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Abstract: Ontological knowledge graph (OKG) is a well-formed visual representation that depicts
knowledge organization in formal elements (e.g., entities and attributes) and their interrelationships.
OKG is crucial for innovation management analysis as it provides a clear boundary to understand
complex knowledge domain in detail. In the patent analysis field, it facilitates the definition of a well-
defined patent portfolio, aiming for accurate and complete patent retrievals and subsequent analyses.
In recent decade, the rapid growth of the information and communication technology (ICT) sector has
rendered data centers (DCs) indispensable for data processing, storage, and cloud computing, while
ensuring security and privacy during DC operations. However, their energy-intensive operations
pose challenges to global efforts toward achieving net-zero emissions goals. In response, this research
develops a formal OKG refinement process and uses DC net-zero technology OKG as case study
for in-depth OKG refinement and application in patent portfolio analysis. The net-zero DC domain
covers five sub-technologies. Utilizing the proposed OKG refinement and patent portfolio analysis
framework, the 1801 most recent decade’s patents related to relevant “DC net-zero technologies” are
retrieved and analyzed. Particularly in this case, DC colocation and server-as-a-service perspectives
are the newly discovered sub-domains for OKG refinement. Furthermore, the research also adopts
the technology function matrix and technology maturity to assess current and future technology
development trends, providing crucial insights supporting strategic innovation management.

Keywords: ontological knowledge graph (OKG); natural language processing (NLP); text mining;
patent portfolio analysis; data center (DC); net-zero technologies

1. Introduction

Ontological knowledge graph (OKG) is a meticulously structured visual representation
designed to organize and depict knowledge through formal components, which include
entities, attributes, and the intricate interrelationships among these components [1]. The
concept draws inspiration from “ontology,” which standardizes abstract domain-specific
concepts, converting them into formal knowledge systems for human and machine un-
derstanding and interchanges [2]. The process of systematically gathering, integrating
and representing knowledge within a specific domain is referred to as “ontology engineer-
ing” [3]. Establishing OKG can provide a clear definition for the knowledge scope under
study, assisting in the creation of a coherent research framework, particularly for innovative
knowledge management.

A data center (DC) is a specially designed physical facility used for storing, managing,
and processing large amounts of data and information, constituting a part of the modern
information technology infrastructure. Typically, it consists of large-scale computer systems,
servers, network equipment, and storage devices, along with necessary cooling, power
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supply, and physical security facilities [4]. DCs play an indispensable role in various
industry chains, especially in the information and communication technology (ICT) related
industries, yet their significant energy consumption has been widely discussed in recent
years. According to a report in 2024, global DC electricity consumption had already
reached 460 terawatt-hours (TWh), with a forecasted increase to 650 to 1050 TWh by
2026 [5], indicating the substantial energy consumption of DCs. In response to this, the
European Union (EU) issued an Energy Efficiency Directive in 2023, which explicitly states
that, starting from May 15 2024, all DC owners and operators within the EU must report
their energy performance for the previous year annually. The EU plans to inspect and
compile the collected data and publish a report by 2025 to enhance the performance of DCs
and reduce their environmental impact [6].

Net-zero emissions refer to achieving a balance between the amount of greenhouse gas
emissions generated by human activities and the amount removed from the atmosphere.
Net-zero emissions do not imply complete elimination of emissions, but signify a concerted
effort to minimize anthropogenic greenhouse gas emissions to the greatest extent possi-
ble [7]. Within the realm of net-zero emissions in DCs, numerous innovative technologies
have emerged, many of which are being realized through patents. Patents play a crucial
role in technology development and equitable dissemination, providing inventors with
proprietary rights and legal protection [8].

The research begins by conducting an exhaustive literature review focusing on DC
net-zero technologies. Subsequently, an OKG is systematically constructed, consolidating
pertinent technologies and establishing a clear framework for the research domain, and
also serving as the basis for conducting the patent retrieval strategy. Through major
patenting trend analysis, trends related to net-zero technologies in DC, such as major patent
assignees, trends in patent publication years, and the context of related developments,
can be depicted. Additionally, natural language processing (NLP) techniques (e.g., patent
clustering, keyword extraction, topic modeling) are employed for enhancing domain
OKG, by integrating the results and mapping to the initial OKG, making this a more
comprehensive technical framework for the research domain. After the refinement of the
OKG, we conduct further critical analysis of relevant patents, including the prediction of
the related technologies’ maturity by s-curve, as well as identifying patent hotspots and
cold spots by TFM, aiming to provides important references for relevant academic and
research institutions, and enabling related enterprises to strategically position themselves
through early patent layout.

2. Literature Review

This section offers a comprehensive literature review and synthesis of diverse ana-
lytical methodologies slated for future analysis, encompassing OKG, keyword extraction,
clustering, topic modeling, and technology maturity analysis. In addition to elucidating the
underlying principles of each method, recent pertinent research utilizing these techniques
is also delineated.

2.1. Ontological Knowledge Graph (OKG)

The term “ontology” carries different meanings across various fields. Gruber views
ontology as a science aimed at standardizing abstract or vague concepts as well as domain-
specific concepts, thereby transforming them into knowledge systems that are understand-
able to humans [9].

