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Abstract: This paper presents a novel approach to analyzing trends in federated learning (FL) using
automatic semantic keyword clustering. The authors collected a dataset of FL research papers
from the Scopus database and extracted keywords to form a collection representing the FL research
landscape. They employed natural language processing (NLP) techniques, specifically a pre-trained
transformer model, to convert keywords into vector embeddings. Agglomerative clustering was then
used to identify major thematic trends and sub-areas within FL. The study provides a granular view
of the thematic landscape and captures the broader dynamics of research activity in FL. The key focus
areas are divided into theoretical areas and practical applications of FL. The authors make their FL
paper dataset and keyword clustering results publicly available. This data-driven approach moves
beyond manual literature reviews and offers a comprehensive overview of the current evolution
of FL.

Keywords: federated learning; analysis; review; multi-agent system (MAS)

1. Introduction

Federated learning (FL) has emerged as a revolutionary paradigm in collaborative
machine learning [1]. It empowers multiple devices or institutions to train a model while
collectively safeguarding data privacy. This decentralized approach contrasts traditional
methods where data are centralized for model training, potentially compromising user
privacy and data ownership. FL accomplishes this collaborative learning by keeping raw
data distributed on individual devices, and instead of sharing the raw data, participants
exchange the model updates.

The field of FL is experiencing explosive growth, leading to a vast and ever-expanding
body of research literature. This presents a significant challenge to researchers attempting
to identify current trends and emerging sub-areas within FL. Traditional manual literature
reviews with a global approach, while valuable, become increasingly impractical for ana-
lyzing field trends as the number of publications and the intricate interplay of FL concepts
continue to grow exponentially, as depicted in Figure 1. To address this challenge, this
paper proposes the use of an automated semantic keyword clustering technique as a critical
tool for analyzing FL research trends.

Automated semantic keyword clustering leverages advanced natural language pro-
cessing (NLP) techniques to extract meaningful data from the vast amount of interconnected
areas in FL. Using pre-trained transformer models [2], the research article keywords can
be transformed into dense vector spaces that capture their semantic relationships. This
empowers the creation of clusters based on thematic relevance, revealing the underlying
thematic structure of the FL research landscape.
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Figure 1. Number of papers containing the keyword “federated learning” across the years, on a
logarithmic scale on the y-axis, based on the public dataset presented in Section 2.

This paper presents a semantically-based literature analysis of the 7 953 papers about
FL. The primary objective is to uncover and explore the major theoretical categories and
practical application areas of FL and examine the current trends of the field, along with the
emerging sub-areas that have received less research attention. First, we formulate a series
of research questions (RQs) that guide the investigation. These RQs delve into the current
trends in FL (RQ1), the tendencies of these trends (RQ2), and the application domains
where FL techniques are finding utility (RQ3 and RQ4). Recognizing the potential in
under-explored areas, we propose additional research questions (RQ5 and RQ6) that focus
on identifying emerging sub-areas within FL that have received limited research focus,
and investigating how existing FL techniques can be adapted to address these application
domains. The final question (RQ7) looks ahead to predict potential future directions and
areas of growth. Formally, we formulated the following research questions:

RQ1: What are the current trends in FL?
RQ2: What are the tendencies of the current trends in FL?
RQ3: What are the application domains where FL techniques are applied?
RQ4: What are the tendencies of the application domains?
RQ5: What are the emerging sub-areas within FL?
RQ6: What are the tendencies of the emerging sub-areas?
RQ7: What are the potential future trends of FL?

A data-mining technique and a transformer-based semantic analysis of the literature’s
keywords will be employed to address these RQs and uncover the trends and tendencies
within this extensive collection. This approach permits automatically grouping keywords
into clusters, revealing the thematic relationships and dominant topics within the current
body of FL research.

The Structure of the Survey

The structure of this survey is designed to address the research questions and present
the findings. Figure 2 provides a classification scheme outlining these categories. Then, we
will delve deeper into each category and explore the relevant advancements from the exist-
ing literature. Following the introduction, this paper unfolds across several key sections:
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Figure 2. Taxonomy of this paper.

• Research Method (Section 2). This section delves into the approach employed to ana-
lyze trends and sub-areas within FL. It details the utilization of keyword extraction and
automated clustering techniques to gain insights from the vast FL research landscape.

• Theoretical Categories (Section 3). Here, we present a detailed analysis of the key the-
oretical areas of FL. This section explores crucial aspects such as security mechanisms,
communication protocols, coalition formation, data distribution strategies, and model
aggregation techniques.

• Practical Categories (Section 4). Shifting the focus to the practical applications of FL,
this section examines its implementation in various domains. We will explore how FL
empowers neural networks, facilitates information classification tasks, integrates with
blockchain technology, and finds applications in the Internet of Things (IoT) and edge
computing environments.

• Emerging Sub-Areas (Section 5). This section explores the sub-areas of FL research that
have emerged as a result of previous research directions. Here, we will identify and
analyze these emerging trends that hold significant promise for the future development
of the field, including biological system modeling, model compression techniques,
advancements in speech recognition, the application of FL to real-time systems, and
the utilization of game theory for improved performance.
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• Conclusion (Section 6). Building upon the foundation in the preceding sections, this
section will synthesize the key findings. It will address the research questions and
explore potential future research directions of FL.

2. Research Method

This study aims to analyze the current trends and sub-areas within the field of FL
while examining the tendencies over the years. We leverage a data-driven approach that
utilizes keyword extraction and automated clustering techniques to achieve this.

Our analysis begins by collecting a comprehensive dataset of research papers from
the Scopus database. We employ a query to identify relevant publications of FL in
computer science that are written in English. The exact query we used in advance
Scopus searcher is: TITLE-ABS-KEY (“federated learning”) AND (LIMIT-TO (EXAC-
TKEYWORD, “Federated Learning”)) AND (LIMIT-TO (SUBAREA, “COMP”)) AND
(LIMIT-TO (LANGUAGE, “English”)).

The result of this query, on 15 April 2024, reveals 7953 results without counting the
11 duplicated papers. Subsequently, we extract the keywords from each paper, forming a
collection of 22,841 unique keywords that represent the research landscape in FL. Then, to
uncover the underlying thematic structure within this keyword collection, we turn to Natu-
ral Language Processing (NLP) techniques. We employ a pre-trained transformer model,
specifically the all-mpnet-base-v2 model, to convert each keyword into a 768-dimensional
dense vector space. We used the all-mpnet-base-v2 transformer because it is trained for a
total number of sentence pairs above 1 billion sentences (https://huggingface.co/sentence-
transformers/all-mpnet-base-v2, accessed on 26 April 2024) and this corpus includes the Se-
mantic Scholar Open Research Corpus (S2ORC), which is a general-purpose corpus for NLP
and text mining research over scientific papers [3]. In addition, the all-mpnet-base-v2
model has the best average performance between the performance of sentence embeddings
and the performance of semantic search, over all the Hugging Face pre-trained sentence
transformers models (https://www.sbert.net/docs/pretrained_models.html, accessed on
26 April 2024).

These embeddings capture the semantic relationships between keywords, allowing us
to group them based on their semantic meaning. We perform agglomerative clustering on
the vector embeddings to identify the major thematic trends and sub-areas. This clustering
algorithm starts with each keyword as an individual cluster and iteratively merges the most
similar clusters based on a distance metric. In this case, we utilize the Euclidean metric to
measure the distance between cluster centroids and Ward’s linkage to determine the optimal
merging strategy. We used the Euclidean distance because effectively captures the inherent
semantic relationships among the keywords, ensuring that the clustering process reflects
true semantic groupings [4]. Moreover, the Euclidean distance is computationally efficient,
facilitating the iterative process of agglomerative clustering, which involves repeated
distance calculations between clusters. The final number of clusters, set at 100, provides
a granular view of the thematic landscape while maintaining a manageable number of
groups for analysis.

