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Abstract: Field-Programmable Gate Arrays (FPGAs) play a significant and evolving role in various
industries and applications in the current technological landscape. They are widely known for their
flexibility, rapid prototyping, reconfigurability, and design development features. FPGA designs
are often constructed as compositions of interconnected modules that implement the various fea-
tures/functionalities required in an application. This work develops a novel tool FEINT, which
facilitates this module composition process and automates the design-level modifications required
when introducing new modules into an existing design. The proposed methodology is architected as
a “template” insertion tool that operates based on a user-provided configuration script to introduce
dynamic design features as plugins at different stages of the FPGA design process to facilitate rapid
prototyping, composition-based design evolution, and system customization. FEINT can be useful
in applications where designers need to tailor system behavior without requiring expert FPGA
programming skills or significant manual effort. For example, FEINT can help insert defensive moni-
toring, adversarial Trojan, and plugin-based functionality enhancement features. FEINT is scalable,
future-proof, and cross-platform without a dependence on vendor-specific file formats, thus ensuring
compatibility with FPGA families and tool versions and being integrable with commercial tools. To
assess FEINT’s effectiveness, our tests covered the injection of various types of templates/modules
into FPGA designs. For example, in the Trojan insertion context, our tests consider diverse Trojan
behaviors and triggers, including key leakage and denial of service Trojans. We evaluated FEINT’s
applicability to complex designs by creating an FPGA design that features a MicroBlaze soft-core
processor connected to an AES-accelerator via an AXI-bus interface. FEINT can successfully and
efficiently insert various templates into this design at different FPGA design stages.

Keywords: FPGA; template insertion; EDA; place-and-route; Trojan insertion

1. Introduction

Field-Programmable Gate Arrays (FPGAs) are rapidly gaining popularity as a flexi-
ble hardware platform for prototyping and deploying various applications [1]. Product
development with FPGAs is an efficient and cost-effective approach as they offer a broad
selection of intellectual property (IP) modules for easy integration and reconfiguration [2].
These key benefits have resulted in a significant rise in the integration of FPGAs across var-
ious domains, including data center applications [3], wireless connectivity, the acceleration
of artificial intelligence (AI) and machine learning (ML) tasks [4], IoT/embedded devices,
edge computing applications, as well as cyber-physical systems, among others. Therefore,
with FPGAs being widely used in safety-critical applications, there is a heightened need
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to prioritize security and privacy measures while also optimizing their performance con-
cerning power, performance, and area metrics. One significant hurdle when leveraging
the considerable performance benefits of FPGAs is their programmability. Programming
FPGAs is commonly viewed as a practice centered around the development of control
paths, data paths, and finite-state machine design; thus, it requires a high level of hardware
expertise. If the algorithm or functionality of an FPGA is supposed to accelerate changes
or add-ons frequently, it can lead to obsolescence issues. FPGA designs do not readily
accommodate algorithm modifications or additions as seamlessly as software designs,
which can be easily recompiled or updated. Additionally, FPGA programming often relies
on vendor-specific development tools and ecosystems, which can be less standardized and
user-friendly compared to general-purpose programming environments. Hence, there is
an imperative requirement to have a general platform-independent framework that can
be used for adding functionalities to an FPGA design at various stages of its development
using an interface that is defined by the design [5].

The development of products based on FPGAs involves various stages and interactions
with third parties. These untrusted sources have the potential to maliciously modify a
hardware IP block that is programmed onto an FPGA device at different stages of the FPGA
life cycle [6]. These malicious alterations have attracted significant research attention, which
has been focused on identifying and preventing them. Additionally, a plethora of hardware-
based countermeasures exist to thwart these attacks either by inserting them manually in
the design or through some platform-specific EDA flow. Some of these malicious alterations
and countermeasures are as follows:

• Hardware Trojan Insertion [7]: Trojan circuits are designed and inserted in FPGAs
with the intent to illicitly alter the FPGA behavior. They trigger system malfunctions,
enable unauthorized remote access to hardware components, and monitor or leak
sensitive data. A plethora of tools based on ML [8], aging [9], or exploring signal
correlation and cyclic redundancy checks [10] exist in the literature to detect hardware
Trojans in FPGAs.

• Side-channel and Fault Injection Attacks [11–13]: Side-channel attacks exploit the phys-
ical information that becomes apparent when a system employs an encryption tech-
nique to break into an FPGA. For fault attacks, adversaries inject faults into the
behavior and then study the faulty behavior to retrieve secrets. Prominent hardware
countermeasures [14–16] are inserted during FPGA development.

