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Abstract: Recent advancements in cognitive neuroscience, particularly in electroencephalogram
(EEG) signal processing, image generation, and brain–computer interfaces (BCIs), have opened up
new avenues for research. This study introduces a novel framework, Bridging Artificial Intelligence
and Neurological Signals (BRAINS), which leverages the power of artificial intelligence (AI) to extract
meaningful information from EEG signals and generate images. The BRAINS framework addresses
the limitations of traditional EEG analysis techniques, which struggle with nonstationary signals,
spectral estimation, and noise sensitivity. Instead, BRAINS employs Long Short-Term Memory
(LSTM) networks and contrastive learning, which effectively handle time-series EEG data and
recognize intrinsic connections and patterns. The study utilizes the MNIST dataset of handwritten
digits as stimuli in EEG experiments, allowing for diverse yet controlled stimuli. The data collected
are then processed through an LSTM-based network, employing contrastive learning and extracting
complex features from EEG data. These features are fed into an image generator model, producing
images as close to the original stimuli as possible. This study demonstrates the potential of integrating
AI and EEG technology, offering promising implications for the future of brain–computer interfaces.

Keywords: machine learning; EEG; image generation; EEG to image

1. Introduction

In recent years, the field of cognitive neuroscience has seen significant advancements,
particularly in the realm of electroencephalogram (EEG) signal processing, image gener-
ation, and brain–computer interfaces (BCIs) [1–3]. EEG technology improvements were
driven by the development of wearable and wireless devices that allow for real-time data
analysis and at-home monitoring [4–6]. These advancements have made EEG technology
more user-friendly and cost-effective. On the other hand, artificial intelligence (AI) tech-
nology has also seen rapid advancements. State-of-the-art AI models, such as GPT-4 and
Gemini, are now capable of processing not only text but also images and even videos.

Furthermore, classical EEG analysis typically involves signal processing techniques
such as fast Fourier transform (FFT), wavelet transforms, and spectral analysis [7,8]. These
methods focus on extracting features from the raw EEG signals based on their frequency,
amplitude, and phase properties [9,10]. However, those techniques have major disadvan-
tages when it comes to EEG processing. FFT has several limitations when applied to EEG
data. Firstly, it struggles with analyzing nonstationary signals such as EEG. Secondly, FFT
does not provide accurate spectral estimation and is unsuitable for analyzing short EEG
signals. Thirdly, it fails to reveal localized spikes and complexes typical among epilep-
tic seizures in EEG signals. Lastly, FFT is highly sensitive to noise and does not handle
shorter-duration data records well [10–14].
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In contrast to traditional techniques, LSTM and attention networks effectively handle
time-series EEG data and recognize intrinsic connections and patterns [10]. These models
are capable of extracting spatial, frequency, and time features of EEG data, and the attention
mechanism can assign different weights to different band data and different window time-
series data, highlighting the more critical frequency and time features [10,15]. Furthermore,
a hybrid deep learning model combining a CNN and LSTM has been proposed for emotion
recognition in EEG signals, demonstrating high accuracy [16]. Another study proposed
a two-layer LSTM and a four-layer improved NN deep learning algorithm to improve
the performance in EEG classification [17]. These advancements in AI provide robust and
adaptable methods for EEG data analysis, overcoming the challenges posed by traditional
methods [16,18].

One of the disadvantages of machine learning models is that they are often considered
a black box, which presents a tradeoff when working with it. However, frameworks leading
towards ‘explainable AI’, such as Integrated Gradients (IG) [19] and DeepLIFT [20], offer
ways to understand and interpret these models [21]. For instance, IG is a method that helps
explain the contribution of each feature in the input towards the final prediction of a neural
network. It provides a way to ‘open the black box’ and understand which parts of the input
are most important for a given prediction [22]. This is particularly useful in understanding
the behavior of complex models and making them more transparent. The integration of
machine learning and EEG presents exciting opportunities for innovation. By incorporating
explainability methods like IG, we can better understand and interpret the workings of
these advanced models, making the field of AI not just powerful but also more transparent
and trustworthy.

