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Abstract: Hiking and cycling have gained popularity as ways of promoting well-being and physical
activity. This has not gone unnoticed by Portuguese authorities, who have invested in infrastructure
to support these activities and to boost sustainable and nature-based tourism. However, the lack
of reliable data on the use of these infrastructures prevents us from recording attendance rates and
the most frequent types of users. This information is important for the authorities responsible for
managing, maintaining, promoting and using these infrastructures. In this sense, this study builds on
a previous study by the same authors which identified computer vision as a suitable technology to
identify and count different types of users of cycling and hiking routes. The performance tests carried
out led to the conclusion that the YOLOv3-Tiny convolutional neural network has great potential
for solving this problem. Based on this result, this paper describes the proposal and implementation
of a prototype demonstrator. It is based on a Raspberry Pi 4 platform with YOLOv3-Tiny, which is
responsible for detecting and classifying user types. An application available on users’ smartphones
implements the concept of opportunistic networks, allowing information to be collected over time,
in scenarios where there is no end-to-end connectivity. This aggregated information can then be
consulted on an online platform. The prototype was subjected to validation and functional tests and
proved to be a viable low-cost solution.

Keywords: cycling and hiking trails; computer vision; convolutional neural networks; Internet of
Things; opportunistic networks; prototype

1. Introduction

In recent years, hiking and cycling have gained prominence as two of the most popular
activities for promoting physical activity, health and well-being. These activities consist
of trails classified into three categories according to the distances involved: Long Routes
(GRs), over 30 km long; Short Routes (PRs), less than 30 km long; and Local Routes (PLs),
in which all or more than half of the route takes place in an urban environment [1]. Each of
these trails is duly marked with signs, shown in Figure 1, along its way. These markings
can be found in various places, such as rocks, walls, stakes and electricity pylons, among
others [2]. Figure 2 illustrates some examples of the location of these markings.
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Walking, hiking and cycling trails or routes are created and maintained by various 
entities, such as sports federations, mountaineering and camping associations, 
government entities at the national, regional or local level, as well as organizations linked 
to the tourism sector [3]. According to the Federation of Camping and Mountaineering of 
Portugal (FCM) [4], which is responsible for registering and homologating walking routes, 
there are 76 Short Routes and 46 Long Routes homologated in Portugal, according to the 
Regulation for the Homologation of Walking Routes (RHPP) [1]. This regulation 
establishes specific standards and criteria for the official recognition of a walking trail [5]. 
However, there are many trails managed by the FCM that are not registered in the 
National Register of Footpaths (RNPP). 

Portugal has been committed to developing these trails to boost sustainable tourism 
and sports in nature. However, since these spaces are freely accessible, there is no 
information on how often they are used and by what type of users.  

The most common solutions for collecting data on route use involve hiring human 
resources to carry out these surveys. However, hiring human resources is expensive and 
often inaccurate, as it is not possible to monitor all users who pass through the routes 24 
h a day, 7 days a week. Another common way of collecting data is to indirectly ask route 
users to indicate that they have passed there and in what way, incentivizing them with 
some kind of reward [6].  

Traditional counting methods are therefore inadequate. Technology-based data 
collection of users’ passages on routes can generate more accurate and valid estimates [7]. 

Considering that in most cases, municipalities are the driving force behind the 
infrastructure that supports cycling and walking routes, it is important to assess the tourist 
impact that these trails bring to the regions. Accurate and reliable data are therefore 
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Walking, hiking and cycling trails or routes are created and maintained by various
entities, such as sports federations, mountaineering and camping associations, government
entities at the national, regional or local level, as well as organizations linked to the tourism
sector [3]. According to the Federation of Camping and Mountaineering of Portugal
(FCM) [4], which is responsible for registering and homologating walking routes, there are
76 Short Routes and 46 Long Routes homologated in Portugal, according to the Regulation
for the Homologation of Walking Routes (RHPP) [1]. This regulation establishes specific
standards and criteria for the official recognition of a walking trail [5]. However, there
are many trails managed by the FCM that are not registered in the National Register of
Footpaths (RNPP).

Portugal has been committed to developing these trails to boost sustainable tourism
and sports in nature. However, since these spaces are freely accessible, there is no informa-
tion on how often they are used and by what type of users.

The most common solutions for collecting data on route use involve hiring human
resources to carry out these surveys. However, hiring human resources is expensive and
often inaccurate, as it is not possible to monitor all users who pass through the routes 24 h
a day, 7 days a week. Another common way of collecting data is to indirectly ask route
users to indicate that they have passed there and in what way, incentivizing them with
some kind of reward [6].

Traditional counting methods are therefore inadequate. Technology-based data collec-
tion of users’ passages on routes can generate more accurate and valid estimates [7].

Considering that in most cases, municipalities are the driving force behind the in-
frastructure that supports cycling and walking routes, it is important to assess the tourist
impact that these trails bring to the regions. Accurate and reliable data are therefore needed,
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based on reliable information that proves their use. Therefore, identifying the different
types of users, counting them and knowing the peak times are essential information for the
managers and promoters of these infrastructures. This information can also help assess
the strategic importance of these facilities in tourism development, especially in areas with
low population density. Another relevant aspect of the analysis of the data collected is
the management of the capacity to use these infrastructures. Considering that along these
routes, there are often sensitive areas with specific preservation regulations (e.g., natural
parks, protected areas and special protection zones, among others), collecting data on the
rate of use is extremely important in managing access to these areas. Therefore, there
is a pressing need to implement a solution that enables data to be collected, processed
and analyzed.

In a recent study by the same authors of this paper [8], a comprehensive state-of-
the-art review was carried out for various projects, techniques and methods for detecting
and counting different users of cycling and hiking trails and routes. Computer vision
was identified as a suitable solution. A dataset was created and the performance of the
convolutional neural network (CNN) models YOLOv3-Tiny [9], MobileNet-SSD V2 [10]
and ResNet-50 [11], which were considered the most promising, was evaluated. It was
concluded that YOLOv3-Tiny is the most promising model, given the accuracy recorded
and the computing power required.