• Thermal Laser Simulation [17]: Using a current monitoring laser stimulation, the de-
vice is biased with a supply voltage, and the current between the supply pins is
monitored via current pre-amplifier to retrieve the AES secret-key. These authors also
proposed noise-based hardware mitigation [17].

• Reverse Engineering [18]: The adversary intercepts the generated bitstream to employ
reverse-engineering techniques for retrieving higher-level functionality or structure-
level descriptions. The countermeasure scheme involves obfuscating [19,20] the bit-
streams to protect the IPs from typical reverse engineering attacks.

• Boolean Satisfiability(SAT)-Attacks [21]: This approach permits an attacker to decode
an encrypted netlist by employing a set of meticulously chosen input patterns along
with their output observations. A number of locking techniques [22,23], designed by
tweaking the circuits, have been proposed to thwart this category of attacks.

However, all the above attack/mitigation tools and techniques have been developed
and tested using different FPGA platforms and families. Hence, platform-dependent
solutions do not promote interoperability between different design tools and platforms.
Additionally, platform-dependent solutions cannot be adapted to new technologies and
platforms, and they are not pluggable to new methods. Hence, there is an imperative need
for a platform-independent integrated automated framework that can act as a general-
purpose function inserter, can augment mitigation techniques against hardware attacks,
or is able to insert Trojans to examine its effect. The framework should ideally possess the
following desirable characteristics:
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1. Serve as a versatile solution to augment design functions using a flexible and scalable
interface defined by the design.

2. Support a module composition-based design that envisions a library of modules for error
checking, monitoring, etc., which defenders can integrate into their designs to mitigate
and thwart varied attack dimensions on FPGAs.

3. Facilitate the investigation of hardware attacks in FPGA netlists, seamlessly incorpo-
rating various categories of FPGA-specific Trojans into a netlist at various stages of
the FPGA design cycle, thus enabling a swift and thorough examination of potential
Trojan attacks.

4. Support automated cross-platform application by not being dependent on vendor-
specific file formats and operating instead on industry-standard text-based formats
that are compatible with different FPGA families, thus reducing need for manual
programming and specialized hardware expertise.

In this work, we propose an automated framework FEINT, as shown in Figure 1,
to encompass these features. FEINT can be used by an attacker to explore the domain
of hardware Trojan attacks within FPGA netlists, or by a defender to insert hardware
countermeasures to mitigate against various physical attacks in FPGAs. The proposed
framework is useful in general for an amateur designer to insert add-on functionalities to
an FPGA design by tuning the configuration files.

Figure 1. FEINT Flowcharts showing designer’s, defender’s, and attacker’s perspectives.

The FEINT framework is illustrated in Figure 1, and it can be used by individuals in the
roles of an attacker, a defender, or a designer. The attacker, defender, or designer employs a
pre-defined Trojan library, hardware attack mitigation library, or general-purpose template
library, respectively, to integrate modules either during the 1 RTL stage, 2 synthesis

stage, or 3 the place-and-route stage within the FPGA design process. The general-
purpose template library may consist of sensor modules, wireless modules, etc. The Trojan
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library consists of various hardware Trojans. The attack mitigation library may have
modules such as a power-on self-test, threshold implementation, and Hash algorithms. The
FEINT approach merely requires script configuration to produce the desired hardware, thus
ensuring independence from vendor-specific formats and platforms.

While FEINT can be applied for various purposes, including adding security features,
improving functionality, or inserting hardware Trojans, we would like to note that FEINT by
itself does not pose a security issue in terms of malicious use. This is because FEINT is simply
an FPGA design modification tool (i.e., a general-purpose tool like a compiler) and security
measures to prevent malicious use effectively entails ensuring that the computer/network
infrastructure in which the FPGA design to be protected is located is secured against
attackers. In terms of a threat model, FEINT does not increase the attack surface since any
malicious use achievable using FEINT could be performed “by hand” by an adversary who
gains access to a secure computer/network—FEINT simply reduces the manual workload
to effect modifications of the FPGA code. These capabilities, therefore, enable a flexible tool
that can be effectively used for multiple purposes, as discussed in this paper.

The rest of this paper is organized as follows: In Section 2, we provide an overview
of the related works in this domain and elaborate our key contributions in this paper.
Section 3 describes the tool capabilities, and Section 4 demonstrates the efficiency of our
flow through the experimental results. Finally, Section 5 concludes the workm along with a
brief note on future directions.

2. Related Works

In this section, we compare our proposed tool FEINT with the state-of-the-art EDA
tools in this domain. A summary of related works, along with a comparison to our work,
is shown in Table 1.