Here, we present a framework we call Bridging Artificial Intelligence and Neurological
Signals (BRAINS), where we leverage the power of AI to extract meaningful information
from EEG signals and generate images. In this study, we developed a multi-step image
generation system that uses EEG signals as input and generates observed images as output.
Our system begins with the creation of EEG experiments using the EMOTIV software
(4.2.0.373) and hardware [23]. EMOTIV’s EEG headsets have been widely used in re-
search for their high temporal resolution, cost-effectiveness, and non-invasiveness [24,25]
(Figure 1A). In our EEG experiment, we utilize the MNIST dataset, which consists of hand-
written digits, as stimuli. The choice of MNIST is motivated by its status as a standardized
dataset that exhibits a wide variation while representing a limited set of concepts—numbers
from 0 to 9 [26]. This allows us to introduce diverse yet controlled stimuli, facilitating
the robust analysis of EEG responses. The simplicity and universality of numerical digits
also ensure that the stimuli are easily recognizable by all subjects, thereby minimizing
potential confounding factors related to stimulus recognition. Using our data collection
experiment, we compiled a database of paired EEG signals and stimuli (images). For each
subject, we normalized the data based on the subject’s baseline measurement to remove
artifacts associated with idle brain functioning. This was followed by a feature extraction
step where we employed an LSTM-based network and contrastive learning (Figure 1B).
The LSTM-based network paired with contrastive learning allowed us to extract complex
features from EEG data that generalize across multiple subjects (Figure 1B). The extracted
features were then fed into an image generator model, which was trained to produce
images that are as close as possible to the original stimuli (MNIST handwritten digits). In
this work, we describe the development of the BRAINS framework and demonstrate its
utility in processing EEG signals and generating images from EEG extract data.
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Figure 1. Study overview. Figure showing the study overview. (A) Data collection: EEG Data
was collected while subjects observed the stimuli (image). Paired stimuli (image) and EEG data for
each subject were stored in a database for further analysis. (B) Each sample contained 32 channels,
which were normalized based on the subjects’ baseline measurements (closed eyes). The data was
then fed into an LSTM-based network while employing contrastive loss. This resulted in a latent
representation of the EEG signal. (C) Extracted latent representations served as input for an image
generator, generating images for comparison against the original stimuli (ground truth image).

2. Methods
2.1. EEG Configuration

In our study, we employed a specific configuration of EEG recording to capture the
brain’s responses to visual stimuli (Supplementary Figure S1). We utilized a 32-channel
EEG system, with each channel corresponding to a specific location on the scalp. These
included Fp1, AF3, F3, and FC1, located in the brain’s frontal region and involved in high-
level cognitive functions and motor control. Channels C3, FC3, T7, and CP5 are positioned
over the central region and are associated with sensory–motor information processing. The
CP1, P1, P7, and P9 channels are over the parietal lobe, crucial for sensory perception and
integration. The occipital and posterior channels, PO3, O1, O9, POz, Oz, O10, O2, and
PO4, are located at the back of the brain, responsible for visual processing. The channels
P10, P8, P2, CP2, and CP6 cover the peripheral areas of the parietal and occipital lobes.
Lastly, the channels T8, FC4, C4, FC2, F4, AF4, and Fp2 are located in the right hemisphere,
mirroring the functions of their counterparts in the left hemisphere. This configuration
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allowed us to capture a comprehensive representation of the brain’s electrical activity
during the observation of visual stimuli. Lastly, the EEG device was set to sample at an
approximate rate of 256 Hz, corresponding to an average difference of 3.9 milliseconds
between each sample.

2.2. Experiment Design and Data Collection

We utilized the EMOTIV software, a specialized neuroscience tool designed for
EEG data acquisition [27]. Our data collection process involved seven participants, each
equipped with an EMOTIV headset.

The experiment steps can be summarized in the following steps:

1. Connecting the headset and ensuring high EEG connection quality.
2. Data collection while the participant has closed eyes (baseline measurement).
3. Data collection while the participant is observing stimuli (images of handwritten digits).
4. Finalization of data collection.