An OKG, also known as an ontology graph, or ontology map, serves as a meticulously
crafted visual depiction, delineating the intricate tapestry of knowledge within a given
domain, offering a structured framework for comprehending the depth and breadth of a
complex knowledge domain. In research related to innovative knowledge and technology
management, OKG often serve as a crucial method and tool, supporting many analyses,
including patent portfolio analyses, in various knowledge domains. For instance, some re-
searchers commence their research by constructing an OKG of the research domain through
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a comprehensive literature review, which serves as a foundational basis for subsequent
patent retrieval and analysis. However, subsequent refinements of the OKG after its initial
establishment are lacking [10–13], i.e., viewed as a critical research gap. This research’s
objective is to overcome the research gap. Some of the recent OKG research is found to
emphasize machine learning and NLP text mining techniques to generate the OKG in
various knowledge representations [14,15] as well as employing intelligent ontology-based
patent analyses [16–19].

2.2. Keyword Extraction

Keyword extraction is a core technique for filtering out important information from a
large volume of text-based documents, either automated or semi-automated, for effectively
unearthing key concepts, themes, or focal points from the body of text. As listed in Table 1,
keyword extraction (from text) techniques can be broadly categorized into three main
categories; (1) simple statistical methods, (2) linguistic methods, and (3) machine learning
methods [20].

Table 1. Comparison of common keyword extraction techniques.

Keyword Extraction Methods Description Example

Simple statistical methods

In the absence of considering linguistic
features of the text, attention is focused on

extracting statistical data from the text,
including word position, word frequency,

and inverse document frequency, to
generate a list of keywords.

N-gram
TF–IDF 1

PAT-tree 2

Linguistic methods

Requires a thorough understanding of
grammar and semantic structures between

words. It involves techniques such as
syntactic role identification, parsing, and

morphological analysis to determine
keyword relationships.

WordNet
EDR 3

Tree Tagger

Machine learning methods

Using machine learning algorithms,
keywords are identified based on training

data, can better handle context and
semantics, and typically yield higher

accuracy.

SVM 4

NB 5

Bagging
KeyBERT

1 TF–IDF = term frequency–inverse document frequency. 2 PAT-tree = Patricia tree. 3 EDR = electronic dictionary.
4 SVM = support vector machine. 5 NB = Naive Bayes.

In recent patent mining research, KeyBERT is a popular method for keyword extraction.
KeyBERT is an unsupervised keyword extraction approach, which is capable of extracting
semantically meaningful keywords, thereby enhancing the quality of information extraction
from textual data [21]. For example, Trappey et al. [22] employed KeyBERT and normalized
term frequency (NTF) to conduct a bibliometric study of the United Nations Sustainable
Development Goals (SDGs), aiming to observe the current research publication trends and
directions for SDGs among developed and developing economies.

2.3. Clustering Method

The clustering method emphasizes the partitioning of a dataset into multiple sub-sets
(or groups), ensuring higher similarity among data points within the same group and
lower similarity between different groups. Clustering methods can be broadly categorized
into two types, i.e., hard clustering and soft clustering [23]. Hard clustering involves
partitioning data such that each data item belongs to only one cluster, like K-means,
hierarchical clustering, or density-based clustering; on the other hand, soft clustering allows
data points to potentially belong to multiple clusters; this approach includes methods such
as Gaussian mixture models, fuzzy C-means, and model-based clustering.
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In the research, K-means is a classical and popular algorithm for clustering. K-means is
an unsupervised clustering technique used to group data based on similarity. The objective
of K-means is to partition the data into k distinct clusters, where the value of k needs to be
predefined, aiming for data points within each cluster to be similar to each other while being
dissimilar to those in other clusters [24]. K-means is commonly applied in text clustering,
where texts are grouped into different categories based on thematic or content similarity. In
the related research, Trappey et al. [25] utilized advanced techniques to condense request
for quotation (RFQ) documents, first applying N-gram TF–IDF to extract key terms from
RFQ and automatically extract basic specifications, then employing K-means algorithm to
cluster sentences associated with each specification, producing concise RFQ summaries.

2.4. Topic Modeling

Topic modeling is a statistical model used for analyzing text data. The main objec-
tive of topic modeling is to identify the latent topic structure inherent in these extensive
text collections [26]. The topic modeling technique can be divided into two main types:
probabilistic generative models and information-theoretic models. We will introduce
two well-known topic models from each category, Latent Dirichlet Allocation (LDA) and
Correlation Explanation (CorEx).

LDA is a probabilistic generative model for topic modeling. It assumes that documents
are mixtures of latent topics, which are characterized by a distribution of key words. These
keywords are commonly used for document semantic clustering, topic discovery and their
information retrieval [27]. For instance, collected relevant patent data on Cyber-Physical
Systems (CPS) and solar energy technology innovations, respectively, are retrieved and
topic modeling using LDA is deployed for in-depth patent portfolio analyses [18,28].

CorEx is an unsupervised information-theoretic model used for learning latent factors
from data. It captures correlations between variables to identify the most informative and
non-redundant factors. It is versatile and applied in tasks like topic modeling, feature
selection, and dimensionality reduction [29]. In the relevant research, Trappey et al. [11,12]
developed a system for technology mining and exploration based on relevant patents and
non-patent literature in the B5G domain. They used CorEx, combined with keyBERT for
keyword extraction, aiming to grasp multiple underlying themes within extensive patent
datasets. Further, Ounacer et al. [30] utilized CorEx for sentiment analysis of reviews from
travel websites, such as Booking and TripAdvisor, aiming to assist consumers in better
understanding the reviews on these travel websites.

