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Abstract: Joint entity-relation extraction is a fundamental task in the construction of large-scale
knowledge graphs. This task relies not only on the semantics of the text span but also on its intricate
connections, including classification and structural details that most previous models overlook. In
this paper, we propose the incorporation of this information into the learning process. Specifically,
we design a novel two-dimensional word-pair tagging method to define the task of entity and
relation extraction. This allows type markers to focus on text tokens, gathering information for
their corresponding spans. Additionally, we introduce a multi-level attention neural network to
enhance its capacity to perceive structure-aware features. Our experiments show that our approach
can overcome the limitations of earlier tagging methods and yield more accurate results. We evaluate
our model using three different datasets: SciERC, ADE, and CoNLL04. Our model demonstrates
competitive performance compared to the state-of-the-art, surpassing other approaches across the
majority of evaluated metrics.

Keywords: named entity recognition; relation extraction; word-pair tagging; multi-level attention
neural network

1. Introduction

Named Entity Recognition (NER) and Relation Extraction (RE) aim to extract struc-
tured information from plain texts. They are long-standing research topics in the field of
Natural Language Processing (NLP). We present Figure 1 as an example of the NER and
RE problem: NER aims to identify entities in text and classify them into pre-defined entity
types, for example, “Reagan” should be recognized as a person (Peop) and “U.S.” as a
location (Loc), respectively. On the other hand, RE is usually based on the entities that
have been identified by NER, combined with contextual semantic information, to assign a
relation type to these entities. For instance, a “Live_In” relation exists between “Reagan”
and “U.S.”.

'President' , 'Reagan' , 'has' , 'ordered' , 'the' , 'State' , 'Department' , '...' , 'for' , 'repaying' , 'all' , 'U.S.' , 'arrears' , '.'

Peop Org Loc

Live_in

OrgBased_in

Figure 1. An illustrative example of the entities and relations extraction task.

Methods for entities and relations extraction can be categorized into pipeline or joint
models. In the traditional pipeline approach [1–4], NER and RE are considered as two
independent tasks: first, entities are recognized in the input sentence, and then relations
are classified as pairs of extracted entities. Joint works [5–10] extract entities and relations
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in parallel, then combine them into triples and avoid the error propagation caused by the
pipeline framework.

Many joint methods focus on learning a unified representation of these two tasks to
explore the correlation between NER and RE. Given the exceptional performance of Pre-
trained Language Models (PLMs) like BERT [11], which can help mitigate problems, such as
limited semantic elements within a sentence, researchers can maximize the utility of BERT
to extract more complex features. Some works [3,12,13] have focused on exploring methods
to obtain improved span representations from pre-trained encoders. For example, ref. [13]
proposes a simple and effective way to capture span representations through BERT for
lightweight reasoning. Ref. [4] introduces a novel span representation approach to consider
the interrelation between the spans (pairs) by strategically packing the markers in the
encoder. These approaches often heavily rely on predefined features (span features), causing
the model to overlook the intricate interconnections among the entities and relations,
thereby impeding the recognition of semantic relations between entity pairs.

To explore the common structure of the two tasks, table-filling methods have been
proposed, wherein unit features are defined as the basic semantic properties of the target
word pair [8,14–17]. In this approach, the (i, j, r)-th cell is assigned a label that represents
the relationship between tokens at positions (i, j) in the sentence. To this end, for an input
sentence, the output of the method is usually a three-dimensional (3D) matrix with each
entry corresponding to the classification result. These approaches built upon the table
structure operate on the idea that cell labels are dependent on features or predictions
derived from preceding or adjacent cells. Ref. [8] formulates joint extraction as a token pair
linking problem and introduces an innovative handshaking tagging scheme that aligns
the boundary tokens of entity pairs for each relation type. Ref. [14] proposes to eliminate
the different treatments on the two sub-tasks’ label spaces and applies a unified classifier
to predict each cell’s label. In their approach, entities and relations are represented by
squares and rectangles in the table. Ref. [15] employs a scoring-based classifier and a
relation-specific horn tagging strategy. However, the information from type markers is not
utilized in these methods.

In our study, we propose leveraging a pre-trained encoder to enhance the model’s
semantic information with features linked to the target information. This encompasses
entity and relation type markers, along with structural details. Specifically, inspired by the
works above and the interaction map proposed by [16], we design a new word-pair tagging
method to extract all results in one step. The input of our model is a two-dimensional (2D)
table, with each entry corresponding to a word pair in sentences. A detailed description
of our word-pair tagging can be found in Figure 2. Furthermore, we design a multi-level
attention network joint extraction model: First, we facilitate multi-head biaffine auxiliary
alignment between objects to discern correlations between units. Then, we combine table
structure-aware features with sequence-aware features, thereby capturing connections
between unit features while providing the model with both textual semantic information
and task-related details. Our model predicts the most probable results from the word-pair
tagging table by calculating the attention score. In general, our main contributions are
as follows:

• We incorporate the type markers alongside text tokens in the same encoder, thus
preserving task relevance rather than treating them as isolated components. Building
upon a novel word-pair tagging approach, we condense our table into two dimensions.