At the start of each data-collection process, we recorded baseline EEG data for each
participant, which included a 15 s period of closed eyes. This was followed by data
collection during the observation of stimuli (observation of image). Each participant
viewed MNIST handwritten digit images, with each image displayed for approximately
5 s [26] (Figure 1A). To ensure robust data, each participant observed each digit eight times.
The purpose of baseline measurement is to capture EEG data from an idle brain, which is
later used for normalization. The experiment lasted for approximately 7 min. The recording
was handled by EMOTIV software, which recorded EEG signals and annotated the data
to correspond with the specific digit that was being observed. This process allowed us to
create a labeled dataset for subsequent analysis (Figure 1A).

2.3. Data Normalization and Preprocessing

We employed a data normalization procedure based on individual baseline measure-
ments. Specifically, we calculated the average across all 32 channels of EEG data from a
15 s period, during which participants had their eyes closed. This averaged data served
as EEG data of the idle brain and therefore our baseline. Subsequently, we subtracted the
EEG signal obtained during participants’ exposure to stimuli from this baseline. Since the
baseline measurement was acquired during closed-eye conditions, this process effectively
eliminated artifacts associated with a resting (idle) brain state. This preprocessing step
ensured the reliability and quality of our EEG data for further analysis.

Since our LSTM network requires a consistent input shape, we needed to preprocess
the data. The input to the LSTM network is defined as (N,L,H_in), where N represents
the batch size, L is the sequence length, and H_in is the number of features. For this
purpose, we employed a sliding window technique to facilitate the effective transformation
of raw data. Specifically, we created input data sequences with a length of 30 timesteps,
encompassing all 32 EEG channels (Supplementary Figure S2). Each input sequence was
paired with an output variable representing the observed image (stimulus) associated
with that particular time window. We significantly expanded our dataset by adopting this
approach, resulting in a final shape of [429,068 samples, 30 timesteps, 32 channels]. This
rich dataset allowed our LSTM layers to learn meaningful representations for subsequent
contrastive learning tasks.

2.4. Optimal Timestep for LSTM Network

To assess the impact of different timestep values, we constructed a simple LSTM
network. This network was tasked with classifying preprocessed EEG signals into 10 pos-
sible classes (handwritten digits). Our experimentation involved testing timestep values
ranging from 10 to 80, incrementing by 10 at each step. For each run, we employed the
same network architecture with the following hyperparameters:

• Hidden Size: 128.
• Number of LSTM Layers: 4.
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• Batch Size: 128.
• Learning Rate: 0.0001.
• Number of Epochs: 30.

The dataset was split into training (70%) and validation (30%) subsets. We computed
the F1 measure and cross-entropy loss for each run to evaluate model performance. All
networks that utilized data with 30 or more timesteps achieved a validation F1 score of 0.98
(Supplementary Figure S4A,B). Consequently, we selected a timestep of 30 for our data,
which we then employed in our follow-up tasks. The resulting insights will guide us in
configuring subsequent LSTM-based models for improved performance.

2.5. Integrated Gradients

Integrated Gradients (IG) is a method for attributing the prediction of a neural network
to its input features [19]. IG is often used to explain the output of a neural network based
on its inputs, providing a way to quantify and explain the contribution of each feature in
the input towards the final prediction of the model. Upon training a model that accurately
predicts observed stimuli (MNIST images), our interest was to identify the EEG signal’s
channels and timesteps that contributed significantly to successful predictions. We utilized
IG for each sample, yielding attribution scores that were subsequently averaged across
stimuli. These attribution scores served as a measure of the importance of input features
(EEG signal) towards the output. This allowed us to understand which aspects of the EEG
signal were most influential in the prediction process.