2.5. Technology Maturity Analysis

Technology maturity analysis is employed to depict the evolution of various domains
and is recognized as a crucial tool for understanding the dynamics of product and techno-
logical development [31]. The concept of technology maturity originates from the product
life cycle, which typically comprises four stages: introduction, growth, maturity, and de-
cline [32]. During the introduction stage, the growth of technology and product numbers is
typically slow; in the growth stage, technology and product numbers exhibit exponential
growth; during the maturity stage, the growth of technology and product numbers gradu-
ally slows down; if technology lacks further development or innovation, it will eventually
decline.

Technology maturity analysis is commonly applied in patent research across various
domains [33–35]. It initially involves the statistical compilation of patent data within a
specific technological field to calculate the cumulative publication numbers. These data
are then utilized to construct an S-curve model, which serves as a tool to assess the current
state of technological development in the field and to forecast future trends, grounded in
the logistic growth model, which can be articulated using the formula below:

P(x) =
L

1 + e−k(x−x0)
(1)
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where P(x) denotes the output or predicted value for a given input x, L represents the
maximum value or the upper limit of the function, k indicates the slope or steepness of the
curve, and x0 specifies the inflection point of the curve, where the growth rate shifts from
increasing to decreasing.

3. Methodology

Figure 1 illustrates the system architecture flowchart for the research, detailing the
step-by-step processes and methods adopted for patent portfolio analysis. This approach
is generically applicable to other technology domains. After determining the research
topic, non-patent literature references are collected to construct the OKG, forming the
basis for development of a patent retrieval strategy. Initial patent trend analysis used data
visualization to explore the innovation trends and directions in the given domain. Text
mining techniques then refined the OKG by comparing results with literature reviews. Fur-
thermore, the technology function matrix (TFM) and technology maturity s-curve assessed
current and future development trends, offering an in-depth exploration of hotspots and
trends in relevant patent technologies from both macro and micro perspectives.
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3.1. DC Net-Zero Technologies’ OKG Construction

As a high-energy-consuming industry, DCs have increasingly significant environ-
mental impacts. In recent years, the growing global attention to net-zero emissions has
underscored the importance of DC sustainability, attracting widespread research interest
from academia. Hoosain et al. [36] emphasize that achieving net-zero emissions in DCs
hinges on improving energy efficiency, enhancing sustainability, and reducing carbon
footprints. The research also incorporates the United Nations SDGs, highlighting the
importance of water resource management and the use of renewable energy in achieving
net-zero goals. Jin et al. [37] delve into green DCs, which are relevant to achieving net-zero
objectives, including energy efficiency improvement to reduce consumption, enhancing
resource utilization through resource management and cloud computing, reducing en-
ergy consumption through thermal management techniques, and establishing green DC
assessment standards to achieve energy efficiency and carbon emission reduction. Cao
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et al. [38] propose key indicators to enhance the sustainability and future outlook of DCs;
these indicators include energy efficiency, cooling management efficiency, power supply
chain efficiency, and environmental impact.

The synthesis of the aforementioned literature serves as a crucial foundation for
establishing the OKG for the research. The OKG we constructed considers the DC as a core
object, and conceptually defines its major sub-technologies centered on how the object will
achieve the goal of net- or near-zero emission. The OKG scope of consideration includes the
technologies and functions for building DCs, while optimizing natural resource utilization
with minimal carbon footprint. It covers five main sub-technologies: optimizing cooling
technologies, resource optimization and management, waste heat control and recovery,
carbon emission management and monitoring, and the integration of high-efficiency IT
equipment (as shown in Figure 2).
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Optimizing cooling technology is crucial for DCs; this includes exploring more efficient
liquid cooling techniques. The main cooling methods used in DCs are air cooling, liquid
cooling, and free cooling. Air cooling is widely used due to its simplicity and low operating
costs, but it is less efficient [39]. Liquid cooling is highly effective, lowering equipment
temperatures by circulating cooling fluid; for instance, the underwater DC proposed by
Microsoft offers cost-effective cooling, promotes renewable energy use, and improves
overall performance [40]. Immersion cooling is a type of liquid cooling, which submerges
servers in non-conductive liquid to dissipate heat without additional cooling parts [41].
Free cooling harnesses outdoor temperatures to reduce energy consumption and carbon
emissions, enhancing energy efficiency and environmental sustainability [42].

Resource management and optimization in DCs encompass both power and water
resource management. Power resource management consists of several key components,
uninterruptible power supply (UPS) providing power backup to ensure continuous oper-
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ation in the event of a primary power failure. This swiftly switches to battery power to
prevent data loss and equipment failures, ensuring high reliability [43]. Generators serve
as backup power sources during prolonged outages, while battery arrays store energy for
short-term use, guaranteeing smooth transitions [44]. Power distribution units (PDUs) allo-
cate primary power to various DC equipment and systems, ensuring a stable and balanced
power supply, thus enhancing power utilization efficiency [45]. Power monitoring systems
track energy consumption, power distribution, and energy efficiency in real-time, enabling
DC managers to make informed energy adjustments and optimization measures [46]. Water
resource management includes water recycling systems and smart water management
systems. Water recycling systems recycle and treat wastewater generated by DCs, reduc-
ing reliance on fresh water, minimizing water consumption and emissions. Smart water
management systems, powered by data and advanced technology, monitor, control, and
optimize water usage in DCs in real-time. By collecting water resource data through sensors
and monitoring devices, these systems utilize artificial intelligence and data analytics to
achieve water conservation and optimization goals [47,48].

