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Abstract: A digital microscope plays a crucial role in the better and faster diagnosis of an abnormality
using various techniques. There has been significant development in this domain of digital pathology.
Sickle cell disease (SCD) is a genetic disorder that affects hemoglobin in red blood cells. The traditional
method for diagnosing sickle cell disease involves preparing a glass slide and viewing the slide
using the eyepiece of a manual microscope. The entire process thus becomes very tedious and time
consuming. This paper proposes a semi-automated system that can capture images based on a
predefined program. It has an XY stage for moving the slide horizontally or vertically and a Z stage
for focus adjustments. The case study taken here is of SCD. The proposed hardware captures SCD
slides, which are further used to classify them with respect to normal. They are processed using
deep learning models such as Darknet-19, ResNet50, ResNet18, ResNet101, and GoogleNet. The
tested models demonstrated strong performance, with most achieving high metrics across different
configurations varying with an average of around 97%. In the future, this semi-automated system
will benefit pathologists and can be used in rural areas, where pathologists are in short supply.

Keywords: digital microscopic system; deep learning; peripheral blood smear; sickle cell classification;
digital pathology; explainable artificial intelligence

1. Introduction

Sickle cell disease is a genetic disorder that affects the hemoglobin present in red
blood cells. The Hemoglobin Subunit Beta (HBB) gene, present in chromosome 11, allows
hemoglobin S to mature [1,2]. Hemoglobin S changes a red blood cell’s shape from a disk
to a sickle, clogging the blood vessels. It is less efficient in carrying oxygen throughout the
body, thereby leading to pain, organ dysfunction, and tissue damage [3]. Sickle cell disease
causes a shortage of blood vessels, resulting in anemia.

Patients with SCD produce other abnormal hemoglobins, such as hemoglobin C or
hemoglobin F. Infants as well as young children have hemoglobin F [4,5]. Hemoglobin C is
derived from the HBB gene. These variants of abnormal hemoglobin determine the severity
of SCD.

Sickle cell disease is inherited in an autosomal recessive pattern, with the fetus inherit-
ing two gene copies affected by SCD, one from each parent. If only one copy is inherited,
they are referred to as carriers and they typically exhibit no symptoms. If both parents are
carriers, there is a 25 percent chance of becoming carriers, a 25 percent chance of being
normal, and a 50 percent chance of being affected [6].

Africa has the highest population in terms of the percentage suffering from SCD, with
more than half of the 0.2 to 0.3 million children suffering from SCD [7,8]. After Africa,
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America is the most impacted country, with several people suffering from SCD. In Hispanic
America, among 16,300 newborn babies, one baby suffers from SCD. India, North Africa,
Southern Europe, and West Asia have a lower percentage of their populations affected
by SCD [9].

The diagnosis of sickle cells using automated methods helps in dealing with problems
related to overlapping, subjectivity, proneness to human error, and expert pathologist
requirements [10]. Hence, automated CAD-based methods have come into the picture.
Digital pathology is acquiring, managing, sharing, and interpreting pathology slides in the
digital environment. The microscope, which existed many years ago, has now changed
completely [11]. The lengthy process includes the manual diagnosis of sickle cells. To
reduce the time consumption of the pathologist, a motor and digital camera were installed
in the microscope [12]. Digital slides prevent the breakage of glass slides and barcoding
allows the location of pathology slides in a digital environment [13]. It is possible to
include notes in digital slides that can be used for teaching, education, and research [14].
Pathologists can view slides from different angles.

Glass slides/pathology specimens are examined through a digital monitor instead of a
microscope [15]. The main elements in digital pathology are devices that digitize the images:
a digital camera and a digital slide scanner. Digital slide scanners capture multiple images
from a glass slide. Deep learning is an artificial neural network where the digital data
captured by the recent pathology equipment is processed and analyzed [16]. The datasets
are applied and the model learns from them to produce the desired output. Deep learning
is a group of machine learning, which is also a group of artificial intelligence. Datasets are
trained, validated, and then tested using previously unseen data. Neural networks have
one input layer, many hidden layers, and one output layer [17]. A convolutional neural
network is one in which the matrix convolves with the image to produce the desired output.
It is the main feature extraction layer. One of its types is transfer learning, which uses a
pre-trained network where datasets are fine-tuned to produce the desired output [18].