Following our previous study, this paper aims to propose, implement, test and validate
a low-cost prototype demonstrator, based on the Internet of Things (IoT), computer vision
and the concept of opportunistic networks, to meet this challenge. The prototype should
work in the scenario illustrated in Figure 3, where it is assumed that cycling and hiking
trails are used by a variety of pedestrian, cyclist and motorcyclist users, which we aim to
identify and count.
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It is assumed that a set of IoT devices, which will be responsible for detecting and
counting the different types of users, will be strategically positioned along the trails, in
places where there may not be an Internet connection (e.g., using a mobile network).
These devices have non-volatile memory that can store the information on the user count
for extended periods until an opportunity arises to propagate it [12]. This concept of
opportunistic communication is defined by Delay Tolerant Networks (DTNs) [13,14] and
can be applied to scenarios such as interplanetary networks, military and tactical systems,
disaster recovery networks, vehicular communications and wildlife tracking/monitoring.
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To make it possible to collect the data stored on these devices, it is assumed that some
of the users of these trails will use a mobile application on their smartphone which, in
addition to information about the routes, could for example provide indications about the
wild flowers and plants that can be found along them, as described in [15,16]. When a user
with the mobile application approaches one of these IoT devices, a contact opportunity
arises, and user count information can be sent to the smartphone.

Later, when the user has Internet access on their smartphone, the data with the counts
of the different types of users will be sent to a remote server. Once again, this process
takes place automatically and transparently for the user. This information will then be
aggregated, processed and made available to the managers of these infrastructures, for
example via a web application.

The rest of this paper is organized as follows. Section 2 presents the prototype devel-
oped as part of this study. It describes and justifies the architecture adopted, the hardware
and software components, and the implementation process. Section 3 describes the tests
conducted to validate the prototype. Finally, Section 4 presents the conclusions of this
study, highlighting the results obtained and discussing possible directions for future work.

2. Prototype

This section presents the prototype developed in the context of this study. The first
subsection describes its architecture. The second and third subsections detail the process of
implementing the prototype’s hardware and software.

2.1. Architecture

Figure 4 shows the architecture of the prototype system for detecting and counting
different users of cycling and hiking trails and routes. This architecture responds to the
scenario presented in Figure 3 described above. The architecture is centered on two main
elements: the sensor node and the bridge node.
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The sensor nodes are IoT devices that will be responsible for detecting and counting
different types of users (people, bicycles, motorcycles). It is assumed that these nodes
will be strategically positioned along the trails, in places where there is no conventional
Internet connection, for example via a mobile network. They have a camera and storage
and support Bluetooth communication. Following our previous work [8], it was decided
that a YOLOv3-Tiny CNN [9] would be trained and run on these nodes using a dataset
developed in the context of this study. This decision was made based on its prediction
speed, processing requirements and accuracy.

These nodes will store the count information of different types of users in non-volatile
memory for extended periods of time until an opportunity arises to propagate it. This
concept of opportunistic communication that supports long communication delays is
defined by DTNs [17,18], which are networks that aim to provide connectivity in scenarios
where TCP/IP protocols simply do not work. These networks seek to take advantage
of mobile devices that support wireless technologies to interconnect network partitions
over time.

It is assumed that the sensor nodes support Bluetooth, which is a short-range wire-
less communication technology [19] that uses radio frequency (RF) operating between
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2.4 GHz and 2.5 GHz to transmit data. When Bluetooth-enabled devices are in close
proximity, they can detect each other and negotiate terms for pairing, and then exchange
data. Generally, the closer they are, the better the connection [20]. While the Bluetooth
4.0 version supports indoor ranges of 10 m and outdoor ranges of 50 m, Bluetooth 5.0
allows for low-power transmission and can support indoor ranges of 40 m and outdoor
ranges of up to 200 m. In terms of transmission speed, Bluetooth 5.0 is twice as fast as
Bluetooth 4.0. While Bluetooth 4.0 reaches theoretical maximum speeds of up to 1 Mbps,
Bluetooth 5.0 can reach up to 2 Mbps [21]. Bluetooth was chosen over Wi-Fi because it has
much lower energy consumption [22,23], which is important in this scenario that assumes
battery-operated devices.

The bridge nodes are intermediaries and play a fundamental role in propagating the
data collected from the sensor nodes to the server on the Internet. It is assumed that the
bridge nodes are the smartphones of some of the trail users, so they have non-volatile
storage memory and Bluetooth.

When a user with the mobile application (i.e., bridge node) approaches a sensor node,
the opportunity arises for a contact to send count data. The process of detecting, negotiating
and establishing a Bluetooth connection between the sensor node and the bridge node is
automatic. The same goes for sending the data stored in the sensor node to the bridge
node, which cooperate in the task of accepting and storing it [12]. No human intervention
is required in these processes.

This approach aims to exploit the fact that users will later use a mobile network or
Wi-Fi to access the Internet. At that point, the data with the user counts are sent to a remote
server, where they will be stored on a database server. This process may be subject to errors,
for example in the user’s application, which could compromise the delivery of the data
with the user counts to a remote server. Therefore, we opted for a strategy of replicating
the information with the count data across several users, according to an approach known
as Spray and Wait [24], which is appropriate for this scenario [25].

The data collected over time, according to this process, will be accessible via a web
application which will generate statistical reports.

To implement this architecture, it is necessary to take into account various aspects that
could hinder the development of the prototype that demonstrates this concept. Table 1
shows the challenges identified along with the hypotheses considered for developing the
prototype. In the following sections, the proposed solutions for each of these challenges
will be discussed and explained, considering the different hypotheses analyzed.