Table 1. Comparison of FEINT with state-of-the-art tools (✕✕—NA, ✔✕—applicable at RTL netlist
stage, ✕✔—applicable at post-placement netlist stage, and ✔✔—applicable at RTL netlist and post-
placement netlist stages).

Flow

Template Insertion

Generic Module H/W Attack Mitigation Trojan Insertion

RapidWright [24] ✕✔ ✕✕ ✕✕

R. Backasch [25] ✕✔ ✕✕ ✕✕

Athanas et al. [26] ✔✕ ✕✕ ✕✕

J Cruz et al. [27] ✕✕ ✕✕ ✕✔

HAL [28] ✕✕ ✔✔ ✕✕

TAINT [29] ✕✕ ✕✕ ✔✔

This work ✔✔ ✔✔ ✔✔

We conducted a comprehensive analysis of our approach in relation to other published
flows across three aspects of template insertion, namely generic module insertion, hardware-
based template insertion for safeguarding against physical attacks, and Trojan insertion.
In our comparative assessment, we evaluated the adaptability of our proposed tool by
considering both RTL netlist and post-placement netlist template insertion in comparison
to other tools.

Our Contributions: FEINT provides a versatile design-enhancement interface and
supports module composition-based design for error checking and monitoring, enabling
defense against diverse FPGA attack dimensions. Additionally, it investigates hardware
Trojan attacks, seamlessly integrating FPGA-specific Trojans at various design stages for
analysis. The main contributions are as follows:
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• FEINT is a flexible, versatile, and platform-independent Python tool chain for inserting
design templates through an interface determined by the design. FEINT can be used
by three categories of users, namely an adversary to insert or analyze the effect of
Trojans, a designer to plug-in templates, and a defender to insert countermeasures to
the design to protect against physical attacks.

• As a proof of concept, we created three template libraries: a general-purpose library,
a Trojan library, and an attack detection/mitigation library. We then used FEINT to
insert these user-chosen templates in a given user-provided design during the front or
back end of the FPGA design flow.

• We validated the efficiency of our flow from three different perspective users, namely
attacker, defender, and designer, using the Xilinx platform. We inserted 5 differ-
ent Trojans to serve as part of the attacker’s perspective, 7 out 15 tests were from
a NIST randomness test suite as part of the defender’s perspective, and we in-
serted 4 pseudo-random number generators into an existing design as part of the
designer’s perspective. We validated our modified designs using the CMOD-A7
(Artix) FPGA board.

In the next section, we will delve deeper into the front end and back end capabilities
of our FEINT flow.

3. FEINT: Tool Capabilities

The automated template insertion tool is intended for use in digital design to alter
the behavior of digital circuits. It is designed to read, modify, and write RTL/netlist
hardware description files. It takes user-defined parameters such as signal names, module
names, and filenames to perform the necessary modifications. The core functionality of
the tool involves renaming modules, adjusting signal declarations, and managing signal
connections. The tool is implemented as a Python script and operates on industry-standard,
text-based formats for RTL/netlist; thus, it is cross-platform and not dependent on vendor-
specific FPGA families and related FPGA synthesis tools. Our tool operates on industry-
standard RTL/netlist text files and can be applied across FPGA families and design tool
suites (and their respective versions). We define the changes made to the Verilog files,
such as RTL level and netlist level files, as front end capabilities, and the changes made
to the constraints such as location and region as back end capabilities. We elaborate on
the two capabilities in the following sections, and we study the application of the tool in
attacker, defender, and designer contexts. Through the modular structure of FEINT with
an automated workflow in both front end and back end capabilities, FEINT enables rapid
composition-based design and system customization with reduced manual effort.

3.1. Front End Capablities
3.1.1. Module Renaming

This tool generates a new module name by selecting N (=10 by default) random letters
from the alphabet. This new name is then used to replace occurrences of the original
module name within the RTL/netlist file. This functionality allows the tool to rename the
module while maintaining the overall structure of the design.

3.1.2. Signal Declarations and Connections

FEINT’s capability to add, modify, or remove signals can be used to introduce new
signals or modify existing signals to contain malicious logic. The tool’s manipulation of
signal connections can be exploited to establish communication pathways between the
inserted module and external entities. FEINT handles various types of signal modifications:

• Input and Output Signals: This tool adds input and output signals to the module
declaration based on user-provided parameters. It accounts for cases where certain
signals need to be omitted.
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• Route Signals: Route signals are introduced to connect different parts of the design.
The tool creates wire signals and manages the connections between these route signals
and the original output signals.

• Join Signals: Join signals are used to combine or join existing signals. The tool re-
places the original signal name with the join signal name, thus allowing the design to
incorporate these combined signals.