Figure 1 depicts a typical workflow associated with a digital pathology-based system.
Digital slide scanners are part of the acquisition system, which gives out a high-resolution
digital image. It also has the option to set the magnification level. The more we magnify,
the more images we capture.
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Figure 1. Digital pathology workflow.

Compared to the traditional workflow of sample preparation and analysis under a
microscope, the digitized workflow requires extra instruments, a well-trained pathologist,
and certain quality control measures. These additional requirements necessitate better
information technology and departmental resources. There are various benefits of shifting
to a digital workflow, including the ability to easily share slides and send them to other
pathologists for a second opinion, standardization of teaching, organizing records of digital
slides, and extraction of histopathology slides through a specialized scanner [19].
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2. Literature Review

Many researchers are interested in whole slide imaging and developing a virtual slide
system. A few studies in that direction have been discussed here.

2.1. Disease Diagnosis Using Whole Slide Imaging and Other Techniques

QuPath (v0.5.1) is an open-source software used to analyze digital images. There was
40 GB of uncompressed data used. Blood cell counts, including white blood cells, red blood
cells, and platelets were all written in the QuPath software, and accordingly, the type of
anemia was predicted. The Kalpan–Meir method was used to display the graph. Finally, a
two-dimensional image was shown [20].

iPath software (v4.0) was developed to support diagnostic consultation among all
patients. Telepathology has a telecommunication facility, hence it is possible to transmit
medical images electronically from one hospital to another. iPath software uses various
equipment to support telepathology [21]. Telecytology means practicing cytology while
maintaining a distance using a digital image. There is a problem that the tiny region of
interest is not seen sometimes. To solve the problem, the robotic microscope is there, but
the robotic microscope works slowly. The problem is that sometimes it is impossible to
upload the digital images [22].

2.2. Virtual Microscopy

Virtual microscopy has been used to teach cell organization, tissues, and organs.
Thereby, optical microscopes as well as glass slides in histology are replaced. A virtual
image file sharing website permits many pathologists to obtain access to digital images.
Using a virtual microscopy database in school is free of charge [23]. Laboratory medicine
programs are designed to prepare students for a career in diagnostic pathology. The
program includes histotechnology, transfusion, and clinical chemistry. The teaching slide
was captured using a NanoZoomer digital slide scanner and uploaded to the University of
South Australia’s website. Live lectures were recorded using Panopto software (v15.0) and
uploaded to the Moodle site weekly. Web 2 tools assisted students in learning [24].

Digital image analysis allows the diagnosis, grading, and classification of diseases.
The steps of digital image analysis include image digitalization, image detection, image
segmentation, image editing, and feature extraction [25].

2.3. Sickle Cell Classification Using Deep Learning

Estimating clinical status means counting types of cells according to the feature. It
is necessary to have a quicker method for classifying cells that is superior to human
inspection [26]. The features are extracted from segmented images by calculating the gray
level statistics and algebraic moment invariants. The extracted features can be analyzed
to quantify the potential differentiation of blood cells as normal or abnormal [27]. Non-
overlapping cells were eliminated using the canny edge detection mechanism. Canny edge
detection makes use of a multi-stage algorithm for detecting edges in images. It follows
Gaussian filtering, intensity gradient identification, non-maximum suppression, double
threshold, and hysteresis [28].