Table 1. Aspects that could hinder the implementation of the prototype.

Challenges Hypotheses

(A1) When can data be deleted from the sensor node?

Create an attribute (i.e., threshold) to control the number of bridge nodes that
carry the users count information.
After a period of time.
After the storage capacity is above a certain threshold.
Specific event.
A request from the infrastructure manager.

(A2) How can data be transmitted securely between the sensor
node and the bridge node?

Data encryption.
Mutual authentication between nodes.

(A3) Are all of the different types of bridge nodes able to receive
the data transmitted by the node?

Will the speed of the bikes make it impossible to establish a connection and
exchange data between the sensor and bridge nodes?
Compatibility of the user’s smartphone (operating system, operating system
version, Bluetooth version).

(A4) How can data transmission be ensured transparently,
without the user having to interact with the application?

Automatic device detection.
Background processes.

(A5) What happens if the sensor and bridge nodes disconnect in
the middle of the transmission process?

Try reconnecting the devices and sending all of the information again.
Attempt to reconnect the devices and resend the information that was not
successfully sent.
Timing a reconnection attempt.
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2.2. Hardware Component

The following hardware was used to implement the prototype with the systems that
make up the architecture described. The sensor node was implemented on a Raspberry Pi
4 Model B with 4 GB of RAM [26], with a 32 GB Micro-SD and Bluetooth 5.0 support. A
Raspberry Pi Camera Module 3 [27] camera will be connected to this single-board computer
via a ribbon cable, as shown in Figure 5.
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The bridge nodes, responsible for communicating via Bluetooth with the sensor node
to collect information and then send these data to a database hosted on a server on the
Internet, are Android smartphones belonging to the users of the trails. They will have
installed a mobile application described in a later section of this document.

The remote database and application server are hosted on a machine with an Intel-Core
I7-11370H processor, 16 GB of RAM and an NVIDIA RTX 3050 graphics card.

2.3. Software Component

This subsection describes the development and implementation of the software needed
to run the proposed system. The use of CNNs to detect and classify different types of
users on cycling and hiking trails is discussed. Next, the role of the sensor node and the
bridge node in the system is detailed, describing their functionalities. Next, the database
and its entity–relationship model are presented, which stores the information collected
from the sensory nodes, as well as the API that performs actions on the database, detailing
the available operations and their integration with the other components of the system.
Finally, the application server is presented, describing its functionalities, as well as the user
interfaces developed for viewing and analyzing the data collected.

2.3.1. Convolutional Neural Networks

Most computer vision systems for real-time object recognition use convolutional neural
networks [28], as they are considered particularly effective at extracting objects from an
image, identifying relevant patterns and recognizing objects in context [29]. CNNs are deep
learning networks, influenced by visual function and the structure of the visual cortex.
They resemble the behavior of neurons in the human brain [30].

Figure 6 shows the structure of a convolutional neural network. It consists of convolu-
tional, pooling and fully connected layers, each with a specific task in propagating the input
image. The convolutional layers are responsible for extracting features from the previous
layer or from the input image if this is the first layer of the network. The main function of
the pooling layers is to smooth the information at the output of the convolutional layer [31],
reduce the size of the data and help keep the representation consistent between smaller
versions of the inputs. Finally, the fully connected layer controls signal propagation and
applies point-to-point multiplication activation functions. The last layer produces the prob-
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ability of a single input image belonging to the class for which the network was trained,
based on the activation function used [32].
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Figure 6. Convolutional neural network structure.

Object detection has two functions: object localization, which determines the location
of the object, and object classification, which determines the class to which the object
belongs. Finding the location of objects using CNNs is challenging due to differences in
image perspectives, sizes, postures and lighting conditions [33]. The CNN models that can
be used for these tasks fall into two types: one-stage detection and two-stage detection.
In short, two-stage models tend to have high accuracy in object recognition [34], while
one-stage models focus more on speed in performing this task [35]. Figure 7 shows three
examples of models for each of these types.
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One-Stage Detection

One-stage models, whose architecture is illustrated in Figure 8, perform two actions
simultaneously: they identify specific characteristics in the images, such as shapes, colors
and textures, and classify them according to what they represent (e.g., person, car, bicycle
and dog, among others). Initially, the images are analyzed with a feature extractor that
uses a CNN, and then, the extracted features are used directly with the bounding box
coordinates and boundary regression [36].
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Compared to two-stage models, these models are much faster and strike a balance
between speed and detection accuracy [35]. Due to their speed, they can be used to
constantly track objects.

Two-Stage Detection

Two-stage models solve the detection problem in two stages, as shown in Figure 9.
The first stage involves creating a region of interest (ROI) and extracting features using
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CNNs. The second stage consists of inputting the features identified from the ROI into a
classifier based on support vector machines (SVMs) or CNNs to classify the features and
then correct the positions of the objects using bounding box regression [35].
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In the previous study from the same authors of this paper, the performance of three
different models was compared: YOLOv3-Tiny, MobileNet-SSD V2 and FasterRCNN with
ResNet-50. The YOLOv3-Tiny model was identified as the most promising, as it had the
best mean average precision (mAP) and the second highest frames per second (FPS) rate.
This justifies choosing it for the development of the prototype presented in this paper.

YOLOv3 [37] is a real-time one-stage object detection model. It therefore only processes
the entire image once to find objects. This model divides the image into a 3 × 3 grid of
cells and each cell checks whether or not there is an object nearby, as shown in Figure 10.
In each cell, the model represents the location of the object in the image and indicates the
probability and the class of the object, if applicable. This system offers excellent speed
when the application requires efficiency [38].
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YOLOv3-Tiny [9] is a simplified version of YOLOv3 designed to consume fewer
computing resources. It uses 13 convolutional layers, a significantly lower number than the
106 layers of the standard version (53 convolutional layers, added to the 53 layers of the
Darknet-53 feature extractor used by YOLOv3). Since this architecture requires fewer filters,
the size of the model and the training time end up being smaller [39]. The architecture
of this model is shown in Figure 11. It is considered a good choice for applications that
require high computational efficiency, such as mobile devices or embedded systems [40].