• Extra Signals: Additional signals specified in the extra_signals parameter are seam-
lessly integrated into the module declaration.

3.1.3. File Manipulation

FEINT reads the RTL netlist, applies modifications, and writes the modified RTL netlist
to the file. Overall, FEINT provides a valuable functionality for modifying HDL files in
digital designs. It can rename modules, conduct signal declaration and connection manage-
ment, and perform RTL netlist manipulation. By utilizing FEINT, designers can customize
and adapt the FPGA designs to meet requirements, integrate subsystems, and streamline
design processes. FEINT’s features provide attackers with the ability to obfuscate and im-
plant malicious logic within the FPGA designs. FEINT also facilitates defender evaluations
of the vulnerabilities to Trojans in FPGA designs and the study of Trojan impacts.

3.2. Back End Capabilities

The main back end capability explored was the ability of the automated tool to place
inserted designs within a desired area or location, as circuit placement during insertion can
have a critical effect on the power, performance, and area parameters of the overall design.
Several cross-platform approaches (portable to different FPGA vendors and families) to
placement constraints were considered, each with different outcomes and varying impact
depending on the placement objective. They included a location constraint, a region
constraint, and a hybrid approach, utilizing both of the aforementioned constraint types.

3.2.1. Location Constraints

This type of constraint (Listing 1) allows for the placement of any design instance,
such as a Look Up Table (LUT) or multiplexer (Mux), to a designated FPGA fabric instance
of the same type. Between EDA vendors, these constraints may vary in granularity, i.e., con-
straining a cell to a specific slice vs. constraining a cell to a specific LUT within a slice,
but they employ similar command structures and invoke the same outcome in placement.

Listing 1. Location Constraint Pseudo-command.

1 a s s i g n _ l o c a t i o n <Location > <Instance >
2

The command structure, depicted in the pseudo-command in Listing 1, generally
involves a function assign_location, which evokes a location constraint and sets the
granularity along with the design cell instance name <Instance> and the desired fabric
location <Location> to be set during the place-and-route portion of the design flow. These
location constraint commands can be generally placed within a constraints file, applied
graphically via a floor-planning tool, or invoked through a command-line interface (CLI)
using a Tool Command Language (TCL). Instances that are constrained using this approach
are known to be “fixed," meaning they will not be relocated during optimizations, regardless
of negative slack values or design timing closure status. Due to this, an attacker or designer
must take care in determining which location designations are viable in meeting all design
requirements. Furthermore, cross-platform, industry-standard synthesis attributes can
be utilized within the RTL front end to aid in the automation and scripting of location
constraints—they can be used to generate cell names in a predictable and consistent pattern,
or prevent certain modules from being altered through optimizations. This approach has
the tendency to re-route and relocate parts of the original design in order to meet timing and
area constraints. This can be beneficial when a designer wants to achieve timing closure,
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but can be detrimental when an attacker wants to conceal a Trojan with the least impact to
the original design.

3.2.2. Region Constraints

This type of constraint (Listing 2) allows for the placement of large portions of logic
within a set rectangular region. This allows for entire modules or design subsections
to placed together within the same region. Furthermore, this approach allows for the
segmentation of the original design and newly inserted Trojan or template.

Listing 2. Region Constraint Pseudo-command.

1 c r e a t e _ r e g i o n <Name>
2 a s s i g n _ l o g i c <Name> < I n s t _ 1 . . . Inst_N >
3 s i z e _ r e g i o n <Name> <Loc_1 Loc_2>
4

The portable cross-platform command structure of generating a region constraint, as shown
in Listing 2 using pseudo-commands, usually involves three or more parts. The first part,
create_region, creates a new region named <Name>. After the creation of the region, logic is
assigned to this region using the assign_logic pseduo-command, with the arguments of the
command including the name of the region and cell instances, Inst_1 ... Inst_N.

After cells are defined within the region, the shape and size of the region is defined
using the size_region pseudo-command, with arguments being the region name along
with a rectangle of two or more points, which are defined by fabric location instances,
<Loc_1 Loc_2>. Region constraints, similar to the location constraints, can be set in a con-
straints file, applied graphically via a floor-planning tool, or invoked through a CLI using
TCL commands, thus allowing for a variety of automation and scripting opportunities.

Unlike a location constraint, however, region constraints are not “fixed”, meaning that
the logic within them are free to be placed and routed based on efficiency and optimization.
If the encompassing region is too small, does not have the required resources (such as
block RAM), or if there are no viable routing/placement locations, elements may be placed
outside the boundary rectangle. Concentric region constraints can be used to place the
newly inserted Trojan or template anywhere within the original circuit while keeping the
original circuit in the same area.