Sickle cell retinopathy is asymptomatic at the beginning, especially during the growth
stage, and may cause vision loss because of vitreous hemorrhage or tractional retinal de-
tachments [29]. The application of artificial intelligence to sickle cell retinopathy is the
understanding of automated ultra-widefield fundus photographs for enhancing access
to disease screening. Automatic artificial intelligence algorithms based on point-of-care
fundus photography can be produced either in primary care centers or hematology depart-
ments. Under diabetic retinopathy, deep learning was utilized to prove that baseline 7-field
fundus photographs anticipate a decline in early treatment, followed by severity at one
year with 91% sensitivity and 65% specificity. Fluorescein angiography is invasive, time
consuming, and resource intensive compared to fundus photography [30].
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A highly qualified classifier that can determine the suitable dose for sickle cell disorder
patients from nine classes needs to be obtained. Machine learning classifiers based on a
performance evaluation matrix were applied to examine the sickle cell dataset. Among
all classifiers, the Naïve Bayes classifier showed poor results. The Levenberg–Marquardt
neural network showed good accuracy of 0.93, 0.96 during the training phase and 0.84,
0.87 during the testing phase. This technology is used to analyze healthcare factors such
as patient administration, provide treatment, and more importantly disease progression
prediction. Machine learning has abundant classification techniques such as logistic regres-
sion, quadratic discriminant classifier, Naïve Bayes classifier, and Levenberg–Marquardt
neural network [31]. According to one paper, classification algorithms such as support
vector machine, k-nearest neighbor algorithm, logistic regression, decision tree classifier,
and random forest algorithm were used to classify sickle cells. The system is estimated
with respect to accuracy and log loss to prove the technique’s performance [32]. Detection
of elliptocytosis, sickle, and burr cells depends upon the shape signature. Hence, circular
Hough transform, watershed segmentation, and morphological methods can be utilized
to enhance and prepare tested images. The performance of the proposed algorithm was
achieved accurately by testing 45 colorful microscopic images of patients suffering from
anemia. Support vector machines, back propagation, and self-organizing map neural
networks were used to analyze facts about anemia. The variables used are area, convex
area, perimeter, eccentricity, solidity, ratio, absolute deviations, and variables of absolute
subtraction between input and signature values. Accuracy, specificity, and sensitivity
are calculated using parameters such as true positive, true negative, false positive, and
false negative [33]. Fuzzy C-means clustering is used to identify normal and sickle cells.
Morphological operations are also applied to images. Images are tested using the K-nearest
neighbor, support vector machine, and extreme learning machine classifiers. The methods
used were image acquisition, pre-processing, segmentation, morphological operations,
feature extraction, and geometrical feature [34].

Red blood contains millions of cells, so manually classifying and counting them
will inevitably lead to errors. To improve the results, the feature extractor model was
used, followed by an error-correcting output code classifier. The model was built using a
Directed Acyclic Graph (DAG). DAG is a deep learning neural network with more complex
architectures involving layers with multiple inputs and outputs [34].

Automated hierarchical RBC extraction detects the RBC region and then separates
sticky RBCs from the region of interest using an improved random walk method. Masked
RBC patch size normalization was used to convert the alternative size of the segmented RBC
into a uniform size. A deep convolutional neural network was used to classify RBCs. The
alternating convolution and pooling operation deals with non-linear and complex patterns.
The specific shape factor quantification was studied for classifying RBC image data for
developing general multiscale shape analysis. A number of experiments were performed
on raw microscopy image datasets of eight sickle cell disease patients through fivefold cross-
validation for oxygenated and deoxygenated RBC, resulting in a high accuracy classification
of sickle cells. Medical imaging and computerized image processing provide a tool for
observing the condition of sickle cell disorder patients [35].

2.4. Diagnosing Sickle Cell Using Explainable AI (XAI)

Artificial intelligence has been applied to hematology that will automatically diagnose
blood disease and predict treatment outcomes. Explainable AI can be used to determine
which region or features the model uses to classify an abnormality. It generates heat maps
that help us determine which region is responsible for the detected category [36]. Based on
this, the pathologist can determine whether the model is trustworthy or not in assisting
them with the diagnosis process.

Wearable devices, smartphones, and mobile monitoring sensors can be controlled
through deep learning. Applying artificial intelligence to hematology reduces healthcare
costs [37]. Sickle cell disease is a serious and life-threatening disease that affects 25% of
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the population in Central and West Asia. Current methods for diagnosing SCD are time
consuming. Point-of-care platforms provide cost effectiveness and flexibility, allowing the
diagnosing of millions of people in a few countries [38].

The following are the major contributions in the paper:

• Dual-mode system design (Joystick and XY System with Z Stage): The system is
designed to operate in dual mode, incorporating both a joystick and an XY system.
The addition of a Z stage enables the precise capture of sickle cell images in patches.
This design enhances the flexibility and accuracy of image acquisition, facilitating
better diagnostic outcomes.