2.6. Structural Similarity Index

The Structural Similarity Index (SSIM) is a metric used to measure the similarity
between two images. Unlike traditional methods such as mean squared error (MSE) that
solely consider pixel-by-pixel differences, SSIM evaluates changes in structural information,
luminance, and contrast. This makes SSIM more aligned with human visual perception,
as it focuses on the visual impact of structural changes rather than just numerical discrep-
ancies. The index ranges from −1 to 1, where 1 indicates perfect similarity. SSIM is often
used in image generation tasks, providing a more nuanced understanding of image fidelity.
Additionally, SSIM assess the quality of generated images by comparing them to refer-
ence images, ensuring that the generated outputs maintain structural integrity and visual
coherence. In our study, we used the scikit-image package, version 0.24, to compute the
SSIM values between generated images and MNIST images, enabling us to quantitatively
evaluate the performance of our image generation models.

2.7. Code Availability

The EEG to Image project codebase is accessible via the public GitHub repository at
this link (https://github.com/mxs3203/EEGImage, accessed on 10 July 2024). Researchers
and practitioners can readily explore the framework for analyzing both private and public
EEG data. Within this framework, essential tools are available to seamlessly convert EEG
data into a dataset for LSTM or any similar network design.

2.8. Computational Requirements

The computational infrastructure employed for this study played a crucial role in our
research endeavors. Our system was equipped with the following specifications: AMD
Ryzen 9 5950X 16-Core Processor for CPU processing, an NVIDIA GEFORCE RTX3080
(24 GB VRAM) for GPU acceleration, and a substantial 64 GB of RAM. To harness the power
of GPU computation, we utilized CUDA version 12.0, with the GPU driver version set to
525.60.13. This robust configuration allowed us to efficiently execute complex computations,
train deep learning models, and analyze large-scale EEG data.

https://github.com/mxs3203/EEGImage
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3. Results
3.1. Investigating EEG Signals Using Integrated Gradients

In this study, we employed a Long Short-Term Memory (LSTM) model to analyze
EEG data with an optimal timestep of 30. Before starting the image generation process,
we investigated which part of the EEG signal is associated with certain stimuli. For this,
we trained the model to predict labels corresponding to MNIST numbers ranging from
0 to 9, which the subjects observed. The model’s performance was evaluated using the
F1 score and reached a score of 0.98 for validation data. This indicates its reliability
and effectiveness in predicting the observed numbers from the EEG data. Following the
successful fitting of the LSTM model, we further explored the EEG data to identify the
most significant segments of the signal for the prediction task. This investigation was
conducted using integrated gradients (IG), a method for attributing the prediction of a
neural network to its input features. Considering the timestep of 30, we investigated which
part of the signal was the most important for this classification task. We averaged the
attribution scores across channels and grouped them by timestep to achieve this. Our
analysis revealed that the middle of the EEG signal, specifically between timesteps 10 and
20 (corresponding to the 39th millisecond and 78th millisecond of the signal), was the most
important for the classification task (Figure 2A, Supplementary Figure S4). Specifically, the
channels AF4, POz, PO3, F4, and FC4 emerged as the most important for the prediction
task, as they showed the highest average attribution score. Interestingly, channel PO3
exhibited the least average attribution. In addition, we conducted an in-depth analysis
by grouping attribution scores based on the observed stimuli (observed number) and by
EEG channel. This analysis revealed intriguing patterns, indicating that certain channels
played a more significant role when predicting specific stimuli. Specifically, channels AF4
and Fp2 showed enrichment across all stimuli, suggesting their broad involvement in
stimuli prediction (Figure 2B). However, channel POz demonstrated a more specialized
role, showing enrichment specifically for predicting images of 6, 7, and 8. Channel Oz
showed strong importance (attribution) when predicting the image of number 6 (Figure 2B).
This suggests a potential specialization of certain EEG channels in response to specific
visual stimuli, adding another layer of complexity to our understanding of EEG signal
processing and image generation. These findings could guide future research in optimizing
EEG-based models for more accurate and efficient image generation.
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3.2. Evaluating Latent Representation Size