The dataset created in our previous work [8] showed a discrepancy in the number
of images between the person class and the motorcycle and bicycle classes. The person
class had the highest number of images. The dataset had a total of 440 images, divided
between training, validation and testing. To solve this issue, more images were added to
better represent the remaining classes. Thus, the new, improved version of the dataset
has 1086 images, of which 761 are for training, 223 for validation and 102 for testing. This
updated dataset is available for the community in [41]. The total number of images per set
shown in Table 2 considers that some of the images contain identifications of several classes.
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Table 2. Number of images per set and class in updated dataset.

No. of Training Images No. of Validation Images No. of Test Images

Persons 186 54 26

Bicycles 260 78 32

Motorcycles 323 92 45

Total 769 224 103

With regard to the number of bounding boxes present in all of the images in the
dataset, it can be seen in Figure 12 that the person class has 946 identifications, the bicycle
class has 517 identifications and the motorcycle class has 566 identifications.
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Figure 12. Representation of bounding boxes for each class.

The same benchmark scenario as in [8] was used to train the new YOLOv3-Tiny model.
A Google Colab notebook [42] created by Roboflow [43] and later adapted [44] was used.
The NVIDIA Cuda Compiler Driver [45] was installed to associate the graphics processing
unit (GPU) with the run, as well as the Darknet framework [46]. The YOLOv3-Tiny base
weights were downloaded in YOLO Darknet format and, with the help of the Roboflow
library for Python, the dataset was downloaded and prepared. The images and their labels
were organized in the correct directories and the training configuration file was adjusted,
setting the number of epochs at 6000, according to the recommendations of the Darknet
repository [47]. Finally, training began with the specific Darknet command, which lasted
a total of 2 h and 30 min. The training process was executed a single time. During the
training process, the CNN learns to recognize patterns and features that are characteristic
of the different types of users.

The mean average precision (mAP) metric was used to assess performance. This
evaluates the effectiveness of the model in detection and classification by calculating
the average precision (AP) of each class, allowing for an effective comparison between
models [48]. Loss represents the collective error in the model’s predictions, calculating what
it predicted and what should have been predicted [49]. This metric is used during training.

Training the new YOLOv3-Tiny model took a total of 1 h and 28 min. In each iteration,
a graph was generated as shown in Figure 13b, where the mAP values are highlighted in
red, while the loss values are highlighted in blue.
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Comparing the training graphs shown in Figure 13 of the new model (b) and the
previous one (a), it can be seen that the evolution of mAP was more linear, showing a
constant growth until epoch number 4300. The final mAP value reached 78.4%, representing
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an increase of 9.7%, which translates into a substantial improvement in detection capacity.
The model with the best mean average precision score on the validation set was used for
testing. In addition, the graph shows an exponential reduction in loss, initially sharp and
then stabilizing at values close to 0.1.

2.3.2. Sensor Node

The operating system running on the sensor node is Raspberry Pi OS (Legacy, 64-bit)
Lite [50]. Two scripts are run there simultaneously: one for detecting and classifying the
different types of users on the trails, adding these records to the local database, and the
other for connecting and transmitting the data to the bridge node. The detection and
classification script, described in Figure 14, runs the CNN model previously trained with
YOLOv3-Tiny. If the model detects a user type, it only adds it to the local database (shown
in Figure 15) if it is detected with a confidence value equal to or greater than the value
indicated in the script execution command. This value was determined at 0.7 (70%) after a
visual analysis of the detections made by the model at different confidence values. This
approach helped identify a balance point where the model accurately detects users without
generating too many false positives.
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It is important to note that no images are stored in the database shown in Figure 15.
Only information that classifies the type of user passing through the site is recorded, so as
not to compromise privacy.
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Figure 15. Sensor node local database.

The local database implemented in the sensor node, using the MariaDB database
management system (DBMS) [51], is made up of two entities. The Users_data entity is
responsible for storing records relating to the detection of user types. The id attribute
identifies the record. The class attribute identifies the class of the user type. The timestamp
records the moment the user was detected and classified. The threshold is used as a control
mechanism (see Table 1, A1). Its default value is 3 for each newly created record and it is
decremented each time the record with this information is successfully transmitted to a
bridge node. With this approach, it is guaranteed that each record with a specific user count
will be transmitted to three different bridge nodes before being removed from the local
database. To do this, the Threshold_Mac entity was created, which helps with this control
by storing the MAC addresses assigned to the bridge nodes’ Bluetooth cards to which a
given record has been transmitted. This approach is especially important to guarantee the
delivery of the user count information stored in the sensor nodes to the remote database
server available on the Internet. Furthermore, given the storage limitations of the sensor
node, by setting a transmission limit for a limited number of bridge nodes, this makes it
possible to effectively manage the storage available on Raspberry Pi.