• Deep learning models with explainability: Developed deep learning models that not
only classify sickle cell abnormalities with high accuracy, but also provide explainabil-
ity. The use of explainable AI (XAI) ensures that the models generate interpretable
results, allowing pathologists to understand which features and regions the models
focus on for classification. This transparency builds trust in AI-driven diagnostics and
aids in the validation of the models’ decisions.

These contributions demonstrate the innovative approach of combining advanced
imaging systems with state-of-the-art deep learning techniques to improve the diagnosis
and classification of sickle cell disease. The dual-mode system design enhances the precision
of image capture, while the incorporation of explainable AI ensures that the deep learning
models are not only accurate, but also transparent and trustworthy in their decision-
making process.

3. Materials and Methods

The proposed method introduces a digital system for digitizing the glass slide sam-
ple information into digital format. The system consists of an integrated microscopic
arrangement, a camera, and a controlling electronic circuit.

3.1. Digitization of a Sickle Cell Sample in a Glass Slide Workflow

Figure 2 depicts the major elements used in the construction of the system. The
sickle cell samples collected from the patients are placed on a glass slide, which is further
examined under a microscope. The 8 MP USB video device class (UVC) camera, a digital
camera, captures the glass slide and then converts it into a displayable digital image. A
motorized slide holder is a unit consisting of a stepper motor. Three stepper motors are used:
one for controlling the horizontal motion (X-axis), one for controlling the vertical motion
(Y-axis), and one for controlling the focus (Z-axis). Belts and pulley systems are attached
to the stepper motor that converts rotary motion into linear motion, and accordingly, the
microscopic slide will move in horizontal and vertical directions. The slide is supposed
to move at a 1 mm distance so that the digital camera can capture the region of interest
according to the pathologist’s choice. So, the precision should be less than 1 mm. This is
interfaced with the STM32F microcontroller, which controls the motion of the stepper motor.
The stepper motor cannot rotate independently; it must be interfaced with STM32F. The
stepper motor has four bipolar stator windings, which will rotate the motor. The minimum
voltage and current required to rotate the stepper motor are 24 V and 0.6 A, respectively.
However, the microcontroller STM32F supplies a maximum current of 0.1 A and a voltage
range from 1.8 V to 3.8 V. So, in order to supply additional voltage and current, the stepper
motor driver TMC5130a is there. TMC5130a will supply additional voltage ranging from
4.6 V to 46 V and an additional current of 2 A. Once the program is uploaded to the STM32F
development board, it is stored in the flash memory of the STM32F development board
so it can work through a 12 V power. The glass slide is divided into blocks, then the slide
will move a few steps on the X-axis, one step on the Y-axis, again the same number of steps
backward on the X-axis, and so on. Each time, the digital camera will capture the block.
Once the digital camera finishes capturing one block, the slide will move next, and this
process continues. With these iterations, the entire glass slide is scanned then this process is
stopped. The number of digital images coming one after the other is stored on the computer.
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The system is made in dual mode with a joystick. Joystick has three knobs; X-knob, Y-knob,
and Z-knob. The X-knob controls the movement of the slide on the X-axis. Y-knob controls
the movement of the slide on the Y-axis. The Z-knob adjusts the focus of the image.
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3.2. XYZ Microscope Slide Scanner

This prototype is capable of capturing multiple images thereby covering the whole
slide. The entire slide image can be created from many digital images. For tile-based, the
number of images captured increases. Irrespective of the type, the movement of the slide is
from top to bottom and bottom to top in a 1 cm × 1 cm distance and at a 1 mm interval.
The stepper motor controls the movement of the slide. The rotary motion of the stepper
motor is converted into linear motion through a linear ball bearing mechanism. This makes
the slide move a certain number of steps from the X-axis toward the right direction. After
this, the second stepper motor comes into action, which rotates and moves the slide one
step in the Y-axis. To carry on further, the movement of the slide is changed from the X-axis
in the forward direction to the backward direction. When the entire image is captured, the
movement of the slide is stopped.

3.3. Algorithm

Figure 3 depicts the flowchart for controlling the XYZ stage.