To evaluate latent representation size in contrastive learning, we conducted a small
experiment where we varied latent representation sizes, including 16, 32, 64, 128, 256,
and 512. In each, we computed supervised contrastive loss, as described in [28]. Next,
we computed the average cosine similarity between all pairs of points within the same
cluster (intra-cluster similarity) and the average cosine similarity between all pairs of points
from different clusters (inter-cluster similarity). Lower inter-cluster similarity indicates
that points from different clusters are farther apart in the embedding space, suggesting
better separation between clusters. Conversely, higher intra-cluster similarity indicates that
points within the same cluster are closer to each other in the embedding space. Finally,
we computed cohesion by deducting inter-cluster similarity from intra-cluster similarity,
which provided us with a relative measure of how many more similar data points within
clusters are compared to points in other clusters. Values greater than 0 indicate that data
points within clusters are more similar to each other than to points in other clusters, while
values less than 0 indicate the opposite. Each run was performed using the same model,
which had the following hyperparameters:

• Hidden Size: 128.
• Number of LSTM Layers: 4.
• Batch Size: 2048.
• Learning Rate: 0.0001.
• Number of Epochs: 600.
• Contrastive temperature (negative pairs): 0.08.
• Contrastive temperature (positive pairs): 0.03.

Based on our experiment, we concluded that the optimal latent representation size
is 64, as it resulted in the lowest loss value and third-best cohesion score (Figure 3A,B,
Supplementary Figure S5). Lastly, we projected the latent representation into 2D space
utilizing the UMAP (Uniform Manifold Approximation and Projection) algorithm so we
could visualize it using a simple 2D scatter plot (Figure 3C).

3.3. Image Generation Process Using Simple Convolutional Network

The contrastive learning model was designed to process EEG signals as input and
generate a latent representation of size 64. This 64-dimensional vector was subsequently fed
into a simple convolutional neural network (CNN), specifically a convolutional transpose
architecture. The CNN was tasked with the generation of black-and-white images, each
with a size of 28 × 28 pixels, consistent with the images in the well-known MNIST dataset
(Figure 1C). The network architecture is organized as follows: The input layer has 64 units,
matching the output size of the contrastive learning model. This is succeeded by a single
feed-forward layer and three convolutional transpose layers, which finally produce the
original size of input images. We also experimented with two loss functions: mean square
error (MSE) and binary cross-entropy with logit loss (BCEWithLogitsLoss) (Figure 4A,
Supplementary Figure S6). The comparison yielded different results for the two loss
functions used in the comparison. While MSE led to significantly blurrier images with
distorted (vague) edges (Figure 4B), BCEWithLogitsLoss produced images with sharper
edges; however, occasionally, there were missing parts of handwritten digits (Figure 4C,
Supplementary Figure S7A). To further characterize and compare generated images we
computed SSIM between generated images and MNIST images. Overall, using MSE
loss produced images that more closely resembled the original images (Supplementary
Figure S8A,B).
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Figure 3. Comparison of latent representation size. (A) Comparison of validation loss between
models that used different latent sizes. (B) Comparison of cluster cohesion between different latent
sizes. (C) Visualization of EEG latent representation of size 64 using UMAP. Each point represents a
single representation (size 64), and color indicates the ground truth label (observed image).
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Figure 4. Comparison of image generator models. (A) Comparison of MSE validation loss between
GAN and CNN image generator network. (B) Example of generated images using MSE loss and
CNN network. (C) Example of generated images using BCE loss and CNN network. (D) Comparison
of BCE validation loss between GAN and CNN image generator network. (E) Example of generated
images using MSE loss and GAN network. (F) Example of generated images using BCE loss and
GAN network.