By examining the keywords within each cluster, we can identify the key thematic
trends and sub-areas that are currently shaping the field of FL. In Table 1 are shown the
number of papers of five keyword groups, over the years, of each category presented
on this paper. The number of papers, over all the years, of the keywords groups can be
found in Tables A1 and A2. This novel data-driven approach allows us to move beyond
manual literature reviews and capture the broader dynamics of research activity within
the domain. We can then delve deeper into specific clusters to understand the research
questions, methodologies, and potential applications that are driving the current evolution
of FL.

We made the FL paper dataset public and the keyword clustering results. You can find
those files under the following public GitHub repository: https://github.com/FranEnguix/
datasets/tree/main/2024%20FL%20Tendencies (accessed on 26 April 2024).

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://www.sbert.net/docs/pretrained_models.html
https://github.com/FranEnguix/datasets/tree/main/2024%20FL%20Tendencies
https://github.com/FranEnguix/datasets/tree/main/2024%20FL%20Tendencies
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Table 1. The number of papers over the years of the selected keyword groups.

Category Total 2017 2018 2019 2020 2021 2022 2023 2024

communication 1110 1 1 20 84 182 300 382 140
security 1076 1 1 7 43 110 255 498 161
coalition 942 1 1 8 77 104 297 355 99
data distribution 671 0 0 6 27 72 170 297 99
model aggregations 574 0 0 5 34 92 139 232 72

neural networks 2592 2 3 28 137 327 657 1097 341
classification (of information) 1292 0 1 10 65 172 321 536 187
blockchain 1281 1 0 21 68 147 340 515 189
Internet of Things 1262 0 1 12 53 116 328 541 211
edge computing 1142 0 0 16 73 158 325 417 153

biological system modeling 288 0 0 0 5 26 59 140 58
model compression 277 0 0 3 18 43 58 109 46
speech recognition 273 0 0 1 26 30 84 99 33
real-time systems 241 0 1 5 18 35 53 94 35
game theory 232 0 0 6 16 23 57 90 40

3. Main Theoretical Categories

This section dissects the research landscape by analyzing the publication trends within
the following core theoretical areas: security, communication, coalitions, data distribution,
and model aggregation. Our analysis, presented in the following subsections, leverages a
data-driven trend analysis approach examining the yearly publication volume across these
categories. Subsequently, we will present each category, highlighting the novel advances in
each sub-area.

3.1. Data Analysis

While the current main sub-areas of FL started with just a handful of publications in
2017 and 2018, there has been a steady rise across all categories, with a sharp increase from
2019 onward, as depicted in Figure 3. This growth highlights the growing interest in FL as
a method to collaboratively train ML models without compromising data privacy. Notably,
as Figure 4 exposed, the category of “security” shows the most significant rise, reflecting a
growing focus on addressing potential vulnerabilities in FL systems. Interestingly, “com-
munication” research, though increasing, has not grown at the same exponential rate as
other categories. This suggests that researchers might be prioritizing core security and
privacy challenges over delving deeper into optimizing communication efficiency in FL.
Overall, the data indicate a maturing field of FL research with a focus on building robust
and secure systems for collaborative ML.
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Figure 3. All theoretical keyword category groups over the years.
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Figure 4. Tendencies of the selected keyword groups over the years.

3.2. Security

FL offers a compelling solution for collaborative machine learning while safeguarding
data privacy. However, its core strength—keeping data distributed across devices—also
presents a significant security challenge. The FL security research addresses these challenges
through a multi-pronged approach, focusing on protecting both model parameters and the
underlying data.

3.2.1. Model Inversion Attacks

One major concern is model inversion attacks. In these attacks, malicious participants
attempt to reconstruct the training data used to build the model by analyzing the model
updates exchanged during the FL process [5–8]. Researchers are developing differential
privacy techniques to address this [9,10]. Differential privacy injects controlled noise
into model updates, making it statistically impossible to infer any information about
individual data points used for training. This technique provides strong data privacy for
participants [11].

3.2.2. Poisoning Attacks

Another security threat involves poisoning attacks. Here, malicious actors attempt to
manipulate the training process by injecting poisoned data or updates. This can lead to a
degraded or biased model [12].

Data Poisoning Attacks

In these attacks, malicious actors inject tampered data points into the training process,
aiming to manipulate the FL model to their advantage. These points are designed to mislead
the FL model during training, forcing it to learn incorrect patterns or biased outputs that
benefit the attacker.

Since FL relies on local participant updates, it can be challenging to detect poisoned
data points, especially if they are disguised. Additionally, the distributed nature of FL
makes it difficult to pinpoint the source of the attack. Also, there is a novel approach that
directly inverts the loss function, generating strong malicious gradients at each training
iteration to push the model away from the optimal solution [13].

Techniques like outlier detection algorithms can identify suspicious data points during
aggregation [14]. Additionally, robust aggregation methods that down-weight or eliminate
extreme updates can further reduce the impact of poisoned data [15].
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Model Poisoning Attacks

Unlike data poisoning attacks that focus on corrupting data points, model poisoning at-
tacks target the model updates exchanged during FL. Malicious participants can contribute
strategically modified model updates that steer the global model in the desired direction.

Successful model poisoning attacks can cause the global model to learn faulty patterns
or biased outputs. This can lead to inaccurate predictions, hindering the functionality
of the FL system and potentially causing harm depending on the application. A novel
technique named the model shuffle attack (MSA) introduces a unique method of shuffling
and scaling model parameters. While the attacker’s model appears accurate during testing,
it secretly disrupts the training of the global model [16]. This sabotage can significantly
slow convergence or even prevent the global model from learning effectively.

Several approaches can help mitigate model poisoning attacks. Cryptographic tech-
niques like SMPC combined with blockchain [17] can be employed to prevent participants
from directly observing the model updates, making it harder to inject malicious modifi-
cations. Additionally, federated Byzantine fault tolerance (Byzantine-FL) protocols can
identify and exclude unreliable or malicious participants from the training process [15],
safeguarding the integrity of the federated model.

3.2.3. Membership Inference Attacks

These attacks attempt to determine whether a specific data point belongs to a particular
participant’s dataset that contributes to the FL training process.

Attackers can potentially infer membership by analyzing the model’s predictions on
strategically crafted data points. If the model’s behavior deviates significantly for a certain
input compared to the general prediction pattern, it might indicate the presence of that
data point in a participant’s training dataset. The PAPI attack is a novel poisoning-assisted
property inference attack that targets properties of the training data that are not directly
relevant to the model’s purpose [18]. By strategically manipulating data labels, a malicious
participant can leverage updates to the central model to infer these sensitive properties,
even from benign participants.

Existing works have proposed homomorphic encryption and secure multiparty com-
putation (SMC) to address this issue, but these approaches do not apply to large-scale
systems with limited computation resources. Differential privacy methods inject noise into
the model updates during training, making it statistically harder to link specific data points
to participants. Still, it brings a substantial trade-off between privacy budget and model
performance. A novel FL framework, based on the computational Diffie–Hellman (CDH)
problem to encrypt local models, safeguards against inference attacks [19]. The framework
achieves this with minimal impact on model accuracy and computational/communication
costs and eliminates the need for secure pairwise communication channels.

3.2.4. Backdoor Attacks

A backdoor attack is a malicious attempt to manipulate a model during training.
This is achieved by introducing triggers embedded in the training data. When a sample
containing this trigger is fed to the model, it will be misled into producing a specific,
attacker-defined output, while functioning normally for all other data. These attacks can be
untargeted, aiming to simply degrade the model’s overall performance, or targeted, aiming
to force the model to misclassify specific triggered samples into a particular category [20].