1. Set the starting position for the X-axis and Y-axis.
2. Create a folder where the captured image will be stored.
3. Adjust the Z position.
4. Initialize the X-axis and Y-axis.
5. Capture the image and proceed.
6. Move the slide in the XY direction.
7. Continue this process until the entire glass slide is scanned.
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Figure 4 depicts an automated XYZ stage attached to the microscope. The user-
designed slide mounting chamber replaced the traditional slide mounting chamber. Three
supporting chambers are incorporated to support the three stepper motors for X-, Y-,
and Z-axis.
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3.4. Deep Learning for the Classification of Sickle Cell

Figure 5 depicts the workflow of sickle cell classification using deep learning.
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Figure 5. Analysis of a blood smear datasets using deep learning.

Sample slides are taken from Kasturba Medical College (KMC), Manipal. The digital
images of these slides are captured using the proposed hardware system in the paper.
Images are captured using a microscope with specifications of a 100× magnification camera
which captures colored images and an XY stage which is motorized for positioning the
sample. Z stage is used for adjusting the focus of the image. This dataset contains digital
images of blood samples of healthy individuals and patients suffering from SCD. After
capturing the digital images with this microscope, they were fed into the deep learning
algorithm for classification. There are a total of 191 images. Among those images, 95 are
labeled as sickle cells and 96 as normal cells. The split ratio for training is around 70:30
ratio. In this the 70% i.e., 164 images were for both training and validation. The images
having both sickle and normal class were 27 in number. Figure 6 shows the sickle and
normal cell images.
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To select a suitable neural network for classifying images, deep convolutional neural
networks are chosen and then fine-tuned.

3.4.1. Experimental Setup

Transfer learning uses a pre-trained network where datasets are fine-tuned to ob-
tain the best validation accuracy [39,40]. The pre-trained network used were ResNet18,
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ResNet50, ResNet101, Darknet-19, and GoogleNet which are trained on a large dataset.
The output units of a fully connected layer depend upon the number of classes. Hence,
sickle cell class and normal class are modified.

During the transfer learning process, the pre-trained model is frozen and only weights
of a new fully connected layer and a new convolutional layer were improved at the time of
training. Transfer learning allows the model to support features from a pre-trained network.
This approach was anticipated to benefit the model by minimizing the amount of data
required for training as well as improving the model’s performance.

We employ MATLAB’s R2023b for better visual graphics for the evaluation of perfor-
mance. MATLAB has the advantage of giving confidence to users for coding. It has various
built-in tools for the deep learning domain, which include dataset preprocessing, design of
a models, result analysis and visualization, etc. MATLAB outperforms Python in terms of
visual representation. Other toolboxes and libraries such as TensorFlow, PyTorch, and Caffe
are also capable of deep learning allowing applicants to integrate into MATLAB workflows.

3.4.2. Training

Out of 191 images, 164 images are used for training and validation while 27 images
are used for testing.

Optimizer: The model is trained using the solver sgdm, which is stochastic gradient
descent with momentum having advantages like accelerated convergence, a smooth op-
timization path, and noise rejection. This is used in deep learning tasks where gradient
optimization is necessary.

Minimum batch size: The smallest number of samples that can be prepared on time. It
relies on the availability of GPU systems.

Maximum epoch: This is the number of times the dataset is passed through the model
for training. We tried on 30 and 50 epochs to obtain the best validation accuracy.

Initial learn rate: Refers to how much the model learns in one step. It is the magnitude
of the improvement achieved to the model’s parameter at the time of every optimization.
The optimal value for the classification task is 0.001 which is a standard for each and
every trial [34].

A GPU system was used for experimenting using the CUDA platform with NVIDIA
T400 4 GB Graphics card, reducing the time required for training.

3.4.3. Evaluation Metrics

For evaluating the model’s performance for each class, the following parameters
are calculated,

Precision =
True Positive

True Positive + False Positive
(1)

Recall =
True Positive

True Positive + False Negative
(2)

F1 score = 2 × Precision ∗ Recall
Precision + Recall

(3)

Speci f icity =
True Negative

True Negative + False Positive
(4)

4. Results

Sickle cell images captured using a microscope at 100× magnification are processed in
deep learning for classification.

4.1. Selection of Best Trials for Testing

The best trial indicates the optimum epoch, batch size, and other hyperparameters.
Various models such as ResNet50, ResNet18, ResNet101, DarkNet19, and GoogleNet were
used for training purpose. On doing so the results show the importance of learning rate
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setting, with a learn rate of 0.01 and 0.001 and epochs of 30 and 50. Table 1 shows the
different iterations of all of the models with different hyperparameter settings and their
corresponding evaluation metrices.