• We propose a multi-level attention mechanism that models interactions around unit
features, capturing dependencies between table structure-aware and sequence-aware
features. This mechanism effectively integrates the inherent relationships between
feature sequences relevant to entities or relations, while maintaining the efficiency
advantage of the model.
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Figure 2. The marks in the table are represented as entities and relations in the sentence of Figure 1.
The model outputs individual scores for each table element, which represent the relationships
between word pairs.

2. Related Work

In recent years, many works [18–20] have considered the joint modeling of entity
recognition and relation extraction tasks and largely focused on developing effective pre-
diction models. Joint extraction of entity and relation mitigates the error propagation issue
associated with the traditional pipeline approach and leverages the interaction between
tasks, resulting in improved performance. Furthermore, some problems attract much
attention from researchers:

• Overlapping: Based on the different overlapping patterns of triples [21], sentences can
be divided into three categories, as suggested by [22]: Normal, Entity Pair Overlap
(EPO) and Single Entity Overlap (SEO). A sentence is classified as Normal if none of
its triples have overlapping entities. It is categorized as EPO if some of its triples have
overlapping entity pairs. Meanwhile, a sentence falls into the SEO class if some of its
triples have an overlapping entity but do not have overlapping entity pairs. Note that
a sentence can belong to both the EPO and SEO classes.

• Interaction: Since these tasks are closely interconnected, joint models capable of
simultaneously extracting entities and their relations within a single framework have
the potential to leverage inter-task correlations and dependencies, leading to potential
performance improvements. Several recent efforts have aimed to exploit such inter-
task correlations by jointly modeling both NER and RE tasks.

Some approaches like token-level models [23,24] using the BIO tagging scheme face
challenges in modeling overlapping entity mentions and often encounter cascading errors
due to sequential decoding. The span-based approach [25] identifies overlapping entities
by determining the boundaries of objects and then categorizing them based on these
boundaries. However, span-based models are affected by maximal span lengths, and
a sentence including n words may consist of n(n + 1)/2 numbers of entity possibilities. In
previous works, ref. [13] width embeddings were set and learned through backpropagation,
while [3] the process span pairs with levitated markers independently, which is time-
consuming and overlooks the interrelation between the span pairs.
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Earlier work [26] in this area commonly reduces the task to a table-filling problem to
be useful in addressing overlapping and interaction problems. However, these methods
usually required an additional expensive decoding step to obtain globally consistent cell
labels. In the work by [27], a novel neural architecture was introduced, which utilized
the table structure and involved repeated applications of 2D convolutions for pooling
local dependency and metric-based features. Another work [28] proposed a global feature-
oriented triple extraction model that fully leveraged the global associations. Each relation’s
table is filled based on its refined table feature, and all triples linked to this relation are
extracted based on its filled table.

This paper introduces a two-dimensional table to represent interactions between
individual words in a sentence. Our method leverages both the table structure within
the 2D table representation and the sequence structure information within the text. We
facilitate interaction between these elements with our multi-level attention architecture,
especially considering the context of neighboring entries in the table.

3. Methods

In this section, we first detail the joint extraction of entities and relations tasks and our
word-pair tagging method (Sections 3.1 and 3.2). Then, we describe our contextualized
word representations based on pre-trained language models (Section 3.3) and introduce our
multi-level attention for table-filling tasks (Section 3.4). Finally, we introduce the training
methods to extract entities and relations (Section 3.5). Figure 2 shows a detailed description
of our word-pair tagging, and Figure 3 shows an overview of our model architecture.

PLM & Maxpooling

Multi-head Biaffine & softmax

MLP1 MLP2
Add & Norm 2

Feed Forward 1

Add & Norm 1

Multi-head 
Attention

Text
representation

Feed Forward 2
Attention

Q K

<subject,relation,object>

Figure 3. An overview of our model architecture, consisting of four main modules: 1. Max-pooling
aggregation module: uses a pre-trained language model (PLM) and max-pooling for contextualized
representations. 2. Table structural-aware module: derives head and tail representations with MLPs
and computes word-pair representations using a multi-head biaffine model. 3. Context-table fusion
module: applies multi-head attention to combine the weighted and original sequences. 4. Sequence-
aware module: encodes the sequence with FFNN layers and residual structures, followed by a
non-linear transformation for relationship prediction.