The attacker achieves this by poisoning the training data. Pairs of data points are
created: one being the original training sample and its correct label, and another being the
same sample altered with the backdoor trigger and a desired, potentially incorrect, label.
The attacker can manipulate the model’s learning process by strategically including these
poisoned pairs in a small portion of the training data without raising major red flags. This
way, the backdoor becomes embedded in the final model, causing it to malfunction when
encountering the specific trigger.
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The attacks occur during the training phase and rely on a universal trigger that can
be added to any sample to activate the backdoor functionality. Backdoor attacks can be
particularly concerning as they can bypass standard privacy-preserving techniques in FL.
An attacker might steer the model’s predictions toward a specific outcome, as they are
designed to be subtle and difficult to detect.

An example of a backdoor attack is Cerberus Poisoning (CerP), a new distributed
backdoor attack against FL systems [21]. CerP works by having multiple attackers collab-
orate to fine-tune a backdoor trigger for each of their devices. This makes the poisoned
models from the attackers appear more similar to the unpoisoned models from honest
users, allowing CerP to bypass existing defenses and successfully embed a backdoor in the
final FL model.

While some defenses against label-flipping attacks exist, backdoor attacks are a signifi-
cant threat. The defense mechanism defending poisoning attacks in FL (DPA-FL) tackles this
issue in two phases [22]. First, it compares model weights from participants to identify sig-
nificant differences, potentially indicating a malicious actor. Second, it tests the aggregated
model’s accuracy on a dataset, potentially revealing attackers through low performance.

3.3. Communication

Initially, a common depiction featured a central server orchestrating model aggrega-
tion, while clients performed local training. This configuration, known as centralized FL,
typically employs a star topology. In contrast, decentralized FL, adopting a mesh topology,
has gained prominence. In decentralized FL, no central server exists. Instead, clients use
peer-to-peer (P2P) communication, exchanging local models directly. This decentralized
approach enhances privacy and mitigates reliance on potentially untrusted central servers.

3.3.1. Centralized FL (CFL)

CFL takes a coordinated approach to training a model while keeping data private.
Unlike traditional centralized learning—where all data go to one place—CFL leverages a
central server to manage the process without ever directly accessing the raw data residing
on participants’ devices or institutions. This server acts as a conductor, first distributing a
starting global model to all participants.

Participants train this model locally on their own datasets, tailoring it to their specific
data. Afterward, only the updated model weights, representing the learning from the local
training, are uploaded back to the central server. This server then plays a crucial role by ag-
gregating these updates from multiple participants. Combining the knowledge embedded
in each update, the central server refines the global model, effectively incorporating the
insights from all the distributed datasets. This iterative process of distributing, training
locally, and aggregating updates continues until the desired level of model performance
is achieved.

3.3.2. Decentralized FL (DFL)

DFL presents an alternative approach that tackles limitations inherent to the cen-
tral server in CFL. Unlike CFL, DFL dismantles the single point of control, fostering a
collaborative learning environment that is both more distributed and potentially more
privacy-preserving. This paradigm thrives on direct communication between participating
devices or institutions, eliminating the need for a central server altogether. This P2P ap-
proach offers potential benefits in reducing communication overhead compared to CFL, as
updates can be exchanged directly between participants.

However, removing the central server also complicates the training process. DFL relies
on techniques like consensus algorithms [23] to ensure all participants agree on the current
state of the global model, a task that becomes more intricate without a central authority.
Additionally, ensuring robust security measures remains an active area of research in
DFL [24]. DFL offers advantages in privacy and potentially reduces the communication
burden compared with the CFL architecture.
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3.4. Coalitions

The traditional FL framework treats all participants as equals, raising challenges in
efficiency and communication overhead. This section explores the concept of coalitions
in FL, a method for grouping agents based on specific criteria. These groupings, known
as coalitions, can be formed based on the semantic similarity of the data participants
manage or can be formed based on the geographic location and communication radius of
participants. Here, we explore these two key approaches to coalition formation:

3.4.1. Semantic-Based Formation

In semantic-based formation, agents are grouped based on the similarity of their data.
This ensures that participants within a coalition contribute data that share similar meanings
and underlying patterns. This approach can be further classified into:

Static Formation

Here, coalitions are formed based on pre-defined semantic criteria. This could involve
analyzing the metadata associated with the data held by each agent and initially classifying
the agents into clusters. With static coalitions, once agents are grouped together, these
coalitions remain fixed throughout the training process.

Dynamic Formation

Coalitions are formed or reformed continuously based on the semantic similarity
of the data itself. ML techniques like automatic semantic clustering, topic modeling, or
content analysis can be employed to dynamically assess data similarity and adjust coalition
membership accordingly.

3.4.2. Positional-Based Formation

Positional-based formation relies on the geographical proximity of agents and their
communication range. This approach is particularly relevant for scenarios where the agents
are in different locations and when agents are moving.

Static Formation

Agents within a specific geographical region with a fixed communication range or that
are neighbors in the communication graph are grouped into a coalition. In static coalitions,
after the initial formation of groups, the group memberships do not change over time.

Dynamic Formation

In dynamic formation, agents can form or leave coalitions based on real-time location
updates or changes to their communication range. This could be beneficial in scenarios
where data collection is ongoing and the spatial distribution of the agents is constantly
changing. Wireless ad hoc networks (WANETs) are examples of this scenario, where agents
join or leave groups based on their availability within the wireless range [25].

3.5. Data Distribution

FL deals with training a model collaboratively across multiple participants, each
holding their own private data. However, the data distribution across participants can be
imbalanced, leading to challenges.

One of FL’s major challenges lies in handling statistical heterogeneity within the data.
In this context, statistical heterogeneity refers to the non-IID nature of FL data, which devi-
ates from the assumption of identical data distributions across clients. Unlike traditional
centralized machine learning, where data are typically drawn from a single source, FL
data originates from diverse clients, each with its own unique data distribution. These
variations can impact the quality of local models and subsequently affect the performance
of the aggregated global model.
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3.5.1. Label Distribution Skew

Label distribution skew refers to the unequal distribution of class labels within the
training data held by different clients. Some clients may possess a surplus of data belonging
to specific classes, while others may have a scarcity for the same classes. This imbalance
can significantly impact the performance of the model. Imagine that participant A pri-
marily has data for the class “cat” and very little for “dog”, while participant B has the
opposite distribution.

When the global model aggregates updates from clients with skewed label distri-
butions, it can become biased toward the over-represented classes. This phenomenon
occurs because local models trained on data-rich in certain classes heavily influence global
updates. Consequently, the federated model prioritizes learning these dominant classes
and neglects the underrepresented ones, leading to decreased accuracy for minority classes
and potentially even failing to recognize them altogether.

To address this challenge, exists a novel FL method called FedMGD [26]. FedMGD
aims to mitigate the performance degradation caused by label distribution skew. The key
innovation lies in introducing a global generative adversarial network (GAN). This GAN
operates without access to the raw local datasets, preserving data privacy. However, it can
still model the global data distribution by learning from the aggregated model updates
received from participants. This allows the global model to be trained using information
about the overall data distribution without compromising privacy.

3.5.2. Feature Distribution Skew

While label distribution skew focuses on class imbalance, this phenomenon arises
when the distribution of feature values for the same class differs significantly across client
datasets. Imagine client A possesses data primarily representing cats with long, white fur,
while client B’s cat data depicts mostly short-haired black cats. Even if the overall number
of cat images (labels) is balanced, the underlying feature distributions (fur length, color)
diverge. This disparity affects the model during the training phase.

The model struggles to learn a unified representation of the “cat” class due to the
conflicting feature portrayals across clients. This can lead to increased training difficulty
and ultimately result in a model with poorer generalization capabilities. The model might
perform well on data that resembles the specific feature distributions it encountered during
training, but it could struggle with unseen data that deviates from those distributions.