3.4. Generative Adversarial Networks

The discriminator network is a crucial component of generative adversarial networks
(GANs), tasked with distinguishing between real and generated images. It utilizes convolu-
tional layers to extract hierarchical features from input grayscale images, followed by batch
normalization for training stability. Afterward, feature maps are flattened and processed
through a fully connected layer to determine the image’s authenticity. Conversely, the gen-
erator network maps latent representations into a higher-dimensional feature space using
fully connected layers, reshapes them into a 4D tensor, and refines features via transposed
convolutional layers, resulting in a black-and-white image of size 28 × 28. The loss function
comprises two components: the adversarial loss, calculated using the discriminator’s out-
put when fed with the generated images compared against a tensor of ones (representing
real images), and the pixel-wise reconstruction loss between the generated and real images.
By employing this setup, we explored two generative loss functions: BCEWithLogitsLoss
and MSE (Figure 4D, Supplementary Figure S6). Similar to the CNN model, using GAN
in comparative analysis, we concluded that MSE loss produces blurry images (Figure 4E,
Supplementary Figure S7C). In contrast, BCEWithLogitsLoss produced sharper images but
occasionally incomplete representations of handwritten digits (Figure 4F, Supplementary
Figure S7D). Similar to the results obtained with the simple CNN network, GANs also
achieved better SSIM scores when using MSE loss (Supplementary Figure S8A,B).

4. Discussion

This study presents a novel framework, Bridging Artificial Intelligence and Neurologi-
cal Signals (BRAINS), which leverages the power of AI to extract meaningful information
from EEG signals and generate images. The results demonstrated the effectiveness of this
approach in overcoming the limitations of traditional EEG analysis techniques. Before em-
barking on the task of image generation, we also conducted an investigation that identified
which parts of the EEG signal were crucial for predicting different stimuli. This exploration
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yielded intriguing findings, revealing that certain stimuli had a greater impact on specific
lobes (regions) than others (Figure 2A,B). Next, we utilized contrastive learning to simplify
the process of image generation. The evaluation of latent representation size in contrastive
learning was a critical step in our study. We conducted an experiment varying the latent
representation size and computed supervised contrastive loss, intra-cluster similarity, inter-
cluster similarity, and cluster cohesion. The optimal latent representation size was found
to be 64, yielding the lowest loss value and the third-best cohesion score, even though the
cohesion scores were very similar across multiple representation sizes (Figure 3A). This
suggests that while 64 was optimal, other sizes also performed comparably in terms of
cohesion (Figure 3B). This optimal size was then used to generate images and visually
inspect the latent representation by projecting it into 2D space using the UMAP algorithm
(Figure 3C). Our study also explored the image generation process using a simple convo-
lutional network and a GAN-based network. The contrastive learning model processed
EEG signals as input and generated a latent representation, which was fed into a CNN.
The CNN generated black-and-white images, each with a size of 28 × 28 pixels, consistent
with the images in the well-known MNIST dataset (Figure 4A–C). We experimented with
two loss functions—mean square error (MSE) and binary cross-entropy with logit loss
(BCEWithLogitsLoss)—and found that while MSE led to blurrier images, BCEWithLogit-
sLoss produced sharper images but occasionally missed parts of handwritten digits. The
second scenario used a GAN-based network, which uses the discriminator network, which
distinguishes between real and generated images, and the generator network, which uti-
lizes latent representation for image generation (Figure 4D–F). We explored two generative
loss functions: BCEWithLogitsLoss and MSE. We found that similar to the CNN model,
MSE loss produced blurry images, while BCEWithLogitsLoss produced sharper images but
occasionally incomplete representations of handwritten digits. This led to the conclusion
that a crucial component of our approach was the contrastive learning step used for feature
extraction. This step transformed the EEG signals into a meaningful latent representation.
The simplicity of this representation made it possible for a simple CNN to generate images
that were comparable to the original dataset (MNIST). Furthermore, the quality of the
generated images did not depend on the complexity of the model. Instead, the choice of the
loss function (mean squared error vs. binary cross-entropy) played a more significant role
in determining the performance of the image generation process. This finding suggests that
simpler models like CNNs, when paired with an appropriate loss function and contrastive
learning preprocessing, could be more efficient and effective for such tasks, eliminating the
need for more complex models like GANs. This highlights the effectiveness of contrastive
learning in extracting robust features from EEG data and its compatibility with simpler
models like CNNs for efficient and high-quality image generation.

In conclusion, our study demonstrated the potential of integrating AI and EEG tech-
nology, offering promising implications for the future of brain–computer interfaces. The
BRAINS framework provides a robust and adaptable method for EEG data analysis and
image generation, overcoming the challenges posed by traditional methods.
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