A data exchange system called a “hybrid cryptosystem” was used to establish the
connection and transmit the data [52]. This system combines the advantages of symmetric
and asymmetric cryptography to ensure both efficiency and security in communication.
Initially, each node creates a pair of RSA-2048-bit asymmetric keys [53] and exchanges
their public keys. Each time a node sends data, a new symmetric key (AES-256 bits [54]) is
generated and encrypted with the recipient node’s RSA public key. The data are encrypted
with the symmetric key. The sending node sends the encrypted data along with the
encrypted symmetric key. When this message is received, the receiving node decrypts the
symmetric key with its private RSA key. Finally, it decrypts the data with the symmetric
key. This process is shown in Figure 16.
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This approach offers both the efficiency of symmetric encryption and the additional
security of asymmetric encryption [55] (see Table 1, A2). Initially, the mobile application
running on the bridge node establishes a connection with the service provided by the
sensor node. This connection is made via the RFCOMM protocol [56], which allows for
serial communication over Bluetooth between the devices [57]. Both nodes generate a pair
of 2048-bit RSA asymmetric keys (public and private) the first time they are started, and
the public keys of each are sent to the peer node. This process is illustrated in Figure 17.
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The bridge node continuously checks that it remains connected to the sensor node. At
all stages of data exchange communication, a timeout of 2 s is set to prevent a node from
being blocked at a certain stage of the process. Thus, if the communication is not completed
within a certain period, the connection is terminated.

Continuing the authentication process, the bridge node sends the universally unique
identifier (UUID) [58] to the sensor node, which then checks it to continue communication
or terminate it if the UUID is incorrect. If communication continues, the sensor node
sends a confirmation message to the bridge node. The bridge node confirms that the
confirmation message is correct and, if it is, sends a message to the sensor node informing
it that it is ready to receive data. Figure 18 describes this initial preparation before the data
are transmitted.

Then, the sensor node confirms that the bridge node is ready to receive the data. If it is,
the sensor node starts sending the data in a cycle. In other words, the data are transmitted
in blocks of 10 records, from the oldest to the most recent, to the bridge node. Instead
of sending all of the user count records (i.e., data) at once, the records are transmitted in
smaller blocks, significantly reducing the likelihood of failures (i.e., contact duration).

If a transmission error occurs, only the blocks of records that were not successfully
transmitted will be resent (see Table 1, A5). To determine the optimum number of records to
transmit per block, the contact time between a sensor node and a user moving on a bicycle was
calculated. Considering that a bicycle passes the sensor node at an average speed of 20 km/h
and that the Bluetooth range of the sensor node is around 40 m, as shown in Figure 19, the
contact time would be approximately 7.27 s. Users who travel by motorcycle cannot be used
as a bridge node due to their high moving speed, which potentially does not allow them to
negotiate the connection and exchange data successfully (see Table 1, A3).
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From this estimated contact time of 7.27 s, a period of 2.56 s is deducted for setting
up the Bluetooth connection. This value was determined after carrying out 10 tests in
environments with and without obstacles, within a radius of 20 m around Raspberry Pi.
This leaves a useful contact time of 4.71 s for data exchange. Equation (1) illustrates how
this time was calculated.

Use f ul Contact Time (s) =
Distance (m)

Velocity (m/s)
− Setup time Connection (s) (1)

The transmission rate of Bluetooth 5.0 is assumed to be 1.3 Mbits/s. It is known that a
block contains 10 records plus the encrypted AES key. Therefore, this message will have
a maximum of 642 bytes (equivalent to 5136 Kbits). This conversion is represented by
Equation (2).

kilobits =
bytes × 8

1000
(2)

This value was determined by taking the largest possible size for the block of 10 records
plus the size of the AES key. The id attribute is not transmitted to the bridge node. The
class with the most characters is “motorcycle”, so it can be up to 10 characters long. The
timestamp attribute has 19 characters in the format provided (e.g., “1 May 2024 10:00:00”).
The records are sent in JavaScript Object Notation (JSON) format [59], as shown in Figure 20.
Thus, the following are required:

• Two bytes for “square brackets” for the record array;
• Twenty bytes for “curly braces”, delimiting each record;
• Nineteen bytes for the “commas” separating the name/value array and separating

the records;
• Thirty-nine bytes of “spaces” between name/value, between name/value sets and

between records (after the comma separating the records);
• Fifty bytes for the name of the class attribute of the 10 records;
• One-hundred bytes for the value of the class attribute of the 10 records;
• Ninety bytes for the name of the timestamp attribute of the 10 records;
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• One-hundred and ninety bytes for the value of the timestamp attribute of the 10 records;
• Eighty bytes for the “quotation marks” that are placed in the names and values of the

10 records;
• Twenty bytes for the “colon” to separate the names from the values of the 10 records;
• Thirty-two bytes for the AES-256-bit symmetric key.
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Thus, up to 253 blocks of 10 records can be transferred per second, as shown in
Equation (3), giving a total of 2530 records per second. Therefore, during the 4.71 s of useful
contact, it would be possible to transmit up to 1191 blocks of 10 records.

Records per second =
Trans f er rate (Kbits)

Maximum message size (Kbits)
× 10 (3)

After sending a block of 10 records, the bridge node informs the sensor node of the
number of records it has received. If the number of records received by the bridge node is
not equal to the number of records sent by the sensor node, the entire block of records is
retransmitted. Otherwise, the transmission has been successful, so the threshold attribute
of each record in the sensor node’s local database is decremented by one. As explained
above, this approach limits the unnecessary replicated sending of data to the network. The
bridge node adds these data to its local database.

This process of sending in blocks of 10 records is repeated until all of the data available
on the sensor node have been transmitted, or the connectivity time window between nodes
has ended. Once all of the data have been transmitted, the sensor node informs the bridge
node and terminates the connection. Figure 21 describes this process.

2.3.3. Bridge Node

For the bridge node, a mobile application was developed in Java [60], using the
Android Studio integrated development environment (IDE) [61]. It is important to note
that the application requires a minimum version of the Android software development
kit (SDK) (minSdk) of 30, which corresponds to Android version 11, to work correctly on
the devices. The version of the Android SDK on which the application was compiled and
tested (targetSdk) is 34, i.e., Android 14 (see Table 1, A3).