3.5.3. Quantity Skew

Quantity skew refers to the unequal distribution of data samples across participating
clients. In this scenario, some clients possess significantly more data points compared
to others.

Clients with abundant data exert a greater influence on the global model updates due
to the sheer volume of local updates they contribute. This can lead to the model becoming
biased toward the data distribution of clients holding more samples. Even if the label and
feature distributions are balanced globally, the model might prioritize learning patterns
specific to the dominant data source, potentially neglecting valuable information present in
smaller datasets from other clients.

This results in a model that performs well on data resembling the dominant client’s dis-
tribution but exhibits decreased performance on data from clients with less representation.

As presented in this section, a key obstacle in FL is training an effective model when
devices possess heterogeneous data, which cannot be directly exchanged. This includes
imbalances in label distribution (label skew), feature distribution (feature skew), and data
quantity (quantity skew) across devices. To address this issue, a method with a hierarchical
FL approach utilizing a hypernetwork (HN) aims to mitigate the negative influence of non-
IID data [27]. This method is presented in a landscape of Digital Twin in Industrial IoT. The
lower layer of this method leverages hypernetworks to generate local model parameters
for each device. The upper layer then refines these hypernetworks by aggregating the
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model parameters from all devices. This approach decouples the number of parameters
transmitted between the upper and lower layers, leading to improved communication
efficiency, reduced computation costs, and ultimately, better model accuracy.

3.6. Model Aggregation

As highlighted, FL thrives in scenarios with heterogeneous data distributions across
devices. While this protects data privacy, it also presents the challenge of effectively com-
bining these diverse local models into a single, robust global model. This is where model
aggregation techniques come into play. These techniques aim to intelligently combine the
knowledge learned from individual devices, mitigating the negative effects of non-IID data
and leading to a well-performing global model.

3.6.1. Synchronous Aggregation

Synchronous aggregation offers advantages in terms of convergence guarantees and
ease of implementation. However, it can be susceptible to stragglers (devices that take
significantly longer to train the model locally), delaying the entire update process and
potentially hindering training efficiency. Additionally, communication overhead can be
high due to the waiting periods before updates are uploaded.

3.6.2. Asynchronous Aggregation

Asynchronous aggregation techniques offer an alternative approach to synchronous
aggregation, aiming to address limitations in scalability and efficiency. Unlike the coor-
dinated update scheme of synchronous aggregation, asynchronous aggregation allows
devices or institutions participating in FL training to upload their local model updates to
the central server as soon as they become available, without waiting for others to finish.
This eliminates delays caused by stragglers.

It avoids the communication bottlenecks associated with waiting periods in syn-
chronous methods but introduces complexities in ensuring convergence of the global
model, as participants contribute updates at varying times based on their local training
speeds. FedTAR is an example of an FL model that uses asynchronous aggregation to mini-
mize the sum energy consumption of all edge computing nodes of a wireless computing
power network (WCPN) [28]. There is also the AMA-FES (adaptive-mixing aggregation,
feature-extractor sharing) framework, which aims to mitigate the impact of the non-IID
data and reduce computation load in a practical scenario where mobile UAVs act as FL
training clients to conduct image classification tasks [29].

3.6.3. Hierarchical Aggregation

Hierarchical aggregation emerges as an optimization technique that addresses po-
tential communication bottlenecks in scenarios with large numbers of participants or
geographically distributed devices [30]. It also addresses privacy concerns by introducing
a layered approach to update aggregation between user devices and the central server.

Hierarchical aggregation mitigates the privacy risk by having devices send their
updates to intermediate servers first. These intermediate servers can then aggregate local
updates before forwarding them to the central server, reducing the amount of individual
data exposed. This approach is particularly valuable for the Industrial Internet of Things
(IIoT) where sensitive data from various devices are involved [31].

Participants are organized into groups, forming a hierarchical structure. Local updates
within a group are first aggregated, resulting in intermediate updates. These intermediate
updates are then sent upwards in the hierarchy for further aggregation until they reach the
central server.

Compared to directly sending individual updates to the central server, hierarchical
aggregation significantly reduces communication costs. Only a condensed version of the
updates travels through the network, alleviating bandwidth limitations and potentially
accelerating the training process.
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The specific structure of the hierarchy (number of layers, group sizes) can significantly
impact efficiency. Additionally, techniques like selective aggregation, where only significant
updates propagate through the hierarchy, can further optimize communication costs.

While hierarchical aggregation reduces communication overhead, it introduces an
additional layer of information compression during the intermediate aggregation steps.
This compression might lead to a certain loss of accuracy in the final global model.

A novel hierarchical FL framework is proposed for cloud–edge–robot collaborative
training of deep learning models [32]. This framework allows robots to train the model for
quality defect inspection of civil infrastructures without sharing sensitive data among them-
selves. The system is designed for resource-constrained robots, employing a lightweight
model for efficient training and communication.

3.6.4. Robust Aggregation

As presented in Sections 3.2 and 3.5, FL models are susceptible to outliers within
participant datasets and even malicious actors injecting poisoned data to manipulate the
training process. Robust aggregation methods aim to detect and mitigate the influence of
such anomalies on global model updates.

Various approaches can be employed for robust aggregation. These include clipping
techniques that limit the magnitude of updates, outlier detection algorithms to identify and
down-weight suspicious contributions, and median filtering to prioritize central tendencies
within the updates [33,34].

A novel framework is secure and robust FL (SRFL), which is introduced to address
security vulnerabilities in existing methods [35]. SRFL tackles the issue of model parameter
leakage during aggregation using trusted execution environments (TEEs). This approach
safeguards sensitive model components on resource-constrained IoT devices, even in
situations with non-IID data. Evaluations demonstrate SRFL’s effectiveness in improving
accuracy and reducing backdoor attack success rates compared to traditional FL methods.

4. Main Practical Categories

Having explored the main theoretical trends across FL categories, we now delve into
the applications driving this field forward. This section focuses on areas where FL is
solving real-world problems. We will examine the distribution of research within these
categories, including neural networks, classification, blockchain, Internet of Things, and
edge computing. Through this analysis, we aim to identify the most promising and actively
researched practical applications of FL technology.

4.1. Data Analysis

FL research shows a clear interest in leveraging powerful ML models for practical
applications. The category of neural networks dominates the field, as Figures 5 and 6
depicted, with publications experiencing a staggering growth from 2019 to 2023. This
highlights the focus on utilizing complex models to achieve superior performance in FL
tasks. There is also a significant rise in classification, indicating a strong interest in using FL
for tasks like image categorization. The emergence of blockchain and IoT (2019 onward) as
prominent categories reflects the growing importance of integrating FL with secure and
distributed data architectures. Similarly, edge computing has gained traction as researchers
explore enabling FL on resource-constrained devices at the network edge.
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Figure 6. Tendencies of the practical keyword groups over the years.

4.2. Neural Networks

As FL continues its ascent as a privacy-preserving approach to training ML models, the
role of neural networks (NNs) within this framework has become a focal point of research.
With a growing number of papers dedicated to this topic, it is important to mention the
relevant advancements in this field.

This section delineates NN architectures used under the FL framework, where data
remain distributed across decentralized nodes while facilitating collaborative model train-
ing. Deep neural network (DNN) models tailored for FL encompass convolutional neural
networks (CNNs), adept at feature extraction crucial for image processing tasks, and re-
current neural networks (RNNs), specialized in decoding sequential data and temporal
dependencies. Furthermore, generative adversarial networks (GANs) demonstrate promise
in generating realistic magnetic resonance imaging (MRI) images from undersampled data,
while Transformers, initially developed for natural language processing (NLP) tasks, are
repurposed to address image capture, information matching, and reconstruction challenges
within the FL framework [36].