3.2.3. Hybrid Approach

This approach uses both the location constraint and region constraint in tandem to
constrain the original circuit to a designated area while allowing newly inserted templates
to be placed anywhere within the FPGA fabric. Since both fixed and unfixed placement
constraints are used, care must be taken to ensure the fixed placement of newly added
circuitry does not violate any timing constraints, especially if the newly added circuit exists
within the design hierarchy of the original circuit. Overall, these approaches can be prescribed
based on the objective of the attacker or designer, whether it be efficiency or concealment.
The results, which demonstrate the application of these placement constraints concerning
Trojan insertion when using the Xilinx Vivado toolchain and design flow, elucidate these
considerations. We will elaborate on the experimental results in more depth in the next section.

4. Experimental Validation

In this section, we present a series of case studies aimed at comprehensively evalu-
ating the potential applications of the FEINT tool. These case studies adopt three distinct
perspectives: the attacker’s, the defender’s, and the designer’s. Each perspective serves
as a lens through which we assess the multifaceted utility of the tool. The first dimension
of our case studies involves an examination of the tool from an attacker’s standpoint. We
simulate malicious intent by employing the tool to insert diverse types of Trojans into
pre-existing designs. From the defender’s perspective, we investigate the application of
the tool to enhance design integrity and security. Our focus here is on the insertion of a
Built-In Self-Test (BIST) architecture using the tool. The third dimension of our exploration
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pertains to the designer’s viewpoint. We used the tool to simplify integrating common
HDL modules into the existing designs.

4.1. Experimental Setup

The testbed that was utilized experimentally when performing each of the three case
studies included the use of a popular FPGA on a widely available hardware development
board and a toolchain capable of accepting an industry-standard HDL. The Xilinx Artix-35T
FPGA on the CMOD-A7 development board manufactured by Digilent was used to fit these
criteria. This FPGA and board combination allowed for the use of the Vivado toolchain and
design flow, which allows for the synthesis and implementation of RTL files. Furthermore,
Vivado employs the use of synthesis attributes and constraint declarations similar to that
of other vendors, thus allowing the FEINT tool to take advantage of these features with
little to no modifications [30]. The same hardware setup was used across all three use
case scenarios.

4.2. Front End Application
4.2.1. Attacker’s Perspective

To illustrate the utilization of the FEINT tool from an attacker’s standpoint, we employed
it to insert hardware Trojans into an existing AES core design. In all the experiments in
this section, we used the secret key 0x12233445 56677889 9AABBCCD DEEFF001. This in-
vestigation aims to showcase the tool’s capabilities through the injection of five distinct
Trojans, each featuring different attack vectors, as delineated in Table 2. For instance, in
Figure 2, the top demonstrates the successful injection of circuitry for the Trojan labeled
as LEAK_OUT:STATE using the tool. This Trojan leaks the secret key through the output
bus upon activation. The block diagram of this Trojan is shown in Figure 2 in the middle
section. The signals clock, key_in, resetn, and text_in are joined with the corresponding
signals of the Trojan module. The signal text_out is rerouted through the Trojan module.
The trigger of this Trojan operates by a single comparison operation. Figure 2 in the middle
section demonstrates the Vivado schematic of this comparison mechanism. Figure 2 in the
bottom section shows the implemented layout where the inserted Trojan is highlighted
in white. Each value of the plain text is compared against the value 0x00112233 44556677
8899AABB CCDDEEFF. Notably, the tool empowers precise Trojan placement, a feature
specified through its back end capability.

Table 2. Trojan templates inserted using the FEINT tool.

Trojan Effect

LEAK_OUT:STATE Leaks secret key via output using single-input trigger

LEAK_OUT:COUNTER Leaks secret key via output using counter value trigger

LEAK_OUT:SEQ Leaks secret key via output using four sequential triggers

LEAK_SIDE:STATE Leaks secret key via side-channel using single-input trigger

DOS_OUT:SEQ Performs Denial-of-Service (DoS) using four sequential triggers

The insertion of LEAK_OUT:COUNTER is shown in Figure 3 in the top section. The sig-
nals and their manipulations that were involved while inserting LEAK_OUT:COUNTER were
the same as that of LEAK_OUT:STATE. This Trojan uses a two-bit counter to determine the
status of Tj_Trig (Trojan trigger). The functionality of this counter is shown in Figure 3 in the
bottom section. The counter is assigned a value of 0x0 at reset. Every time an encryption is
completed, the counter is incremented. When the counter has a value of 0x3, the circuit is trig-
gered. The functionality of LEAK_OUT:COUNTER is the same as that of LEAK_OUT:STATE.
When the Trojan has been triggered, the cipher output will be replaced with the provided key.
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Figure 2. (Top): block diagram of the AES with the Trojan LEAK_OUT:STATE; (middle): the trigger
mechanism of Trojan LEAK_OUT:STATE; and (bottom): the implemented layout (where the inserted
Trojan is highlighted in white).
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Figure 3. (Top): block diagram of the AES with Trojan LEAK_OUT:COUNTER; (bottom): the trigger
mechanism of Trojan LEAK_OUT:COUNTER.