Table 1. Results obtained by deep learning models.

Network Epoch Min Batch Size Learn Rate Specificity Precision Recall F1-Score Accuracy (%)

ResNet50 30 16 0.01 0 1 0.481 0.649 100

ResNet50 50 16 0.01 0 1 0.481 0.649 100

Darknet19 30 16 0.01 1 1 0.363 0.5326 78

Darknet19 50 16 0.01 1 1 0.44 0.611 98

Resnet50 30 16 0.001 1 1 1 1 100

Resnet50 50 16 0.001 1 1 1 1 100

Darknet19 30 16 0.001 1 1 1 1 100

Darknet19 50 16 0.001 1 1 1 1 100

Resnet18 30 16 0.001 1 1 1 1 100

Resnet18 50 16 0.001 1 1 1 1 100

Resnet101 30 16 0.001 1 1 1 1 100

Resnet101 50 16 0.001 1 1 1 1 100

GoogleNet 30 16 0.001 1 1 1 1 100

GoogleNet 50 16 0.001 1 1 1 1 100

From the table it, can be noticed that models with a learning rate of 0.001 consistently
show exceptional performance across all metrics, indicating they are highly accurate and
reliable. On an average accuracy of Darknet19 was found to be around 99% with various
hyperparameter conditions.

Figure 7 shows one of the training plots. We observe the training plot of this particular
network to gain insight into its performance. The blue line indicates training accuracy,
which gradually reached 100%. The black dotted line indicates validation accuracy. Points
indicate where the model has performed validation. The validation frequency is adjusted
along with the number of epochs. The second graph indicates a loss plot, which shows
the error obtained from the model. A very high value leads to an indication of overfitting.
Figure 7 shows the training/validation accuracy and loss plot.
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Figure 7. Training/validation accuracy and loss plot.

To quantitatively analyze performance, a confusion matrix for each and every trial
using an identical parameter is plotted. We test the model to obtain the confusion matrix and
we can give the required number of anticipated classes. It has four sections: true positive,
true negative, false positive, and false negative. Figure 8 shows one of the confusion matrix
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of the various trained models, i.e., Darknet19 with 50 epoch, 16 batch size and a learn rate
of 0.001. In this, all test case datasets were correctly identified.
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4.2. XAI

Explainable artificial intelligence, when applied to SCD, affects the model’s decision as
to whether cells appear sickle or normal. Transparency is essential for instilling confidence
in the model and ensuring its dependability in clinics. It operates by calculating the
gradient of the deep learning model’s output with respect to the activation values in the last
convolutional layer. Gradient refers to each pixel in the feature map. Grad-CAM, which
is gradient weighted class activation mapping, identifies the most important region for
classification in the image [41]. Figure 9 depicts the Grad-CAM of a sickle cell image. From
the Grad-CAM image, the red color identifies the most important region for classification.
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The blood cell image contains raw visual information of the blood cells, including
various types of cells and their morphological features. The GRAD-CAM image is generated
by overlaying a heat map on the original blood cell image. The heat map highlights the
regions that have the most significant impact on the model’s prediction. These highlighted
areas correspond to the features and regions that the model has learned to associate with
specific classifications (e.g., normal vs. abnormal cells). By providing a visual explanation
of the model’s decision, Grad-CAM makes the deep learning model’s predictions more
interpretable. Pathologists can see which parts of the blood cell image the model is focusing
on, helping them understand the basis of the model’s decision and verify its accuracy. This
is particularly important in a clinical setting where the accuracy and reliability of diagnostic
tools are paramount. It ensures that the model is not making arbitrary or unfounded
predictions but is instead focusing on medically relevant features.

5. Discussion

In the hospital, the pathologist collects blood samples from the patients and places
them on the glass slide, which is kept under the microscope. The pathologists acquire the
different blocks of the samples manually. This takes up a lot of pathologists’ time. Not only
time, but it also results in many errors relating to overlapping, missing areas, etc. Hence, a
semi-automated system that acquires and digitizes the entire process needs to be developed.
Stepper motors are interfaced with the STM32F microcontroller. Belts and pulley systems
are attached to the stepper motor to convert rotary motion into linear motion through a
linear ball bearing mechanism.