4.2.1. Traditional DNNs in FL

This section explores the application of CNNs and RNNs for collaborative training
while preserving data privacy. We will explore specific use cases in domains like healthcare
and cybersecurity, showcasing how FL empowers distributed learning on sensitive data.
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CNN (Convolutional Neural Network)

CNNs excel in image processing tasks. Their core strength lies in capturing low-level
to high-level features through convolutional operations. This makes them ideal for FL
scenarios involving image data, such as medical imaging analysis [37] or object recognition
in sensor networks [38]. CNNs can be trained on image data distributed across various
devices without compromising privacy. For instance, FL with CNNs can be used to train
models for disease detection in medical images without requiring hospitals to share the
raw patient data [39].

Stacked CNNs (SCNNs) also excel in the cybersecurity field. A novel intrusion
detection system (IDS) for wireless sensor networks (WSNs) based on the FL SCNN-Bi-
LSTM model exists, which addresses limitations of traditional methods allowing sensor
nodes to collaboratively train a central model without revealing their private data [40].
The SCNN-Bi-LSTM architecture analyzes both local and temporal network patterns to
effectively identify even sophisticated and unknown cyber threats.

RNN (Recurrent Neural Network)

RNNs are adept at handling sequential data and capturing temporal dependencies.
While not the primary choice for typical image processing tasks, RNNs can be valuable
in FL settings where dynamic adjustments are needed. RNNs in healthcare are used for
breast cancer detection, which allows hospitals to train an RNN on their mammogram data
without sharing the raw images. This study proposes a hybrid approach combining FL with
meta-heuristic optimization [41]. Another paper focuses on FL for pancreas segmentation,
where data heterogeneity across institutions can hinder performance. To address this, their
authors introduce FedRNN, a method that uses an RNN to adjust the aggregation weights
based on the past performance of each participating site [42].

4.2.2. Emerging Applications of NN in FL

This section explores how emerging applications of NN in FL offer a revolutionary
approach to training ML models while keeping data distributed across devices or servers.
We will explore how GANs and Transformers are being leveraged to unlock new potential
in FL applications.

GAN (Generative Adversarial Network)

A new approach called “federated synthesis” is emerging within FL. This technique
aims to create synthetic data with the same properties as real data but without any privacy
risks [43,44]. Researchers are exploring this method using GANs, to combine data from
multiple sources while keeping it private. GANs consist of two competing NNs: a generator
that creates new data, and a discriminator that tries to distinguish real data from generated
data. This adversarial training allows GANs to generate highly realistic synthetic data.

Traditional GAN training requires sending large amounts of data to a central server.
CAP-GAN is a novel framework that allows for collaborative training between cloud
servers, edge servers, and even individual devices [44]. To address challenges caused by
non-IID data, CAP-GAN incorporates a mix generator module that separates general and
personalized features, improving performance on highly personalized datasets.

Transformers

Originally developed for NLP tasks, Transformers are powerful architectures based
on the attention mechanism. This mechanism allows the model to focus on relevant parts
of the input data, making it well-suited for tasks requiring long-range dependencies.

A recent research tackles challenges in medical image analysis with a Transformer-
based FL framework. The method uses self-supervised pre-training with Transformers
directly on individual institutions’ data [45]. This approach overcomes limitations of data
sharing and limited labeled data. The study shows significant improvements in accuracy on
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medical image classification tasks compared to traditional methods, even with variations
in data across institutions.

4.3. Classification (of Information)

The field of FL is actively exploring its potential for various classification tasks, in-
cluding image classification, object detection, and emotion recognition. This is particularly
appealing due to the vast amount of labeled data often residing on private devices, which
FL can leverage while preserving privacy.

A recent study [46] investigated a privacy-preserving approach to diagnosing skin
lesions using FL. While the FL model achieved comparable performance to a traditional
centralized model on data from a new hospital, it fell short when tested on data from
a different source. Overall, the findings suggest that FL shows promise for melanoma
classification while protecting patient privacy.

Another research proposes a new FL framework called FedCAE for fault diagnosis
in industrial applications [47]. Traditional approaches require sharing large amounts of
data, which can be impractical due to privacy concerns. FedCAE tackles this by using
convolutional autoencoders (CAEs) on local devices to extract features from the data. These
features are then uploaded to a central server for training a global fault diagnosis classifier,
without revealing the raw data itself. The trained classifier is then downloaded to all
devices for performing local diagnoses.

4.4. Blockchain

Blockchains enable secure, verifiable interactions between devices without a central
authority [48]. The field of FL with blockchain integration, also known as blockchain-based
FL (BCFL), is a rapidly evolving area [49]. Researchers are looking to leverage the strengths
of both technologies to address limitations in traditional FL.

Recent research proposes a new FL method for blockchain named loosely coupled local
differential privacy blockchain federated learning (LL-BCFL) that addresses data privacy
and efficiency concerns on federated sharing methods for massive data in blockchain [50].
Traditional blockchain storage can be slow and unsuitable for private data. LL-BCFL tackles
this by combining FL on user devices with blockchain storage. The system uses a client
selection mechanism to ensure data integrity and participant honesty. Additionally, a local
differential privacy mechanism protects against inference attacks during training.

To protect the FL process against poisoning attacks, two models have been developed
under BCFL, namely, centralized aggregated BCFL (CA-BCFL) and fully decentralized
BCFL (FD-BCFL) [24]. Both leverage secure off-chain computations to mitigate attacks
without compromising performance. The study demonstrates that BCFL effectively defends
against poisoning attacks while keeping operational costs low.

4.5. Internet of Things

FL has emerged as a powerful approach for the Internet of Things (IoT) domain. It
tackles the challenge of training ML models on data generated by vast numbers of resource-
constrained devices while preserving user privacy. The FL literature reflects this synergy,
highlighting several key areas of advancement.

A major focus is on addressing the limitations of resource-constrained IoT devices.
Traditional FL algorithms may not be suitable for devices with limited battery power,
storage, and processing capabilities. Researchers are developing techniques like model
compression (Section 5.3) and efficient communication (Section 3.3) mechanisms to reduce
the computational burden on these devices. This ensures participation from a wider range
of IoT devices in the FL algorithm process.

Another area of exploration is heterogeneity. IoT devices often generate data with
varying formats and qualities [51]. This heterogeneity can negatively impact the perfor-
mance of the model. Researchers are proposing data distribution (Section 3.5) techniques
to improve the performance and model aggregation methods (Section 3.6) that can handle
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such inconsistencies. These techniques aim to improve the accuracy and robustness of the
collaboratively learned model.

4.6. Edge Computing

While both IoT and edge computing are related to FL, they represent distinct concepts.
IoT devices generate the data, while edge computing represents the layer of processing
power located at the network’s periphery, closer to the data source, and performs local
computations [28].

One of the primary research areas is optimizing model performance and resource
utilization in resource-constrained edge environments. In Section 5.3 techniques such
as quantization and knowledge transfer are exposed, which are tailored to minimize
the computational and memory requirements of FL models, making them suitable for
deployment on low-power edge devices with limited processing capabilities. Furthermore,
edge computing platforms with accelerators like GPUs and TPUs accelerate model inference
and training, enhancing the efficiency and scalability of the systems.

FL is well-suited for edge devices, where data processing occurs locally [30]. It enables
collaborative model training across devices at the network edge. CAP-GAN is a novel
framework using GANs (presented in Section 4.2) in network edge [52]. This research
tackles training GANs on devices at the network edge due to privacy and bandwidth
limitations. However, traditional GAN training methods struggle with data that is not
uniformly distributed across devices. To address this, CAP-GAN allows for parallel training
of data and models across devices, cloud servers, and the network edge, overcoming
isolated training issues. CAP-GAN introduced a mix generator module to handle highly
personalized datasets that are common at the edge. Experiments show that this framework
outperforms existing methods in handling non-uniformly distributed data.