In an operational DC generating significant amounts of heat, the objective of heat
management and recovery is to capture this generated heat under appropriate conditions
and then reuse it to reduce the energy consumption and heat emissions of the DC, which
can be achieved through various means. Heat recovery aims to capture the heat generated
during DC operation and reuse it, for example, for heating or other energy needs, thereby
reducing energy wastage [49]. Dynamic thermal management is a real-time method of
monitoring and adjusting the temperatures of various devices and components in DCs,
adjusting the operation of cooling systems according to actual requirements and load
conditions to ensure that equipment operates within a safe temperature range while mini-
mizing energy wastage [50]. Temperature-aware load balancing is an optimization strategy
aimed at distributing the workload across different servers in a DC to achieve tempera-
ture balance, ensuring uniform temperature distribution across all servers and thereby
improving cooling efficiency [51]. Workload distribution optimization is a process aimed
at distributing different workloads across different servers in the DC to achieve optimal
resource utilization and balance, reducing energy consumption and cooling requirements
by minimizing the overuse of certain servers [52].

DCs need to establish comprehensive carbon emission monitoring systems, set emis-
sion targets, and conduct regular carbon footprint assessments. Carbon emission efficiency
assessments measure emissions generated during energy consumption and operations,
informing corresponding emission reduction strategies [53]. Carbon accounting monitoring
devices are employed to monitor and record carbon emissions in real-time, aiding DCs
in accurately tracking their emission levels [54]. Carbon reduction algorithms optimize
energy usage and emissions by intelligently adjusting equipment operation and optimizing
energy consumption and supply [55]. Carbon neutrality technologies aim to offset carbon
emissions generated by DCs, utilizing methods such as carbon capture and storage or
implementing carbon offset projects to achieve carbon neutrality goals [56].

High-efficiency IT equipment integration can reduce energy consumption and carbon
emissions while maintaining the same workload. The use of virtualization technology
is crucial for achieving high efficiency, as multiple virtual servers can run on the same
physical server, thereby increasing hardware resource utilization [57]. Optimizing server
deployment also plays a significant role in improving efficiency by reducing heat dissipa-
tion requirements and saving energy [58]. Adjusting switch rates and optimizing switch
scheduling are important strategies for improving efficiency, and unnecessary energy waste
in network devices can be minimized [59,60]. Upgrading storage devices is also part of
achieving net-zero carbon goals, ss next-generation storage technologies typically offer
higher efficiency, larger capacities, faster data access speeds, and reduced energy consump-
tion and space occupancy [61]. Optimizing and scheduling equipment resources is another
important strategy for improving efficiency, dynamic resource allocation and scheduling to
ensure that DC resources are optimally utilized [62].
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3.2. Patent Data Retrieval Strategy Design

This research focuses on the patent analysis of DC net-zero technologies. In formu-
lating the patent retrieval strategy, three major keyword combinations were included,
along with restrictions on the number of patent families (≥3) and publication year (2014 to
2023). The detailed patent retrieval strategy formulated in this research (search on Derwent
Innovation) is as follows:

TID = (Datacenter or data ADJ center or datacenter or data ADJ center or datawarehouse or data ADJ warehouse) AND
ALL = (Server or Storage SAME equipment or Storage SAME device or Switcher or CPU or GPU or hard ADJ disk or hard
ADJ drive or Memory or Register or IT ADJ Equipment or Cooling or cold or air ADJ condition or Cooler or Fluorine ADJ

pump or compute or Electricity or Power or Transformer or Compressor or Energy SAME storage or Water or Sewage
SAME recycling or Recycled NEAR5 material or Heat or Green SAME Building) AND ALL = ((Netzero or net ADJ zero or
zero ADJ emission or eco-friendly) or ((Carbon or CO2) NEAR5 (neutral or capture or storage or footprint or Monitoring or
calculation or credit or emission)) or ((Reduce or decrease or decline or low or efficient) NEAR5 (resource or waste or cost or

consumption or electricity or water or Energy or Carbon or contamination or pollution or emission)) or (energy SAME
(Renewable or clean or Sustainable or recycle or green)) or energy-efficient or ((responsibility) NEAR5 (enterprise or social))

or Circular NEAR5 Economy or Climate or Sustainability or Waste ADJ Heat ADJ Recovery);

The patent retrieval strategy primarily comprises three components, each intercon-
nected with the Boolean operator “AND”, indicating that the retrieved patent data must
concurrently satisfy all components. Within the three components, keywords are connected
with the Boolean operator “OR,” indicating that the retrieval of relevant patent data requires
the satisfaction of at least one keyword within each component, resulting in a total of 1971
relevant patents. Subsequently, these patents underwent manual reading and screening,
where the titles, abstracts, and claims were reviewed to eliminate patents not within the
scope of this research. During the screening process, 1801 patents that met the criteria of
this research were retained, and these patent data will be utilized for further analysis in
this research.

3.3. Major Patenting Trend Analysis

Major patenting trend analysis involves the comprehensive examination and inter-
pretation of data within a broad and holistic context; this approach typically emphasizes
overarching trends, overall relationships, and aggregate performance, while paying less
attention to localized, individual, or granular details. Its primary objective is to offer a
comprehensive perspective, enabling decision-makers to better comprehend the overall
landscape, thereby facilitating the formulation of corresponding strategies and policies.
This analysis encompasses data organization, cleansing, visualization, and in-depth inter-
pretation to unveil underlying patterns and correlations. Specific analyses included trends
in patent publication years, major patent assignees, and CPC classifications.