The insertion of Trojan LEAK_OUT:SEQ using the FEINT tool is shown in Figure 4
in the top section. Similar to LEAK_OUT:STATE and LEAK_OUT:COUNTER, the signals
that are involved while inserting the Trojan are clock, key_in, resetn, text_in, and text_out.
The trigger in this Trojan is a sequential trigger. This trigger waits for four separate values
of plain text to be observed, in order, before setting Tj_Trig to 0x1. The inputs are as follows:
0x3243F6A8 885A308D 313198A2 E0370734, 0x00112233 44556677 8899AABB CCDDEEFF,
0x0, and 0x1. Note that these inputs do not need to be observed in immediate succession.
Figure 4 in the bottom section shows the first two state comparisons. The register State0_reg
identifies whether the first triggering input combination has been seen since the last reset.
This Trojan has the same functionality as LEAK_OUT:STATE and LEAK_OUT:COUNTER.
This Trojan overwrites the output text_out with the value of key_in when activated.

Figure 5 shows the block diagram of AES with Trojan LEAK_SIDE:STATE. In this
example, the output signal is not rerouted. Here, the Trojan leaks the key through a side
channel. Hence, an extra signal (capacitance) is introduced into the module. The sig-
nals of AES, clock, key_in, resetn, and text_in are joined with the corresponding sig-
nals of the LEAK_SIDE:STATE module. The trigger in this Trojan is identical to that
of LEAK_OUT:STATE. The Trojan is activated when 0x00112233 44556677 8899AABB
CCDDEEFF is observed on the input bus. The LFSR register is rotated every clock cycle,
but only after activation, as represented by Tj_Trig = 1. The initial value of the LFSR is
taken from the input plain text. AES-T1000 takes its initial value from the incoming plain
text, and this value is loaded at reset.

A block diagram of the AES with Trojan DOS_OUT:SEQ is shown in Figure 6. The sig-
nal manipulation in this insertion is similar to that of LEAK_OUT:STATE. The signals clock,
key_in, resetn, and text_in are joined with the corresponding signals of the Trojan module,
while the signal text_out is rerouted through the Trojan module. The trigger in this Trojan
is similar to that of LEAK_OUT:SEQ. The Trojan is activated after observing a sequence
of patterns on the input bus. This Trojan is designed to perform a denial of service. When
activated, the Trojan sends all zeros to the output instead of the encrypted output.
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Figure 4. (Top): block diagram of the AES with Trojan LEAK_OUT:SEQ; (bottom): the trigger
mechanism of Trojan LEAK_OUT:SEQ.

Figure 5. Block diagram of the AES with Trojan LEAK_SIDE:STATE.

Figure 6. Block diagram of the AES with Trojan DOS_OUT:SEQ.
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Validation: To validate the performance of FEINT, we considered two aspects:

• RTL/netlist file size increases after Trojans are inserted: Prior to Trojan insertion,
the RTL file size represents the original design specifications and is generally deter-
mined by the complexity of the design’s logic, number of interconnected components,
and amount of control and data paths. After the insertion of a Trojan, the RTL files will
likely see an increase in size due to the addition of new logic components required for
the Trojan’s functionality. The extent of the size increase depends on the complexity of
the Trojan and its integration into the existing design. Table 3 presents information for
each Trojan in Table 2 in terms of bytes for the RTL designs and netlist files. Each row
of the table represents a different Trojan, and the associated sizes are provided for both
RTL and netlist representations. The first row of the table is for the clean (no-Trojan)
design. In the subsequent rows, the second and third column (i.e., “RTL Size” and
“Netlist Size (Trojan inserted at RTL)” columns) are the RTL size and synthesized netlist
size when the Trojan is inserted into the RTL. The fourth column (i.e., “Netlist Size
(Trojan inserted at netlist)”) is the combined netlist size when the Trojan is inserted
directly into the netlist. It was noted that the observed file sizes were in line with
what would be obtained if the required edits for inserting the Trojans were performed
“by hand” instead of using FEINT, thus validating that FEINT does indeed efficiently
perform the user-specified operations for editing signals and combining original and
template/Trojan modules with an automated tool chain.