The microscope slide motion is predefined and fixed, according to which the X-axis
and Y-axis move accordingly. The Z stage is used to focus the image. A digital camera in the
microscope will capture the glass slides. The digital camera will capture each block of glass
slides, which can then be stitched to obtain the whole slide image. Stitching individual
image patches into a single whole image provides a complete view of the glass slide. This
comprehensive image is essential for a thorough examination and analysis of the entire
sample, ensuring no regions are overlooked. By capturing multiple high-resolution patches
and stitching them together, we can create a detailed and high-resolution composite image.
This method preserves fine details and features that might be lost in a single low-resolution
image, which is crucial for accurate diagnosis. The samples that are captured can be utilized
to perform analysis/diagnosis for detecting any abnormality.

SCD is an auto-immune disease that causes a reduction in oxygen-carrying capacity,
making a person weak, paralyzed, or even lead to death. This is because of the change in
the shape and size of the RBC. Manual diagnosis is a tedious task for pathologists. Secondly,
it causes inaccuracy and might be subjective. Different orientations cause errors. The main
objective here is to provide an aid to the pathologist in the diagnosis of sickle cells using
this particular model. When training with a learn rate of 0.001 as compared to 0.01, the
results seemed to improve exceptionally, proving the importance of setting a lesser step size
for the model to learn well. This adjustment allows the model to fine-tune its parameters
more effectively, leading to better generalization and higher performance metrics.

Explainable AI is one of the helpful tools that will give pathologists confidence to
believe in the deep learning classification task. It highlights the region that is most respon-
sible for contributing to the abnormality. It can provide great assistance to them along
with saving time to see the entire region to find the abnormality. For example, if there
are sickle cells in the sample, the region that has sickle cells in the image is darker red in
color. The pathologist can just focus on that region to confirm the diagnosis using the deep
learning model.

There have been studies that were performed along similar lines. Gao et al., designed
the automated microscope with a UV camera for fungal detection. The time required here
was very short, i.e., 65 s, but performance with respect to automated diagnosis is one of
the limitations here [35]. Secondly, a unique approach was utilized by De Hann by using
a smartphone as a replacement. This becomes a very handy and portable device. But



Information 2024, 15, 403 13 of 16

the camera specifications are a challenge that has been dealt with but still needs more
attention. Another interesting approach is making a DIY microscope that is automated
and has an autofocusing feature and auto diagnosis as well. It is cost effective, but the
time consumption for WSI is higher [37]. Table 2 summarizes the existing literature on the
automation of the microscope to make it faster and cost effective. This also includes the
automated analysis component, which detected abnormalities in the sample.

Table 2. Comparison of existing literature.

Ref and Author Application Methodology Results Novelty Limitation

Gao et al., [42]

To design and
explore the

application of an
automated

microscope for
fungal detection in

skin specimens.

Automated
microscope with

UV-sensitive camera
and deep learning
model Resnet50.

The sensitivities of
the automated
microscope for

fungal detection in
skin, nails, and hair
were 99.5%, 95.2%,

and 60%, respectively,
and the specificities
were 91.4%, 100%,

and 100%,
respectively.

Design of the
microscope with a

reduction in scanning
time to 65 s.

Performance of
samples using this

particular deep
learning method

needs to
be improved.

De Hann et al., [8]

Smartphone-based
microscopy for

automated sickle
cell screening.

Smartphone
attachment into a

portable microscope.
Two neural networks
were used. The first
network enhances
and standardizes
image quality and

the second performs
classification

98% accuracy in
classifying sickle cells

from blood smear

Low cost.
Rapid scanning and

processing using
a smartphone.

Small sample size,
image quality due to

variation in
smartphone camera.

Sakido et al., [43]

DIY optical
microscope with

automated sample
positioning,

autofocus, and
several illumination

modalities.

Motion control-based
on entry-level 3D

printer kit Tronxy X1
controlled from a

server running on a
Raspberry Pi 4. Other

functionalities like
processing,

classification, etc.

Validation of the
system was

performed and it was
found to give results

compared to the
professional ones. An

automated system
was created to
capture high

resolution images of
the entire dataset.