3.4. Clustering and Topic Modeling for Enhancing Domain OKG

In clustering and topic modeling for enhancing domain OKG, preprocessing was
applied to the retrieved patent dataset. Subsequently, K-means clustering was employed,
KeyBERT was utilized for keyword extraction, and CorEx was used for topic modeling.
Finally, based on the synthesis of all results, refinement of OKG was performed.

• Combination of K-means Clustering and KeyBERT Keyword Extraction

In this research, we developed a specific patent document clustering process. Initially,
text preprocessing was conducted to filter out stop words defined in this research. Subse-
quently, SpaCy, a natural language processing package, was employed to lemmatize parts
of speech and convert English words into their base forms. Following this, the sklearn
package in Python was utilized to perform TF–IDF vectorization, transforming the textual
data into feature values. Finally, the number of clusters was determined based on the
results of the elbow method, and the K-means clustering algorithm was employed for
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further data analysis. After performing K-means clustering, KeyBERT keyword extraction
is employed with the aim of extracting keywords from each cluster of patents, aiming to
ascertain the technical themes represented by each cluster. The keyword extraction process
generated results for both 1-g and 2-g keywords.

• CorEx Topic Modeling

This research developed and implemented a CorEx topic modeling process. It in-
corporated both 1-g and 2-g word combinations to capture more meaningful phrases.
Subsequently, the textual data was transformed into numerical format. For each extracted
topic, the program listed the associated keywords along with their corresponding weights.

Furthermore, the CorEx topic results were mapped back to the clustering results
obtained from K-means to enhance the interpretability of the text analysis. By associating
each topic with one or more clusters, a deeper understanding of the technological categories
and contents represented by each cluster was achieved. Finally, this result was cross-
referenced and validated against the OKG originally constructed in this research, reinforcing
the robustness of the ontology framework.

3.5. Critical Patent Portfolio Analysis Based on Refined OKG

The purpose of critical patent portfolio analysis is to delve deeper into the hotspots
of patent development and the maturity of patent technologies within specific domains.
This analytical approach combines TFM and technology maturity analysis (s-curve) to gain
insights into the patent innovation trends across various fields.

• KeyBERT-based Technology Function Matrix (KeyBERT-based eTFM)

This research employs and optimizes a method known as the computer-aided technol-
ogy function matrix (eTFM) to analyze patent data [63]. The eTFM utilizes the computa-
tional power and data processing capabilities of computers to automatically and quickly
identify patents (and the patent count) under each technology/function (or efficacy) com-
bination. The research utilizes KeyBERT, an NLP-based model, in patent-text mining for
keyword extractions [11]. The identified keywords for each patent are then utilized to find
matching technology- and function-categories for eTFM’s patent distribution counts [12].

To begin, preparation of patent datasets (including each patent’s title, abstract, and
claims) and technology/function datasets (including each technology/function’s descrip-
tions based on the related literature review) is necessary. Programming will be utilized to
first extract keywords from both the patent dataset and the technology/function dataset
using KeyBERT, acquiring keywords for each patent and technology/function. After con-
firming the generated keywords, the score is calculated for the match between patents
and technologies/functions, by summing up the scores of overlapping keywords and then
dividing by the total keyword score. As a result, a relevance score ranging from 1 to 0 is
obtained, indicating the score of correlation between patents and technologies/functions, it
can be expressed by the following equation:

Score (P, T/F) = ∑ Duplicate keywords score
∑ Total keywords score

(2)

Subsequently, considering the threshold value, binary processing is conducted. If the
score is greater than or equal to the threshold, the patent is considered relevant to a specific
technology/function and labeled as 1; conversely, if less than the threshold, it is deemed
irrelevant and labeled as 0, resulting in the generation of a binary matrix, which can be
expressed by the following equation:

B(Pn, Ti) =

{
1, i f Score(Pn, Ti) ≥ θ

0, otherwise

B
(

Pn, Fj
)
=

{
1, i f Score

(
Pn, Fj

)
≥ θ

0, otherwise

(3)
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Finally, the multiplication of the binary matrix T’s transpose matrix (TT, an i × n
matrix) and the function matrix F (an n × j matrix) yields the final Technology-Function
matrix (T × F matrix):

T × Fik =
n

∑
n=1

TT
in × Fnk (4)

• Technology Maturity Analysis

In conducting a technology maturity analysis using s-curve, it is essential not only to
consider the annual cumulative number of publications, but also to precisely define three
critical parameters (L, k, x0 ). In the related research, the parameters are mostly generated
by Loglet Lab’s “guess parameters” function [64–66] or by using statistical software [67,68].

The research conducts a s-curve analysis based on the clustering results of patents.
Initially, the cumulative number of patents published annually is compiled for each cluster.
Subsequently, through the examination of relevant literature, technical reports, and pub-
licly available information, specific technological clusters’ actual development stages are
understood, and preliminary assumptions are made regarding these clusters, hypothesiz-
ing whether they are in the early, middle, or late stages of development. Different initial
parameters are assigned to clusters at different stages. For instance, in the early stages of
technology, parameters, such as saturation value (L), are set higher, the inflection point (x0)
is set further away from the current time, and the growth rate (k) is set higher to capture
potential growth opportunities. This flexible approach allows for adaptation to the specific
circumstances of different technological clusters, enhancing the accuracy and reliability of
predictions.