• Correctness of Trojan insertions: This was verified by checking that the outputs were
unaffected when the trigger was not applied and that the Trojan behavior manifested
when the trigger was applied. Depending on the particular Trojan used, the Trojan
behavior could be, for example, AES secret key leakage or a DoS attack on the AES
core. The validation process on our hardware testbed verified both the Trojan ef-
fect and the trigger for all the cases shown in Table 2 based on the specific details
for each Trojan case, as described above. For example, for the LEAK_OUT:STATE
Trojan, Figure 7 shows the Trojan effect (i.e., a leaking of the key as the output in-
stead of the cipher text) when the Trojan trigger was applied at the third encryption.
The plain text 0x00112233445566778899AABBCCDDEEFF was set as the trigger and,
as mentioned earlier in this section, the secret key in our AES experiments was
0x12233445566778899AABBCCDDEEFF001.

Figure 7. Trojan LEAK_OUT:STATE insertion: key leakage observed during third encryption when
the Trojan trigger was applied.
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Table 3. File sizes of the AES crypto-accelerator before and after Trojan insertion.

Trojan RTL Size Netlist Size (Trojan
Inserted at RTL)

Netlist Size (Trojan
Inserted at Netlist)

No Trojan 40,869 bytes 1,171,519 bytes 1,171,519 bytes

LEAK_OUT:STATE 41,433 bytes 1,466,871 bytes 1,266,863 bytes

LEAK_OUT:COUNTER 41,688 bytes 1,457,615 bytes 1,296,571 bytes

LEAK_OUT:SEQ 41720 bytes 1,557,058 bytes 1,306,123 bytes

LEAK_SIDE:STATE 44,267 bytes 1,440,887 bytes 1,180,288 bytes

DOS_OUT:SEQ 41,711 bytes 1,552,688 bytes 1,288,838 bytes

Remark on Trojan detection methods: In the context of the above discussion on the pos-
sible application of FEINT to Trojan insertion, it is worthwhile to briefly summarize some
potential methods to detect malicious modifications, even though such methods are or-
thogonal to the problem and scope addressed in this paper. One approach for detecting
the presence of hardware Trojans is via functional testing. The primary challenge lies
in defining an effective set of test vectors to uncover the unknown Trojans. Advanced
testing techniques include methods such as [31], which use the inverted outputs of flip
flops to expand the state space and improve detection probability. Randomization [32], and
genetic algorithm-based methods [33] could also increase the likelihood of Trojan activation.
Alternatively, side-channel analysis can be applied by leveraging the physical character-
istics of the device, such as power consumption, electromagnetic radiation, and timing
delays, to detect anomalies indicative of hardware Trojans. Approaches include the use
of Principal Component Analysis (PCA) [34], leakage current analysis [35,36], short-term
aging [9,37,38], and dynamic current monitoring [39,40].

4.2.2. Defender’s Perspective

In order to showcase the utility of the FEINT tool from a defender’s perspective, we
employ it to insert a comprehensive BIST architecture into the existing AES core design.
Figure 8 illustrates the integration of the BIST controller at the output of the AES core. This
BIST framework incorporates seven of the fifteen tests specified in the National Institute of
Standards and Technology (NIST) Statistical Test Suite for Random and Pseudo-Random
Number Generators for Cryptographic Applications.

The inclusion of these tests empowers the defender to assess the integrity of the AES
core by analyzing the randomness of the generated cipher texts. For each of these tests,
a random plain text and secret key are defined, and the resulting cipher text is looped back
into the system as the succeeding plain text for the subsequent encryption event. In this
manner, the sequence of bits in the cipher text undergoes analysis by the BIST through
various statistical tests, thus allowing for evaluations of randomness. Importantly, this
approach leverages the well-established assessment of randomness in feedback-looped
AES cores, thus enabling the verification of the implemented module’s integrity. Any
alterations that may impact the output of the core will subsequently affect the assessed
randomness [41]. The seven specific tests employed in this proof of concept, along with
their corresponding criteria for randomness evaluation, are detailed in Table 4.
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Figure 8. AES design alongside an inserted BIST template.

Table 4. BIST templates inserted using the FEINT tool.