5. Emerging Sub-Areas

Having explored the core theoretical categories and the practical application areas of FL
research, we now turn our attention to emerging sub-areas. These sub-areas represent new
lines of inquiry that have gained significant traction in recent years. Unlike the previously
established categories, these sub-areas are distinguished by their later emergence and they
are rapidly growing interest within the FL research community. This section delves into
five such sub-areas: biological system modeling, model compression, speech recognition,
real-time systems, and game theory.

5.1. Data Analysis

While all sub-areas show a clear rise in publications since 2019 and 2020, as Figure 7
depict, some demonstrate a more explosive growth trajectory. Figure 8 shows that biologi-
cal system modeling exhibits the most dramatic increase, with publications nearly tripling
from 2022 to 2023. This suggests a rapidly growing focus on applying FL to model complex
biological systems like brain–computer interfaces (BCIs). Model compression also shows a
steady and significant rise, highlighting the importance of reducing model size for deploy-
ment on resource-constrained devices in FL applications, like IoT or edge devices. Speech
recognition and real-time systems show a more moderate but consistent growth, indicating
a growing interest in integrating FL with these domains. Game theory, while experiencing a
steady rise, has a slightly lower overall number of publications, suggesting it is a relatively
new but promising sub-area exploring strategic interactions within FL systems.
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Figure 8. Tendencies of the emerging keyword groups over the years

5.2. Biological System Modeling

Brain–computer interfaces (BCIs) create a bridge between the brain and external
devices by translating brain activity into commands [53]. These systems translate brain
activity, captured through electroencephalogram (EEG) signals, into commands for external
devices. However, a major hurdle in BCI development is the scarcity of data needed to
train high-performance models. This is where FL steps in.

FL offers a privacy-preserving approach to training models on distributed datasets
residing on individual devices. This eliminates the need for centralized data storage,
addressing security and privacy concerns that plague biological datasets.

One recent paper proposes a novel framework called hierarchical personalized FL
for EEG decoding (FLEEG) [54]. FLEEG tackles the challenge of device heterogeneity,
where BCIs collect data from various sources with potentially different formats. This
framework facilitates collaboration in model training across these diverse datasets, enabling
knowledge sharing and boosting BCI performance. The studies presented by its researchers
have shown that FLEEG can significantly improve classification accuracy, particularly for
smaller datasets.

Another paper investigates the application of FL in classifying motor imagery (MI)
EEG signals [37]. This approach utilizes a CNN on the PhysioNet dataset and compares
two aggregation methods (FedAvg and FedProx) within the FL framework to traditional
centralized ML approaches. The results demonstrate that FL can achieve classification
accuracy comparable to centralized methods, while significantly reducing the risk of data
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leakage. This suggests that FL holds significant promise for MI-EEG signal classification in
BCI systems.

5.3. Model Compression

FL allows collaborative machine learning without compromising data privacy. How-
ever, training these models across distributed devices or servers presents a challenge: model
size. Large models can lead to slow communication and hinder the scalability of FL systems.
To address this, researchers are actively exploring various model compression techniques.

5.3.1. Quantization

The distributed nature of FL can lead to communication bottlenecks due to the large
size of model parameters. Here is where quantization emerges as a powerful technique
to address this challenge. Quantization reduces the number of bits required to represent
model parameters, significantly shrinking the model size. This translates to faster commu-
nication during the FL training process, making it more efficient and scalable. However,
accuracy degradation can occur during the quantization process and researchers are actively
developing methods to minimize this accuracy loss.

A recent study addresses communication efficiency in hierarchical FL, where model
training is distributed across devices, edge servers, and a cloud server [55]. While ex-
isting approaches leverage hierarchical aggregation and model quantization to reduce
communication costs, this study proposes an accurate convergence bound that considers
model quantization. This bound informs practical strategies for client-edge and edge-cloud
communication, such as dynamically adjusting aggregation intervals based on network
delays. The effectiveness of these strategies is validated through simulations.

Another prominent and recent area of study is the 1-bit quantization. A study proposes
a new scheme that uses 1-bit compressive sensing to significantly reduce the amount of
data transmitted during model updates [56]. To optimize this method, they analyze the
trade-off between communication efficiency and accuracy caused by data compression. The
researchers then formulate a solution to minimize these errors through scheduling devices
and adjusting transmission power. While an optimal solution exists, it is computationally
expensive for large networks. To address this, they develop a more scalable method suitable
for real-world applications with many devices. Simulations show this approach achieves
comparable performance to traditional FL with significantly less communication, making it
a promising technique for large-scale FL.

5.3.2. Knowledge Distillation

Another key approach is knowledge distillation. This technique involves training a
smaller, student model to mimic the behavior of a larger, pre-trained teacher model. The
student model learns from the teacher’s predictions, resulting in a compressed model with
comparable accuracy. Knowledge distillation is particularly useful in FL as it allows for
transferring knowledge from a powerful trained model to smaller models deployed on
user devices.

Recent research develops an intrusion detection method based on a semi-supervised
FL scheme via knowledge distillation [57]. The study proposes an intrusion detection
method in IoT devices. Existing FL methods for intrusion detection raise privacy concerns
and struggle with non-private data distributions. To address this, the authors developed
a method that leverages unlabeled data to improve detection accuracy while protecting
privacy. Their approach uses a special NN model to both classify traffic data and assess
the quality of labels generated by individual devices. This, combined with a hard-label
strategy and voting mechanism, reduces communication overhead.

5.3.3. Pruning

Another promising direction is pruning. Pruning techniques identify and remove
redundant or unimportant weights within a model. This process reduces the model’s
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overall size without significantly impacting its performance. Advanced pruning algorithms
can identify weights with minimal influence on the final output, allowing for compression
while maintaining accuracy.

PruneFL is a new framework for FL that improves training efficiency on resource-
constrained devices [58]. FL trains models on distributed data while protecting privacy,
but edge devices often lack processing power and bandwidth. PruneFL tackles this by
dynamically reducing model size during training through a distributed pruning approach.
This reduces communication and computation requirements while maintaining accuracy.
The method involves an initial pruning step and further pruning throughout the FL process,
optimizing the model size for efficiency. Experiments on real-world datasets running on
devices like the Raspberry Pi demonstrate that PruneFL significantly reduces training time
compared to traditional FL and achieves comparable accuracy to the original model with a
smaller size.

5.3.4. Sparsification

Researchers are also exploring sparsification techniques. Here, the focus is on convert-
ing model weights from dense matrices to sparse ones, containing mostly zeros. Sparse
models require less memory and communication bandwidth, making them ideal for FL ap-
plications. Recent advancements involve combining sparsification with other compression
methods like pruning to achieve even more compact models.

GossipFL is a novel framework that utilizes sparsification and gossiping to optimize
bandwidth usage while ensuring training convergence. The authors designed a novel
sparsification algorithm that enables each client to communicate with only one peer using
a highly sparsified model [59]. Theoretical analysis and experiments using GossipFL
demonstrate that this framework significantly reduces communication traffic and time
compared to existing solutions while maintaining similar model accuracy.

5.4. Speech Recognition (SR)

SR is a technology that allows computers to translate spoken words into written text.
This is achieved by analyzing speech’s sound waves and identifying patterns corresponding
to specific words or phonemes, which are the basic units of sound in a language.

Traditional SR models require vast datasets centralized in one location for training.
This raises privacy concerns, especially for applications like forensic analysis, where data
sensitivity is paramount.

The fight against online child exploitation is an example, where European law enforce-
ment agencies (LEAs) require advanced tools to analyze the growing volume of audio data.
Recent research explores FL as a solution for training SR models in this domain [60]. While
the study compares the effectiveness of WAV2VEC2.0 and WHISPER models, the main focus
lies in leveraging FL to overcome data privacy concerns.