In order to fit the Logistic model to the dataset, residual sum of squares (RSS) is
defined as the loss function, which is used to measure the difference between the model’s
predicted values and the actual data values, which can be represented by the following
formula:

RSS = ∑n
i=1(yi − P(xi))

2= ∑n
i=1 ei

2 (5)

where yi represents the i-th observed value, and P(xi) denotes the model’s predicted value
at the i-th observation point.

When refining the models, we leverage a method called gradient descent to iteratively
adjust our model’s parameters. By calculating the gradient of the RSS with respect to a
given parameter, we obtain the direction in which the parameter should be adjusted to
reduce the RSS; this is based on the derivative of the RSS, which for a small step h can be
approximated as follows:

∂RSS
∂θ

≈ f (θ + h)− f (θ − h)
2h

(6)

This approximation aids in updating the parameters effectively. For a parameter θ, the
gradient descent step can be represented as:

θnew = θold − α∇RSS (7)

where α is the learning rate, which controls the size of each update step; ∇RSS is the
gradient vector of RSS with respect to the parameter θ (which can be L, k, or x0). Through
the above process, the optimal parameter to minimize the loss function can be calculated,
and then the s-curve can be simulated.

4. Discover Enhanced OKG and Patent Analysis—Case of Net-Zero DC Innovations

This section analyzes the collected patent data (1801 patents) in the domain of net-
zero DC innovations. The analysis commences with an examination of the overarching
patent trends, subsequent to which the validation and refinement of OKG are undertaken,
culminating in a more granular exploration of patent data from diverse perspectives.



Information 2024, 15, 374 11 of 21

4.1. Major Patenting Trend Analysis

Based on the trend in patent publications for each year, we observe a continuous
increase in the number of related patents published globally each year. The upward
trajectory underscores an increasing focus on DC net-zero technologies, prompting a rise in
patent applications (as shown in Figure 3a).
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Figure 3b shows the top 10 patent (family) assignee distribution. The top three
assignees are Huawei, Microsoft, and Schneider. Huawei is a provider of information and
communication technology infrastructure and smart devices. In recent years, Huawei has
been increasing its investment in net-zero DC technology and resources, collaborating
with many enterprises to build green DCs. Reducing carbon emissions in DCs has been a
proactive goal for Microsoft; for instance, Microsoft has established an underwater-operated
DC in Scotland, utilizing seawater to lower temperatures and reduce energy consumption,
thereby minimizing carbon emissions. Schneider Electric focuses on creating future-ready
DCs with sustainable value, high efficiency, excellent adaptability, and high flexibility.

Figure 3c displays the distribution of the top ten CPC categories in global patent data
related to net-zero DCs. Among these, G06F, H05K, and H04L dominate. G06F covers
electronic data processing, including control, input, imaging, and object electronic data
processing. H05K encompasses cooling, heat dissipation, and structural components of
electronic equipment. H04L relates to networks, wireless communications, and information
transmission.

4.2. Clustering and Topic Modeling for Enhancing Domain OKG

The present research uses both the “title” and “abstract” of each retrieved patent
as input data. By employing the elbow method, the optimal number of clusters was
determined. The result indicated a prominent elbow point at k = 5, suggesting that the
patent dataset should be divided into five clusters. Subsequently, each cluster’s patents
underwent keyword extraction. Table 2 presents the clustering results, keyword extraction
results, and their respective interpretations of the patent dataset. Notably, since the original
clusters 3 and 4 overlap conceptually in technologies related to cooling and heat control,
patents in these two clusters are merged as cluster 3 for further TFM and technology
maturity analyses.
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Table 2. Clustering (K-means) and keyword extraction (KeyBERT) results.

Cluster Cluster Meaning
(Number of Patents for Each Cluster) Keyword Extraction Results

1 Processor and related hardware
(631) CPU, board, processor, server

2 Power supply and management equipment
(291)

transformers, power supplies, capacitors, grids,
power equipment

3
Cooling technology and heat recovery

(570) 1

coolants, cool, cooling racks, refrigeration,
fluidical 2

thermoelectric, ventilator, refrigerate, HVAC,
heating 3

4 Network and communication technologies
(309) ethernet, cloud, protocol, transport, IP

1 The revised cluster 3 contains 570 patents, which is the sum of the original cluster 3 (351 patents) and cluster 4
(219 patents) due to their overlapping focus on technologies related to heat control and cooling. 2 The keyword
extraction result of the original cluster 3. 3 The keyword extraction result of the original cluster 4.

Table 3 presents the results of topic modeling while using CorEx. After multiple
parameter adjustments and optimizations, the optimal outcome consisted of 10 topics.
Each topic is identified by a topic number, a description, and keywords. It is important to
note that the topic model may result in some topics sharing similar or identical keywords,
leading to high similarity or even overlap between topics. However, this phenomenon also
reflects the interconnected concepts and themes within the field of DC net-zero technologies.

Table 3. Topic modeling (CorEx) result.