Because the goal is simply to demonstrate the concept, the application is simple
and has been divided into three services [62]: location service, Bluetooth service and
synchronization service. The application contains just one activity [63] with two buttons,
as can be seen in Figure 22. One of the buttons starts the activity on the trail and the other
ends it. This activity also contains a map with markers [64] which identify where the sensor
nodes are located. In addition, a text area is displayed at the bottom of the graphical user
interface (GUI), describing all of the actions carried out in the application, which is useful
for functional tests and troubleshooting.
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After initializing the application, if Internet access is available, the application makes
a GET request to the API to obtain the GPS geographic coordinates of the available sensor
nodes. If the request to the API is successful, the data received are stored in the application’s
local database. Otherwise, an error will be displayed to the user. Once this information has
been obtained, the locations of the sensor nodes are loaded onto the available map.

When the user presses the “Initiate Route” button, the application starts the location
service, showing the smartphone’s current location (i.e., bridge node). Then, it determines
the nearest sensor node, keeping it in memory. This service will be active even if the
application is minimized (see Table 1, A4), so that it is possible to check whether the bridge
node is at a distance of 30 m or less from a sensor node. Until this condition is verified, the
service is “listening” until it reaches this distance. At this point, the Bluetooth service is
started and tries to establish a connection between the sensor node and the bridge node. If
this is unsuccessful, another attempt is made. Figure 23 shows the information that appears
in the text area of the prototype mobile application when these iterations take place.
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location of the nodes.

If the connection attempt is successful, the location service is terminated. The data are
exchanged between the sensor and bridge nodes, as described in Section 2.3.2. Once the data
have been received, the records are inserted into the bridge node’s local database. These
steps can be seen in Figure 24, which shows the text area of the prototype mobile application.
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The bridge node’s local database, shown in Figure 25, was implemented in SQL
Lite [65] and consists of two tables: Users_data and Equipment. The Users_data table stores
the records captured and stored by the sensor node and sent to the bridge node. Its attributes
are id, which identifies the record uniquely, class, which identifies the class of the user type,
timestamp, which indicates the date and time of the record, deviceId, which identifies the
device that captured the record, and isSynced, which controls the synchronization of that
record. The Equipment table stores data on the sensor nodes installed on trails that are
available for data exchange. This table contains as attributes the id which uniquely identifies
a sensor node, the name which serves to store its name, the latitude and longitude which
together store the coordinates of its location, and the macAddress which stores the physical
address of the Bluetooth communication card of that sensor node.
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Once the information has been sent from the sensor node to the bridge node, commu-
nications are terminated. If unsuccessful, a new connection attempt is made. Otherwise,
the bridge node’s Bluetooth service is terminated.

Afterwards, the synchronization service starts, which sends the records stored on the
bridge node to the central database server, available on the Internet, via an API. This service
runs in the background, even if the application is closed and removed from memory (see
Table 1, A4). It is therefore assumed that the bridge node will connect to the Internet over
time. If this connection is not available, a 1 h timer is used to continue trying to connect.
When the Internet connection is finally detected, the data are extracted from the bridge
node’s database and converted into JSON format and a POST request is made to the central
API to insert the data into the central database. If this process is completed successfully,
this service is terminated, as illustrated in Figure 26. If the response from the API is not 200
OK, a new POST request is made. Figure 27 describes this entire process.
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2.3.4. Central Database

The central database was implemented in MySQL [66] on a machine running the
Ubuntu 20.04 LTS operating system [67]. It adopts a relational architecture and contains
five tables: KML_Files, Alerts, Equipment, Users_data and User. The purpose of the KML_Files
table is to store the path of Keyhole Markup Language (KML) files [68]. These files are used
to display geographical data on a map [69], such as Google Earth or Google Maps. These
files are used to draw cycling and hiking trails on the web application map described in
Section 2.3.5. This table has the following fields as attributes: id, which uniquely identifies a
file, and the full_path attribute, which represents the path where the file is stored. These files
are stored in a public folder on Drive, because a KML file must be accessed via a publicly
accessible server on the Internet [70–72].

The Alerts table stores the alerts generated by the system. These alerts are triggered by
a lack of data synchronization with the central database for more than 10 days. Its attributes
are description, which represents a brief description of the alert, time_alert, which stores the
date and time the alert was generated, and finally device_id, which stores the id of the sensor
node to which the alert is associated.

The Equipment table is very similar to the table with the same name described in
Section 2.3.3, except for two additional attributes: user_id, which keeps track of which user
the sensor node belongs to, and location, which indicates in full the nearest location where
that same node is located. The Users_data table is also similar to the table described in
Section 2.3.3, but instead of having the isSynced control attribute, it uses the sync_timstamp
attribute, which records the date and time of synchronization with the central database.
Finally, the Users table stores the session data of the users who access the web application.
It has four attributes: the id which uniquely identifies a user, the username which stores
the username, the password_hash which stores the user’s encrypted password, and the
verified which serves as access control. Figure 28 shows the entity–relationship model of
this database.
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Figure 28. Central database.

To interact with the central database, a Rest API was created with the Python Flask
RESTful library [73]. Only two methods were created: a GET/equipment method to obtain
the information from the sensor nodes registered in the central database, shown in Figure 29,
and a POST/userdata method to send the records from the bridge node to the central
database, to which the API returns the number of records received, as shown in Figure 30.
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2.3.5. Application Server

The data captured by the sensor nodes over time and routed through the bridge nodes,
according to the process described above, will eventually reach the central database. Then,
they will be accessible via a web application that generates statistical reports available to
infrastructure managers.
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The web application follows a Model–View–Controller (MVC) architecture [74] and
was also created using the Flask framework [75]. To use the web application, you must first
register. After that, simply log in via the page shown in Figure 31.
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After successfully logging in, users are directed to the main page. There, users can
apply filters by sensor node. In addition, it is also possible to apply date filters to view
records captured within a specific period. Figure 32 shows this page. On the left-hand side,
users can see the month of the current year with the most records captured. In addition,
they can view the alerts associated with the sensor nodes they manage. These alerts are
displayed when those nodes have not synchronized records for more than 10 days.
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A page was also developed to represent the sensor nodes and trails stored in the
central database on a map. This can be seen in Figure 33. The map used is Google Maps
and was implemented via JavaScript [76].
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Figure 33. A web application page with a view of the trails and sensor nodes.