Test Name Evaluation Criteria

Frequency Proportion of zeros and ones for entire test space

Frequency (Block) Proportion of zeros and ones for 128-bit blocks

Runs Number of sequences of identical bits

Longest Run of Ones Length of longest run of ones vs. expected value

Non-Overlapping Detection of occurrences of aperiodic pattern

Overlapping Detection of occurrences of pre-specified string

Cumulative Sums Maximum excursion of a random walk

4.2.3. Designer’s Perspective

The versatility of the FEINT tool is demonstrated from the perspective of a hardware
designer, showcasing its application in the seamless integration of commonly used, pre-
defined circuit templates. As shown in this illustration, we employed the FEINT tool to
insert pseudo-random number generator (PRNG) templates into an existing AES core
design, leveraging these templates to generate secret keys. Figure 9 provides a visual
representation of the AES circuit with the integrated PRNG templates. For this scenario,
we utilized four distinct PRNG templates, as detailed in Table 5.

Table 5. PRNG templates inserted using the FEINT tool.

PRNG Name Description

LFSR RNG algorithm based on feedback shift register

Xoroshiro128+ RNG algorithm developed in 2016

Mersenne Twister RNG algorithm developed in 1997

Trivium RNG algorithm based on Trivium Stream Cipher

Figure 9. AES design alongside an inserted RNG template.



Information 2024, 15, 395 15 of 17

4.3. Back End Application

The placement of the inserted logic was considered for all three case studies. The con-
straints involving the placement of each of the inserted designs were mostly uniform,
employing the same Vivado Xilinx Design Constraint (XDC) commands.

The variations in XDC commands stemmed from the Vivado-generated cell names,
which were made uniform and predictable using the aforementioned synthesis attributes
placed within the RTL. The chosen synthesis attributes resulted in cell and leaf names that
closely followed the module name, and these were followed by a number. An example
use of the DONT_TOUCH synthesis attribute, which was used in all case studies, is shown
in Listing 3. Once the cell and leaf names were made predictable and uniform, the XDC
file was appended with the desired insertion location. Listing 4 depicts the placement
of a LUT to Location D6 within SLICE_X13Y126 of the FPGA, which is then followed
by a region constraint placing the cpu block to the locations specified by coordinates
SLICE_X28Y41:SLICE_X65Y99. The implemented locations after the place-and-route phase
of the design flow can be seen in Figure 2 in the bottom section, where the newly inserted
design, highlighted in white, is constrained to the upper-left clock region, and the original
design containing the cpu module, highlighted in blue, is constrained to the middle-right
clock region.

Listing 3. Verilog Example of Trojan Module with Synthesis Attribute.

1 ( * DONT_TOUCH = " true " * ) module Trojan (
2 input clk ,
3 input r s t ,
4 input [ 1 2 7 : 0 ] s t a t e ,
5 input [ 1 2 7 : 0 ] key ,
6 input [ 1 2 7 : 0 ] text_out1 ,
7 output [ 1 2 7 : 0 ] out
8 ) ;
9

Listing 4. Vivado Example of Hybrid Location and Region XDC Constraint.

1 se t_proper ty LOC SLICE_X13Y126 [ g e t _ c e l l s u _ c t r l 0 / c a r r y _ i ]
2 se t_proper ty BEL D6LUT [ g e t _ c e l l s u _ c t r l 0 / c a r r y _ i ]
3

4 crea te_pblock PBlock_CPU
5 add_ce l l s_ to_pblock [ get_pblocks PBlock_CPU ] [ g e t _ c e l l s −quie t [ l i s t cpu i2cp ] ]
6 res ize_pblock [ get_pblocks PBlock_CPU ] −add { SLICE_X28Y41 : SLICE_X65Y99 }
7

5. Conclusions and Future Works

This work introduces a platform-independent tool called FEINT, which simplifies the
process of module composition and automates necessary design-level modifications when
incorporating new modules into an existing design. FEINT functions as a template insertion
tool, using a user-provided configuration script to introduce dynamic design features as
plugins at different stages of FPGA design, thus facilitating rapid prototyping, evolution
through composition-based design, and system customization. The proposed tool is espe-
cially valuable in scenarios where designers want to tailor system behavior without requiring
advanced FPGA programming skills, and it enables reducing manual effort for customizing
template/Trojan instantiation and insertion. Moreover, FEINT is scalable, future-proof, com-
patible with different FPGA families and tool versions, and it can be seamlessly integrated
with commercial tools. We have demonstrated the efficacy of our tool by depicting its use
in different scenarios when inserting templates into an already existing AES cryptographic
core. These example scenarios, based on different insertion objectives, included the use of the
framework as a means to insert Trojans as an attacker, a BIST as a defender, and a RNG/LFSR
as a designer. As a future direction, we aim to enhance our tool by integrating machine
learning for greater efficiency. It is also interesting to explore the potential for developing a
similar EDA flow for Application-Specific Integrated Circuits (ASICs) as a research avenue.
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