Topic Meaning of Topic Keywords

1 Heat recovery heat, liquid, heat exchanger, refrigeration,
evaporator, coolant

2 Cooling technology cool, air, cold, fluid, temperature, cooling, cool air,
flow, air flow

3 Virtualization, resource management
and performance optimization

virtual, resource management, performance
optimization, virtual machine, resource allocation

4 Cloud services and resource allocation
virtual, execute, cloud, virtual machine, host,

computing, virtualize, workload, instance, program,
cloud computing

5 Power supply and distribution power, power distribution, power supply, power
device, power comprise

6 Rack and equipment installation rack, assembly, frame, cabinet, housing, enclosure,
electronic rack

7 Network communication and data transfer network, network switch, network involve, network
traffic, optical

8 Optical communications and fiber technology optical, fiber, cable, connector, optical signal

9 Energy efficiency and conservation measures reduce, efficiency, energy, energy consumption,
energy saving

10 Storage technology, inspection and measurement
technology

drawing, detect, diagram, schematic, drawing
schematic

Figure 4 compares clustering and topic modeling analysis results (in clean nodes)
with the initial OKG (in gray nodes). The initial OKG aligns well with most analysis
results, validating its effectiveness in explaining and organizing. However, there is a
cluster of technologies, particularly in networking and communication (cluster 4), not
adequately covered in the initial OKG, which entails a different focus from our initial
construction aimed at maintaining DC and achieving net-zero goals, and involves DC-
provided services to users to assist them in reducing their carbon footprint and thereby
achieving net-zero emissions. Enhancing the OKG to address this gap would better reflect
the diversity of technologies and ensure comprehensive coverage and explanation of
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relevant concepts (in dotted nodes). When DC utilization falls below a certain threshold,
a portion of the equipment remains idle, leading to significantly lower overall energy
efficiency [69]. Resource sharing in DC involve providers or operators offering solutions
to customers to achieve net-zero practices. As a result, recent developments have led to
the emergence of commercial models, such as Platform-as-a-Service (PaaS), Infrastructure-
as-a-Service (IaaS), Software-as-a-Service (SaaS), Server-as-a-Service and the data center
colocation model. Amazon AWS, Microsoft Azure, and Google Cloud offer a range of such
services with significant impact [70]. In response to this rapid growing business model,
the development of net-zero DC related technologies, such as virtualized servers, cloud
computing, and robust communication methods, e.g., wireless communication integrated
with fiber optics, are crucial [71]. Therefore, these sub-domains (T3, T4, T7, T8) are identified
and newly added after extensive text mining using clustering and topic modeling (as shown
in Figure 5). These additional sub-domains are indeed very crucial from the perspectives of
DC net-zero technologies in Server-as-a-Service implementation.
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Further, Figure 5 shows the results of the enhanced OKG, aiming to address techno-
logical gaps in DC net-zero technologies for Server-as-a-Service.

Virtualization technology allows the virtualization of physical hardware resources
in DCs, such as servers, storage, and networking, creating a virtual server environment.
Resource pooling integrates different hardware resources into a shared pool, allocating
them to various applications or workloads as needed, reducing waste and enhancing re-
source flexibility. Containerization facilitates lightweight and portable deployment and
management of applications, enhancing flexibility and scalability [72,73]. Cloud computing
services provide computing, storage, networking, and application services through remote
servers, offering flexibility in resource allocation, cost reduction, and performance improve-
ment. Virtual cloud environments built upon cloud computing allow flexible management
and configuration of computing resources to meet varying workload demands, simplifying
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IT infrastructure management [74,75]. Networking protocols ensure effective communica-
tion between different devices, with TCP/IP serving as the core protocol for reliable data
transmission. Network virtualization enables the creation of multiple virtual independent
network environments on a single physical network infrastructure, enhancing resource
sharing, security, and network configuration simplicity [76,77]. Fiber optic communication
transmits data signals using optical pulses through fiber optic cables, offering high-speed,
long-distance, and high-capacity data transmission with low latency and energy consump-
tion. Optical network architectures leverage optical technology for high-speed, scalable,
and reliable data transmission, supporting large-scale DCs and long-distance communi-
cation. Optical switching technology enables data routing and switching in optical fiber
networks, achieving high-speed optical communication [78,79].

4.3. Critical Patent Portfolio Analysis Based on Refined OKG

This section uses critical patent analysis tools to provide further insight into domain
patent data, including TFM and s-curve technology maturity analysis. TFM is a commonly
utilized tool in patent analysis, by leveraging text mining and NLP techniques [28,80],
it has effectively overcome drawbacks associated with resource intensiveness and time
consumption, and has emerged as a potent and robust tool widely applied across various
domains for patent analysis. S-curve technology maturity analyses the development trend
of each sub-technology under the relevant domain and is widely used in patent analysis
and literature analysis in various fields [10,12].

• KeyBERT-based eTFM Analysis

In KeyBERT-based eTFM analysis, the selection of technologies (T) primarily stems
from the OKG, clustering, and topic modeling results, while functions (F) were filtered
based on their relevance to net-zero emissions. Setting the threshold at 20%, Table 4
shows the result of eTFM: T1—Cooling and heat recovery technology obtained the highest
cumulative score for technology, while F1—Energy efficiency achieved the highest cumu-
lative score for efficacy, indicating their significance. Patent hotspots were observed in
T1—cooling and heat recovery technology and F1—enhanced energy efficiency. As global
attention on reducing carbon footprints and addressing climate change continues to rise,
enhancing energy efficiency and developing energy recovery technologies have become
critical strategies. These technologies not only aid in reducing energy waste and improving
system efficiency but also promote the utilization of green energy, thereby supporting
global sustainable development goals.