Each marker on the map represents a sensor node. If you click on it, an information
window will appear showing the name, id and counts of the different types of users it has
detected since it has been active (Figure 34).
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Figure 34. A web application page with information on the sensor node selected by the user.

An option is available to filter dates in this window, restricting the time frame. Figure 35
exemplifies this functionality.
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3. Testing and Validation

To meet the challenge of detecting and counting different types of users of cycling
and hiking trails using computer vision techniques, a dataset was initially created [8]. The
performance tests carried out on the YOLOv3-Tiny CNN model applied to that dataset
led to the conclusion that it was necessary to increase the number of images identifying
the motorcycle and bicycle classes in order to improve YOLOv3-Tiny’s accuracy. The new
version of the dataset is available in [77].

This task, described in the previous section, improved YOLOv3-Tiny’s classification
accuracy, as shown in Figure 36. In the previous version of the dataset, these two users,
who use a bicycle, were wrongly classified as persons instead of bicycles.
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Figure 36. Example of detection with YOLOv3-Tiny model trained with improved dataset.

The tests carried out with the previous version of the dataset also revealed some
flaws in the classification of the motorcycle class. Some of the detections were sometimes
classified as persons. As can be seen in Figure 37, with the new version of the dataset, this
type of user is now correctly classified with a very high degree of certainty.
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height for positioning the hardware. The sensor node was then attached to the stake with 
plastic clamps and powered by a portable battery, as can be seen in Figure 38. The sensor 
node was thus pointed toward the length of the route shown in Figure 39. It is assumed 
that when the sensor nodes are installed on the trail, their GPS coordinates are recorded 
in the central database. 
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Figure 37. Second example of detection with YOLOv3-Tiny model trained with improved dataset.

To conduct a set of tests to validate and prove the concept of the proposed prototype
described in the previous section, a stake was driven into the ground to simulate the ideal
height for positioning the hardware. The sensor node was then attached to the stake with
plastic clamps and powered by a portable battery, as can be seen in Figure 38. The sensor
node was thus pointed toward the length of the route shown in Figure 39. It is assumed
that when the sensor nodes are installed on the trail, their GPS coordinates are recorded in
the central database.
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Once the sensor node was attached, the tests began. For demonstration purposes, an
access point and an auxiliary smartphone were used to establish a remote connection via
SSH with the sensor node. This connection, made using the Terminus application [78], was
used to check the results of different types of users’ detection and classification. Figure 40
shows that this auxiliary smartphone is already connected via SSH and ready to run the
detection and classification script on the sensor node.
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Figure 41 shows that the YOLOv3-Tiny model correctly identifies the motorcycle 
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Figure 40. SSH connection to the sensor node via the Terminus application.

The command shown in Figure 40 executes the script “object_tracker_databaseTest.py”.
It uses the YOLOv3-Tiny model for detection, with pre-trained weights located in the
“./checkpoints/yolov3-tiny-416-V3” directory. These weights are already adjusted with the
new version of the dataset. The “--score 0.70” parameter defines the minimum confidence
threshold to consider a detection valid. The “--info” argument activates the display of
detailed information on detections and classifications during execution. The “--dont_show”
parameter disables the real-time display of detections and ratings. Since the operating
system does not have a graphic interface either, this was not possible. The result of the
detections and classifications will be saved in a video in MP4 format, whose path and name
are specified by “--output ./outputs/test-final-saw-position-2-threshold0-70-distance-0-
25.mp4”. This parameter is only used for testing and validating the prototype. In addition,
the “--database” parameter relates to the functionality of detections and classifications
being recorded in the local database. After running the Python script to start detecting and
classifying users, we began by testing the classification of the motorcycle class (Figure 41).
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Figure 41 shows that the YOLOv3-Tiny model correctly identifies the motorcycle class,
with a certainty of 73%. Tests were then carried out to check the classification accuracy of
the bicycle class. Figure 42 shows that the classification is perfect, with 100% certainty that
the object belongs to the bicycle class.
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who is using the bicycle is incorrectly classified as a person with 73% certainty. This error 
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Figure 42. Classification and detection of bicycle class.

The next test evaluated a scenario that was prone to classifying two classes simulta-
neously, which in this case were the person and bicycle classes. Looking at Figure 43, it
can be concluded that the person is correctly classified with 98% certainty, while the user
who is using the bicycle is incorrectly classified as a person with 73% certainty. This error is
caused by the great distance of this user from the sensor node.
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Figure 43. Simultaneous identification of person and bicycle classes.

The last test carried out aimed to evaluate the classification of the person class. The
test consisted of two users walking side by side. As we can see in Figure 44, the users were
correctly classified with certainties of 97% and 99%, even at a considerable distance.
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It can be concluded that the results obtained in the different detection and classification
tests are satisfactory. It should be explained that the difficulty associated with detecting
and classifying the motorcycle class is related to the low computing power of Raspberry
(sensor node) and the high speed at which this type of user moves. After this last test, a
total of 12 detections were carried out, leaving the sensor node database with the records
shown in Figure 45.
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Figure 45. The records in the sensor node database.

After a few hours, the passage of a new user was simulated, who would play the
role of the bridge node. This user, classified as a person, started the trail by selecting the
“Initiate Route” option in the mobile application. His route started approximately 27 m
from the “PRN-3” sensor node, as shown in Figure 46. As the user moves along the route
and enters the Bluetooth range of the sensory node, the nodes negotiate and establish a
connection (Figure 46).
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Figure 46. Starting the trail and connection establishment.