The system had an
autofocus mode for

3D specimens.

Cost-effective DIY
microscope with

deep learning
integration.

Deep learning is not
fully explored. Time

for whole
slide imaging.

Our paper

Low-cost
semi-automated

microscope along
with manual joystick

functionality for
capturing whole slide

images. Deep
learning and XAI for
the classification of

sickle cells

Uses a simple belt
system to convert the

stepper motor
rotatory system to

move the XY stage. Z
for autofocus.

Transfer learning for
sickle cell

classification.
GRAD-CAM as an

explainable
AI model.

98% validation
accuracy.

Low-cost system.
Joystick for

movement of the XY
stage along with

automation. XAI for
analyzing the

abnormality in
the specimen.

Can be made
generalized for all

applications.
Lesser image dataset.

The proposed method deals with creating a semi-automated microscope that uses
stepper motors to convert the rotatory motion to linear motion for the movement of the
XY stage of the microscope. Each stepper motor has four stator windings. Those stator
windings rotate the stepper motor when interfaced with STM32F. The digital camera is
directly connected to the computer. The image can be captured in automated mode or
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there is a provision to do it using a joystick that is attached to it. It has become one of the
novel approaches.

Along with this, the classification of sickle cells using the proposed microscope sets
up an application point of view for the microscope. This is conducted through the transfer
learning methods, which is relatively a faster and better approach to train as the weights
are pre-trained on the ImageNet dataset. We custom train by utilizing and fine-tuning
the weights.

Here, there has been the utilization of XAI, a novel approach along with this hardware
system. This gives confidence and transparency to the pathologist. One of the limitations
here is that it has been only trained for sickle cell classification purposes. Moreover, the
dataset for sickle cells is a challenge to obtain. Hence, the model was trained on a smaller
number of datasets.

The paper provides an end-to-end process for a sample that is obtained for examination.
This can be beneficial in rural areas where there is a shortage of pathologists. It can provide
and aid in the diagnosis.

6. Conclusions and Future Scope

As per statistics, 70 percent of the population resides in a rural area, while 30 percent
of the population resides in an urban area. This system solves the problem that patholo-
gists might face while manually doing such a tedious task, which requires a lot of focus
and concentration.

Along with the proposed semi-automated microscope system with XYZ stages, deep
learning methodology has been incorporated here. It assists pathologists for diagnosis.
A strong model can make a pathologist’s job easier. The pre-trained networks are used
for predicting the abnormally shaped sickle cells. It helps detect sickle cells’ presence in a
blood smear and classify them.

Deep learning approaches for cell categorizing have demonstrated significant promise
in transforming the realm of cell scrutiny and identifying medical conditions. Ongoing
progress in advanced deep learning models, the accessibility of extensively annotated
datasets, and the collaboration between artificial intelligence specialists and professionals
specializing in specific domains offer a potential pathway to enhancing the precision,
effectiveness, and particularity of cell classification through deep learning techniques in the
future. Nevertheless, certain challenges persist. These include the requirement for rigorous
validation, the resolution of problems tied to class imbalance, interpretability concerns,
and adherence to regulatory requirements. Ethical aspects including safeguarding patient
privacy, reducing bias, ensuring courtesy, and ensuring transparency, warrant meticulous
attention when applying deep learning in classifying cell endeavors.

In the future, the developed XYZ stage will be used, especially in rural areas, where
pathologists are scarce to facilitate diagnostic consultations. Once the images are digitized,
artificial intelligence (AI) can be added to the system to enhance its classification, identifica-
tion, and analysis of any pathological abnormality. Given the limited number of sickle cell
cases found in India, it is challenging to obtain a comprehensive dataset. However, this
emphasizes the need for ongoing efforts to collect more data. We are expanding our dataset
to enhance the robustness and reliability of our analysis, and future work will focus on
acquiring additional samples to support our research further. It is also possible to have the
entire scanning process conducted in real time. Furthermore, it can be remotely transmitted
to any workstation accessed by expert pathologists to give their remarks.

7. Ethical Clearance

Datasets were collected from KMC after the approval of ethical clearance. “IEC1—365-
Design of a digital framework to acquire digital slide for the remote analysis of a tissue smear”.
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