Table 4. KeyBERT-based eTFM result.

F1
Energy

Efficiency

F2
Environmental

and Sustainability

F3
Energy Efficient

Operations

F4
Reliability Sum

T1 Cooling and heat recovery 343 71 241 31 686
T2 Energy saving technology 301 70 230 36 637
T3 Computing systems and HPC 280 41 186 28 535
T4 Cloud and virtualization 286 40 195 29 550

Sum 1210 222 852 124 2408

• Technology Maturity Analysis (s-curve)

In this section, the results of patent K-means clustering will be analyzed by s-curve
technology maturity analysis for each patent cluster. The first is cooling and heat recovery
technology (C3). According to the latest market analysis, cooling technologies for DCs
are experiencing rapid growth, anticipating that by 2030 the market value will surpass
$560 billion, with a compound annual growth rate (CAGR) of 17.1%. This growth is primar-
ily driven by the increasing demand for energy-efficient solutions and substantial planned
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investments [81]. Various market reports indicate that trends such as digital transformation,
cloud computing services, and artificial intelligence in the Asia-Pacific region will serve
as significant drivers for the rapid expansion of DC infrastructure; government initiatives
aimed at reducing the carbon footprint of high-power density facilities are also propelling
the development of cooling technologies [82,83]. Based on the collected references, assum-
ing the current technological development stage is in its early phases, this suggests that
these technologies are expected to reach maturity by 2025, indicating that they are currently
in the later stages of growth. During this phase, companies may be evaluating different
cooling technologies to find the most suitable solutions for their needs (shown in Figure 6c).
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Subsequently, an analysis was conducted of DC processors and related hardware
(C1), power supply and management equipment (C2), and network and communication
technologies (C4). According to various references, the CAGR of server racks and network
racks in DCs is projected to be 11.25% from 2023 to 2027. Additionally, IT equipment
(including server equipment, storage equipment, and network equipment) is expected to
experience a CAGR of 9.09% from 2022 to 2027; it is estimated that DC equipment will reach
$164.36 billion by 2031, with a CAGR of 13.2% from 2023 to 2031 [84,85]. Based on all the
aforementioned references, it is assumed that the current technological development status
of these technology clusters is in the early stages. Figure 6 depicts the maturity analysis
results for these clusters; it can be observed that these three clusters have not yet reached
their midpoint, indicating that they are still in the growth phase.
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5. Conclusions, Limitations and Future Works

This research has established a comprehensive patent analysis framework based on
OKG, encompassing a process refinement for OKG. Initially, we constructed a detailed
OKG centered on DC net-zero technologies, serving as a clear research boundary and
basis of patent retrieval strategy. Through major patenting trend analysis, we obtained a
comprehensive understanding of the development trends and directions in specific techno-
logical domains. Subsequently, we further corroborated that the OKG, when grounded in
natural language processing models of text mining, enables a more objective observation
and understanding of specific issues. This approach contrasts with the initial construction
of the OKG, which was predominantly influenced by the subjective interpretations of re-
searchers, and facilitates a more holistic representation of the issues under the DC net-zero
technologies’ domain. In the critical patent portfolio analysis, we employed a natural
language model-based keyword extraction method to develop the eTFM algorithm, aiming
to leverage the rapid and objective analysis capabilities of computers to swiftly identify
the development status of patents under specific technologies/functions. Moreover, based
on actual technological status and patent data, we developed the S-curve algorithm to
more accurately assess the development stages and trends of technologies. The framework
we established not only elucidates the current patent landscape but also sets the stage for
future advancements in patent analysis.

While this research offers valuable insights into the refinement of ontological knowl-
edge graphs and, subsequently, patent portfolio analysis for DC net-zero technologies, it is
important to acknowledge several limitations that may influence the interpretation and
generalization of the results. The following points highlight specific areas where constraints
are encountered and some strategies for overcoming the limitations.

(a) Data sources and scope: This study utilized data from international journal literature
search systems, including IEEE, Google Scholar, and Innovation Q+, as well as the
patent search system Derwent Innovation. The data scope may still be limited by the
coverage and indexing of these databases. Future research can expand the search to
include additional literature databases (e.g., Scopus, WoS, etc.)

(b) Limitations in predictive analysis: The S-curve model for technology maturity is
based on historical data and current trends, making it inherently uncertain. It may
not account for unexpected breakthroughs, market shifts, regulatory changes, or
geopolitical influences. Such factors could rapidly alter technology development
trends. Complementing patent analyses with qualitative analysis of these issues is
essential for a more comprehensive understanding.

(c) Subjectivity in OKG construction: The initial construction of the OKG was influenced
by the subjective interpretations of the researchers during the literature review. De-
spite subsequent efforts using text mining and NLP models to enhance objectivity, the
initial bias may still affect the overall findings and interpretations. To mitigate this,
we propose specific future research directions outlined in the following paragraph.

Future works in improving OKG construction and refinement (to reduce subjective
biases) require integrating advanced machine learning approaches and NLP modeling.
One promising approach is leveraging large language models (LLMs), such as GPT, BERT,
BART, or BLOOM to assist in OKG, construction and refinement. These models can process
vast amounts of text data (including text in multi-languages), identify relevant concepts,
and establish relationships between them with minimal human intervention. Moreover, the
use of LLMs can be extended to improve eTFM process. Consequently, this would enhance
the precision, comprehensiveness, and efficiency of patent portfolio analyses across various
technical domains.
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