The results show that FL models achieve word error rates (WERs) comparable to those
trained in a traditional, centralized manner. This is particularly significant considering the
challenges of non-IID data distribution, where the data used have unique characteristics
due to languages, accents, or recording environments.

5.5. Real-Time Systems

The traditional approach of FL involves a central server aggregating updates from
participants periodically. This raises limitations for applications demanding real-time
performance. The research in FL delves into techniques for enabling real-time FL that
ensure low latency.

Traditional periodic updates can introduce delays that hinder real-time responsiveness.
Synchronous FL can lead to slow learning due to stragglers, which are devices that take
longer to process information. A novel approach that breaks away from the limitations
of synchronous FL uses scalable asynchronous FL for real-time surveillance systems [61].
Asynchronous FL allows devices to participate in the training process at their own pace,
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eliminating the bottleneck created by stragglers. This makes asynchronous FL a more
suitable solution for large-scale, real-time applications where fast response is critical.

As it is presented in Section 3.2, security and privacy are paramount concerns in any
FL system, and real-time settings pose additional challenges. Researchers are actively
developing privacy-preserving communication protocols for real-time FL. Techniques
like differential privacy [11] are being explored to achieve this balance between real-time
performance and data security [62].

5.6. Game Theory

Game theory is a powerful mathematical field used to analyze situations where
multiple parties (agents or players) interact and make decisions that can impact each
other’s outcomes [63]. Imagine a game of chess, where each agent considers not only their
own possible moves but also how their opponent might respond. Game theory extends
this concept to any situation where competing actors make strategic decisions in a setting
with defined rules.

The core concept in game theory is the game itself, which acts as a model for the
interactive situation. Each agent is a rational entity with well-defined preferences and a set
of possible strategies they can employ. The key element is that an agent’s success depends
not only on their own choices but also on the strategies chosen by other players. A game
will define the players, their available strategies, and how these strategies influence the
final outcome for everyone involved.

Existing solutions based on game theory often assume perfect rationality in partici-
pants, so motivating participants to contribute to FL systems is an open field of research,
which is used for collaborative training. A new model based on evolutionary game theory
acknowledges participants’ non-perfect decision-making in the long run [64]. By analyzing
various scenarios, they identify strategies for parameter servers (coordinating the training)
to maintain a sustainable FL system where participants are incentivized to contribute.

As commented, a limitation in existing game theory-related FL frameworks is
the assumption of voluntary participation, but also it is the lack of defense against
malicious actors. To address this, researchers propose a new scheme based on privacy-
preserving techniques and game theory [62]. This scheme incentivizes participation
through truthful mechanisms and limits the influence of malicious clients, all while
achieving privacy guarantees.

6. Conclusions and Future Work

This study leverages advanced automated semantic keyword clustering techniques
to analyze trends, tendencies, and emerging areas within the growing field of FL. By
employing a transformer-based model, particularly the all-mpnet-base-v2 model, the
research identifies and groups 22,841 unique keywords of 7953 research articles based on
their semantic meaning, providing a comprehensive view of the current state and future
directions of the FL research landscape.

We present key research questions (RQs), revealing significant trends in security and
communication as dominant areas of interest. The surge in publications related to these
categories highlights the importance of addressing vulnerabilities and optimizing commu-
nication efficiency in FL systems. Furthermore, the analysis identifies the rising significance
of coalitions, data distribution strategies, and model aggregation techniques, which are
crucial for tackling challenges related to non-IID data and improving the performance of
global models.

Emerging sub-areas such as biological system modeling, model compression, speech
recognition, real-time systems, and the application of game theory present promising
avenues for future research. These sub-areas show the field’s dynamic nature and its
potential for interdisciplinary applications.

To conclude, the answers to the RQs provide a structured understanding of the
FL landscape: identifying the current trends (RQ1), examining their tendencies (RQ2),
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exploring practical application domains (RQ3), analyzing the tendencies within these
domains (RQ4), uncovering emerging sub-areas (RQ5), investigating their tendencies
(RQ6), and predicting potential future trends (RQ7).

6.1. RQ1: What Are the Current Trends in FL?

This question focuses on identifying the theoretical dominant areas of interest in FL
research. FL is experiencing a period of significant research growth, as evidenced by the
substantial increase in publications across all categories analyzed in Section 3.1. The data
reveal several key trends that are shaping the current landscape of FL research: security,
communication, coalitions, data distribution, and model aggregations.

The most prominent trend is the surge of interest in security, with 498 publications
in 2023. This highlights a growing concern for addressing potential vulnerabilities in FL
systems, as data privacy is paramount when training models collaboratively. Similarly, the
rise in communication (382 publications in 2023) reflects the importance of optimizing com-
munication efficiency, especially as the number of participating devices and the complexity
of models increase.

6.2. RQ2: What Are the Tendencies of the Current Trends in FL?

This section delves deeper into RQ1 by analyzing the direction of the identified trends
in FL. The analysis of publication trends across the theoretical FL categories reveals not
only a surge in interest but also the trajectory of these trends.

The most notable observation is the explosive growth in both security and commu-
nication research since 2019. Coalitions show a consistent upward trend with a peak in
2023. This indicates a sustained interest in exploring how devices or institutions can group
together to optimize FL speed convergence and accuracy of the trained models. For data dis-
tribution and model aggregation categories, the substantial rise suggests a growing interest
in tackling challenges related to non-IID data and improving model aggregation techniques.

6.3. RQ3: What Are the Application Domains Where FL Techniques Are Applied?

This question explores the most relevant practical applications where FL techniques
are being utilized. The data presented in Section 4.1 reveals a diverse range of ap-
plication domains where FL techniques are finding utility. The most important key
trends are the dominance of neural networks (NNs) and the emergence of secure and
distributed architecture.

6.4. RQ4: What Are the Tendencies of the Application Domains?

As RQ2 delves deeper into RQ1, this RQ investigates the trends within the RQ3
identified domains.

Firstly, NNs stand out as the most prevalent category. This signifies a strong focus
on leveraging powerful ML models to achieve superior performance in FL tasks. The
significant and steady rise in publications suggests that researchers are actively exploring
how to adapt and optimize complex NNs for collaborative learning in FL systems.

Beyond NNs, the data highlight a growing interest in integrating FL with secure and
distributed data architectures. The rise of categories like blockchain and the Internet of
Things (IoT) reflects this trend.

6.5. RQ5: What Are the Emerging Sub-Areas within FL?

Recognizing the potential for further exploration, we propose additional research
questions that focus on under-researched areas of FL. This question aims to identify new or
niche areas that have received less attention but hold promise for future development.

The analysis in Section 5.1 reveals several promising sub-areas that have garnered
increasing attention in recent years. Among the most prominent emerging sub-areas are
biological system modeling and model compression. Speech recognition and real-time
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systems are other emerging sub-areas with significant potential, with a close number of
publications to model compression in 2023.

6.6. RQ6: What Are the Tendencies of the Emerging Sub-Areas?

We analyze the identified sub-areas in RQ5 to understand their growth trajectory and
potential impact on the broader FL landscape.

Biological system modeling is the most rapidly growing sub-area with topics like
bioinformatics and brain–computer interfaces. Game theory, while not exhibiting the
most dramatic number of publications, also appears as an emerging sub-area with initial
exploration beginning around 2019. This sub-area investigates strategic interactions within
FL systems, which could be beneficial for areas like resource allocation or ensuring fairness
among participants.

6.7. RQ7: What Are the Potential Future Trends of FL?

Finally, to provide a more comprehensive picture, we introduce this additional ques-
tion, which looks ahead to predict potential future directions and areas of growth in
FL research.

