from Figure 8 (Reactant A concentration CA(t) and output target): the initial value,
CA(0) = 0.3 J

g K , is below the desired Reactant A concentration target level CA,re f = 0.52 J
g K

(dash–dotted horizontal line), and the initial reactor temperature value TA(0) = 402 K is
above the corresponding equilibrium target value TA,re f = 398.792 K; as a consequence,
the coolant stream temperature control signal Tc(t) (Figure 10) must jointly cool down
the reactor temperature to increase the reactant concentration. This is achieved via the
MPC strategy which changes the coolant stream temperature to the lowest possible level,
80 K, consistent with the imposed constraints (lower-level horizontal magenta dashed line
in Figure 10), so that, as previously stated, the reactor chamber will jointly achieve an
increase in the reactant production (measured by the CA(t) quantity) and a decrease in
the reaction temperature TA(t). Whenever, for both state variables, CA(t) and TA(t), the
transient is near the end, the coolant stream temperature input increases towards the related
equilibrium value (dash–dotted orange line in Figure 10) and the reaction then reaches its
steady-state behavior. The difference between the proposed Algorithm 1 and the NMPC
competitor can be can be understood by jointly analyzing the temperature trends shown
in Figure 10 (coolant stream control input) and Figure 9 (reactor temperature): here, the
NMPC cooling down phenomenon is more rapid with regard to the corresponding proposed
Algorithm 1 behavior. A possible explanation consists of the NMPC algorithm having
a better understanding of the reactor model (ad hoc model-based scheme). This leads to
a faster convergence of the controlled variables towards the desired equilibrium, while
also ensuring better safety conditions (fewer undershoot phenomena in the reactor tem-
perature time trend TA(t), Figure 9). The two schemes have significant different on-line
computational complexities, as will be clear in the forthcoming analysis.

The Lyapunov-like switching signal takes care of the one-step state-ahead controllable
sequence set-membership level, showing that the regulated state trajectory converges in
finite time (the first 29 sampling time steps and the initial state belongs to i(t0) = 19) to the
RPI region E , which is depicted in Figure 11. In this case, the Algorithm 1 strategy requires
solving a QP optimization problem for 13 consecutive sampling steps, starting from the
initial time instant. Similar considerations to the previous example can be made regarding
the choice of the proposed data-driven Algorithm 1 controller compared to its competitor.
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Figure 8. Reactant A concentration CA(t) regulated time trend: Algorithm 1 strategy (blue line)
and NMPC strategy (red line), prescribed constraints (dashed horizontal lines), equilibrium level
(dash–dotted line).
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Figure 9. Reactor temperature TA(t) regulated time trend: Algorithm 1 strategy (blue line) and
NMPC strategy (red line), prescribed constraints (dashed horizontal lines), equilibrium level (dash–
dotted line).



Information 2024, 15, 369 20 of 23

0 1 2 3 4 5 6 7 8 9 10

Time [min.]

70

80

90

100

110

120

130

[K
]

Coolant Stream Temperature T
c
(t)

ST-MPC

NMPC

Figure 10. Coolant stream (control input) Tc(t) regulated time trend: Algorithm 1 strategy (blue line)
and NMPC strategy (red line), prescribed constraints (dashed horizontal lines), equilibrium level
(dash–dotted line).
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Figure 11. Algorithm 1 strategy set-membership level signal (CSTR example).
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5.3. Computational Burdens

The common denominator between the two proposed examples is represented by
the computational burdens of the data-driven Algorithm 1 that is allocated mainly in the
off-line phase (performed off-line before plant operations). As for the on-line phase, the
numerical effort is related to the set-membership level signal i(tk):

1. When i(tk) = 0, it results in a trivial matrix-vector multiplication;
2. When i(tk) ̸= 0, it requires the solution of a quadratic programming problem (QP)

with linear constraints whose computational complexity is O(ν3) (ν is the optimization
problem dimension size) [39].

Since the proposed strategy is capable of driving the regulated plant state in a finite
number of steps (at most N, where N is the number of the Ei sets) to the RPI region E0 [28],
the proposed Algorithm 1 is required to solve a QP procedure only for a finite number of
times. The NMPC strategy conversely requires, for each step, the solution of a quadratic
program (QP) or Second-Order Cone Program (SOCP) (O(ν3) in the best-case scenario) [40].

6. Conclusions and Future Studies

This paper presents an innovative data-driven set-theoretic receding horizon control
(RHC) algorithm specifically designed for constrained single-input single-output (SISO)
nonlinear systems. By analyzing input/output data sequences, the algorithm demon-
strates its ability to compute a polytopic outer embedding of the nonlinear plant using the
proposed iterative machine learning approach.

In terms of future development, several key areas will be prioritized to enhance the al-
gorithm’s capabilities and robustness. First, methodological refinements will be undertaken
to extend the algorithm’s applicability to a broader range of nonlinear systems, including
multi-input multi-output (MIMO) configurations and systems with non stationary dynamic
characteristics (drifting parameters, time-varying targets etc.).

Secondly, it is crucial to decouple the RHC design from explicit state model descrip-
tions. This involves developing model-agnostic approaches that can maintain performance
without relying on detailed state-space representations, thereby increasing the flexibility
and adaptability of the control strategy.

Lastly, the real-time adaptability and effectiveness of these learning-based controllers
will be rigorously assessed. This includes implementing the algorithm in real-world
scenarios to evaluate its performance under different operating conditions and disturbances.
Additionally, strategies to reduce computational overhead and improve the algorithm’s
response time will be explored, ensuring its practical viability for real-time applications.

Overall, these advancements will significantly contribute to the development of more
versatile, efficient, and reliable data-driven RHC algorithms for nonlinear control systems.
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