The sensor node then sends its records to the bridge node. The service used to
synchronize the data from the bridge node to the central database, which is hosted on a
server on the Internet, is initialized and remains in the background, waiting for an Internet
connection, as shown in Figure 47.
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As illustrated in Figure 48, later in the day, the user went to a location that has access 
to a Wi-Fi network but could also use a 3G/4G/5G connection. In this case, the Android 
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Figure 47. Data exchange between nodes and initialization of synchronization service.

As illustrated in Figure 48, later in the day, the user went to a location that has access
to a Wi-Fi network but could also use a 3G/4G/5G connection. In this case, the Android
device’s Wi-Fi is activated and it connects to the Internet.
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Once this connection has been established, the service successfully synchronizes the
data with the central database, as seen in Figure 49.
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Figure 49. Data synchronized with central database.

After this iteration, the records with the detections and classifications of the different
types of users are already in the central database hosted on a server on the Internet.
Figure 50 shows these new 12 detected records.
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The information collected by the sensor and bridge nodes, now stored in the central
database, can now be viewed in the web application. After logging in and accessing the
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main page, it is possible to apply filters to the information. The device responsible for these
detections and classifications is the “Proença-a-Nova-3” sensor node, with the ID “PRN-3”,
which is why it was selected. It is possible to see the counts of the three classes since this
sensor node has been in operation. If filtering is applied with a start and end date, the
counts of each class are displayed individually, totaling 12 records, as seen in Figure 51.
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Figure 51. Class counts in PRN-3, filtered by detection dates.

In Figure 52, it is possible to see the same counts by class in “PRN-3” but now on the
page showing the map and the sensor nodes distributed on the ground. By filtering the
start and end dates for the day on which the detections were made, it can be seen that there
are 12 records again, separated by their classes, as shown in Figure 53.
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4. Conclusions and Future Work 
In Portugal, the number of approved cycling and hiking trails has been growing over 

the years, helping to add value to areas by attracting a growing number of domestic and 
foreign tourists to practice nature sports. However, since these are open-access spaces, 
there is usually no reliable data on the rate of use. Knowing the number of visitors and 
identifying the different types of users as well as the peak periods are examples of valua-
ble information for those who have to manage and promote these resources, and also 
demonstrate their strategic importance in terms of tourism development, especially in 
low-density territories. 

The main aim of this study was to propose and evaluate a solution that makes it pos-
sible to identify and count different types of users of cycling and hiking trails. This study 
has sought, based on the study of the state of the art and the initial performance evaluation 
conducted by the same authors in [8], to present a proposal, implementation, testing and 
validation of a prototype with a “proof-of-concept”. 

The main contributions of this study are as follows: the expansion of the dataset [8] 
with a new version now available in [77] and the additional tests carried out on the 
YOLOV3-Tiny model; the definition of an architecture, as well as the hardware and soft-
ware components of a low-cost prototype, based on the Internet of Things, computer vi-
sion (CNNs) and the concept of opportunistic networks; the description of its implemen-
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4. Conclusions and Future Work

In Portugal, the number of approved cycling and hiking trails has been growing over
the years, helping to add value to areas by attracting a growing number of domestic and
foreign tourists to practice nature sports. However, since these are open-access spaces, there
is usually no reliable data on the rate of use. Knowing the number of visitors and identifying
the different types of users as well as the peak periods are examples of valuable information
for those who have to manage and promote these resources, and also demonstrate their
strategic importance in terms of tourism development, especially in low-density territories.

The main aim of this study was to propose and evaluate a solution that makes it
possible to identify and count different types of users of cycling and hiking trails. This
study has sought, based on the study of the state of the art and the initial performance
evaluation conducted by the same authors in [8], to present a proposal, implementation,
testing and validation of a prototype with a “proof-of-concept”.

The main contributions of this study are as follows: the expansion of the dataset [8]
with a new version now available in [77] and the additional tests carried out on the
YOLOV3-Tiny model; the definition of an architecture, as well as the hardware and software
components of a low-cost prototype, based on the Internet of Things, computer vision
(CNNs) and the concept of opportunistic networks; the description of its implementation
and configuration process; and finally, the validation and proof-of-concept tests carried out
on the prototype.

The prototype proved to be effective as it achieved the objectives proposed in its
design. It is considered an economically viable and functional option.

In future work, it is essential to highlight the importance of security in communication
between the system’s nodes, especially in the context of data transmission via Bluetooth
technology. Given the constant evolution of the technological world, it is important to keep
up with this progress and strengthen security measures to prevent potential attacks on the
system. A comprehensive review of communication security will therefore be necessary,
implementing more advanced encryption protocols to protect the data transmitted.

Should the product be marketed, it will be important for it to have an operating system
prepared to be used in a “plug and play” (PnP) manner, making it easy for infrastructure
managers to implement and adopt it, without the need for complex configurations or
extensive customizations.
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It will also be necessary to develop a computer numerical control (CNC) enclosure/box
to accommodate the prototype’s electronic components, allowing it to be tested in real
conditions, subject to adverse weather conditions.

To improve the accuracy and robustness of the system in different environmental con-
ditions and situations of use, it is essential to explore more advanced artificial intelligence
and learning techniques to significantly improve the system’s ability to detect and classify
different types of users.

Power consumption and energy efficiency are crucial issues because the presented IoT
solution will be battery-operated and thus energy-constrained. Thus, work remains to be
done in terms of analyzing battery lifetime and power consumption, as well as optimizing
battery lifetime. A solar panel may be added. The importance of a presence detector
(e.g., motion detector or infrared) to trigger inference and data exchange will also need to
be assessed.

Finally, it is necessary to improve the interface and functionalities of the mobile
application and online platform. This will involve not only esthetic improvements, but also
the application of usability and user experience concepts, making them more intuitive and
easier to use.
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