The consistently increasing number of publications in NNs suggests a continued focus
on leveraging powerful models for FL tasks. Also, we can expect sustained research efforts
in core areas like security and communication efficiency, as the significant rise in publica-
tions until 2023 highlights their importance. Researchers might focus on developing more
robust security mechanisms to address evolving threats and optimizing communication
protocols for specific federated learning applications.

Another core area is data distribution, which is likely to see continued growth. With
the increasing interest in applying FL to real-world scenarios involving non-IID data,
researchers will likely explore more sophisticated techniques to handle data heterogeneity
and improve model performance.

6.8. Future Work

Future work will focus on expanding the software developed to include other database
sources and utilizing the software to experiment with the linkage method and the distance
metric of the agglomerative clustering algorithm and explore different clustering algorithms.

The results using Euclidean distance and Ward’s linkage are used in this research
article to group the keywords by their semantic meaning, offering significant insights into
FL research trends. In future work, experimenting with different parameter values will
enable us to assess the impact of different distance metrics, such as cosine similarity and
Manhattan distance, on the clustering results. Additionally, experimenting with various
linkage methods, including single linkage, complete linkage, and average linkage, will
allow us to compare strategies for forming thematic clusters.
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Appendix A

Table A1. The first 50 keyword groups ordered by the overall number of papers.

Rank Category Total 2017 2018 2019 2020 2021 2022 2023 2024

0 federated learning 7953 2 6 85 393 964 2027 3394 1082
1 learning systems 5028 2 3 42 238 571 1266 2184 722
2 privacy 4175 2 3 47 245 521 1035 1754 568
3 machine learning 3458 1 2 46 183 425 902 1446 453
4 neural networks 2592 2 3 28 137 327 657 1097 341
5 global models 1568 0 2 16 63 211 402 679 195
6 data models 1551 0 3 29 101 202 382 581 253
7 computational modeling 1460 0 1 9 74 145 336 645 250
8 classification (of information) 1292 0 1 10 65 172 321 536 187
9 blockchain 1281 1 0 21 68 147 340 515 189
10 modeling accuracy 1269 0 1 16 63 154 294 539 202
11 Internet of Things 1262 0 1 12 53 116 328 541 211
12 artificial intelligence 1262 1 2 18 80 154 318 509 180
13 decentralized 1233 1 2 19 78 145 308 523 157
14 performance 1183 0 0 8 57 155 302 495 166
15 state of the art 1177 0 1 19 80 183 296 473 125
16 learning frameworks 1163 0 2 24 73 188 302 442 132
17 edge computing 1142 0 0 16 73 158 325 417 153
18 personalizations 1115 0 2 18 59 148 307 461 120
19 communication 1110 1 1 20 84 182 300 382 140
20 poisoning attacks 1095 0 1 6 41 115 270 485 177
21 security 1076 1 1 7 43 110 255 498 161
22 job analysis 1065 0 2 18 46 126 271 416 186
23 large amounts 1055 0 1 15 55 139 276 417 152
24 computational efficiency 1014 1 1 18 68 145 257 395 129
25 distributed machine learning 1013 0 3 13 91 171 264 364 107
26 over the airs 967 0 1 7 35 81 255 448 140
27 coalition 942 1 1 8 77 104 297 355 99
28 centralized 934 0 1 7 27 108 263 393 135
29 servers 929 0 0 2 39 95 227 390 176
30 commerce 908 0 2 19 53 133 243 359 99
31 wireless networks 899 0 2 11 48 106 234 378 120
32 information management 894 0 1 12 46 99 217 397 122
33 optimizations 735 0 1 7 48 85 190 293 111
34 network architecture 704 0 1 10 51 93 182 299 68
35 numerical methods 687 0 1 5 47 88 177 267 102
36 budget control 673 0 0 10 31 80 185 267 100
37 data distribution 671 0 0 6 27 72 170 297 99
38 iterative methods 664 0 1 7 38 67 149 296 106
39 smart city 656 0 1 11 42 100 168 257 77
40 benchmarking 637 1 1 9 53 99 142 255 77
41 energy utilization 627 0 1 6 26 86 173 252 83
42 human 613 0 0 4 20 48 156 293 92
43 forecasting 611 0 0 7 26 82 159 239 98
44 cloud computing 605 0 1 10 35 68 165 244 82
45 transfer learning 596 0 1 6 21 56 153 253 106
46 distillation 596 0 1 5 25 69 135 263 98
47 health care 594 0 0 4 21 77 139 280 73
48 diseases 588 0 0 0 14 60 123 296 95
49 model aggregations 574 0 0 5 34 92 139 232 72
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Table A2. The last 50 keyword groups ordered by the overall number of papers.

Rank Category Total 2017 2018 2019 2020 2021 2022 2023 2024

50 computer vision 572 0 1 6 32 64 140 251 78
51 task analysis 567 0 0 3 20 49 143 245 107
52 5g mobile communication systems 545 0 1 7 36 75 141 216 69
53 bandwidth 529 0 1 7 50 71 123 207 70
54 current 523 0 0 6 15 62 142 229 69
55 signal processing 510 0 0 5 36 78 129 190 72
56 antennas 499 0 0 3 29 71 130 197 69
57 quality of service 495 0 0 13 41 57 134 184 66
58 diagnosis 491 0 0 1 8 59 83 265 75
59 stochastic systems 487 0 1 5 28 67 118 201 67
60 image enhancement 487 0 0 3 20 51 132 208 73
61 decision making 486 0 0 7 24 59 134 199 63
62 resource allocation 480 0 2 6 22 63 128 190 69
63 inference attacks 476 0 0 1 28 60 101 209 77
64 convergence 468 0 0 3 20 54 101 210 80
65 vehicles 466 0 1 4 23 55 121 181 81
66 intelligent vehicle highway systems 458 0 0 2 18 54 110 203 71
67 digital storage 446 0 0 6 29 47 127 185 52
68 cryptography 438 1 0 9 31 48 92 181 76
69 matrix algebra 433 1 0 7 24 51 116 166 68
70 reinforcement learning 427 0 0 5 20 49 111 178 64
71 risk assessment 424 0 0 6 23 60 94 199 42
72 intrusion detection 416 0 0 1 13 46 108 189 59
73 iid data 403 0 0 2 12 44 114 180 51
74 large scales 397 0 0 3 18 52 112 160 52
75 medical imaging 369 0 0 1 12 34 85 172 65
76 incentive mechanism 352 0 0 7 32 47 92 118 56
77 clustering 350 1 0 2 11 44 92 153 47
78 channel state information 342 0 0 4 21 55 104 118 40
79 gradient methods 334 0 0 6 24 49 87 129 39
80 Industrial Internet of Things 301 0 0 2 19 51 71 121 37
81 biological system modeling 288 0 0 0 5 26 59 140 58
82 speech recognition 273 0 0 1 26 30 84 99 33
83 real-time systems 241 0 1 5 18 35 53 94 35
84 game theory 232 0 0 6 16 23 57 90 40
85 graph neural networks 195 0 0 1 1 18 41 97 37
86 machine design 180 0 1 1 27 34 37 55 25
87 unmanned aerial vehicles (UAV) 176 0 0 0 7 30 43 70 26
88 spatial-temporal 174 0 0 1 10 15 49 73 26
89 labeled data 174 0 0 2 9 25 41 75 22
90 traffic congestion 166 0 0 1 9 24 40 65 27
91 quantization 164 0 0 0 6 24 40 61 33
92 sensor nodes 156 0 0 3 10 21 27 70 25
93 model compression 143 0 0 3 15 23 24 60 18
94 data sample 138 0 0 2 13 20 28 59 16
95 tumors 132 0 0 0 5 11 32 67 17
96 hyperparameter 128 0 0 4 12 20 30 50 12
97 synchronization 121 0 0 1 4 20 28 55 13
98 leaf disease 118 0 0 1 0 3 16 85 13
99 web services 90 0 0 3 11 9 36 25 6
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