3.1. Task Description

Given a sentence S of words w1, w2, . . . , wn as input, the model is required to extract
related entities and to identify the relation types between entities to form a set of triplets
identifying pairs in the form of (et1

1 , r, et2
2 ), where e1 is not equal to e2. An entity e1/e2 is

a span with the pre-defined entity types t1/t2. The r represents the relation between the
entities e1 and e2. The task requires the model to correctly predict the boundaries of the
subject entity and the object entity, and the entity relation.

3.2. Word-Pair Tagging

We propose a new word-pair tagging method, thereby transforming the task into
one that extracts the predicted results between each word-pair (wi, wj). By concatenating
text and task label types into a natural language sequence, our model can exploit their
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contextualized correlations and leverage the semantic knowledge learned from the pre-
trained language model. These markers will be explained further below:

• Diagonal markers in the purple part indicate entity-head and entity-tail. The orange
part on the right represents the connection between an entity-head and an entity
type. Similarly, the orange part below the table represents the connection between
an entity-tail and an entity type. When both the entity-head and entity-tail have the
same entity type, they can form an entity. The table exactly expresses how to detect
the correct span boundary of the spans, as shown in Figure 2, where (“Reagan”, Peop),
(“State Department”, Org) and (“U.S.”, Loc) can be extracted.

• Out-of-diagonal markers in the purple part indicate subjects and objects. The green
part on the right represents the connection between a subject and a relation type,
while the green part below the table represents the connection between an object
and a relation type. If a subject and object share the same relation type, they can
form relational triples. Therefrom, the table can exactly express overlapped relations,
e.g., the location entity “U.S.” participates in two relations, (“Reagan”, “U.S.”, Live_In)
and (“State Department”, “U.S.”, OrgBased_In).

By combining the extraction of entity and relation parts, we successfully extract
complete relational triples (ReaganPeop, Live_In, U.S.Org).

3.3. Text Representation

In our approach, we enhance the input sequence by appending entity and relation
type markers, which distinguishes our method from standard BERT models that process
only raw text augmented with [CLS] and [SEP] tokens. Specifically, given an input sentence
with n words(e.g., S = {w1, w2, . . . wi, wn}, where the sentence length is n, and entity
types (e.g., E = {te1, te2, . . . , ten}) and relation types (e.g., R = {tr1, tr2, . . . , trn}), we
provide the combined sequence of the text and the inserted type markers to the PLM
(e.g., BERT) to obtain the contextualized representations, and the sequence length becomes
L = tn + 2 + en + rn (including [CLS] and [SEP], two special start and end markers):

H′ = BERT([CLS], tt1, tt2, . . . , ttn, [SEP], te1, te2, . . . , ten, tr1, tr2, . . . , trn) (1)

where H′ ∈ RL×d is the context-aware embedding of tokens, where tn is the sum of word
pieces in the sentence after the segmentation(e.g., Mondrian → Mon, ##dr, ##ian), en is the
number of entity types, rn is the number of relation types, and d is the dimension of hidden
units in the BERT model. These markers are integrated into the input sequence, providing
contextual cues that are absent in traditional BERT inputs, thereby enabling the PLM to
leverage semantic and relational metadata along with textual information. After that, we
compute the embedding of each word by max-pooling its composing tokens to aggregate
information for their associated spans. If a word is split into multiple word pieces, we
use the max-pooling of all piece vectors as its word representation. Finally, the length of
sequence representation H becomes n + 2 + en + rn.

3.4. Multi-Level Attention Encoder

Our multi-level attention encoder consists of a table structure-aware module, context-
table fusion modules, a and sequence-aware module. Our model takes the sequence
representation H obtained in Section 3.2 as input, and its output is used to predict both
entities and relations in sentences.

To ensure that text representations are shared between the entity and relation types,
we adopt a table structure-aware module. Initially, we apply two multi-layer perceptrons
(MLPs) on the pre-trained feature vector H to obtain separate representations for head-and-
tail parts of an entity or relation. We split the representations Hi and Hj obtained from
the MLPs into multiple heads.Then, a multi-head biaffine model is leveraged to obtain
representations of word pairs (hi, hj). Next, we concatenate the representations from all
heads to obtain HT and apply a softmax activation function to HT . The resulting HT serves
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as the weight information for the sequence, containing both context information and table
structure. The calculation formula for this process is as follows:

Hi, Hj = MLP1(H), MLP2(H) (2)

h(k)i , h(k)j = Split(Hi), Split(Hj) (3)

hk[i, j] = (h(k)i )TUh(k)j (4)

HT = Concat
(

h(1), . . . , h(n)
)

(5)

HT = Softmax(HT) (6)

where Hi, Hj ∈ Rn×h, n is the length of a sentence, h is the hidden size, Split(·) equally

splits a matrix in the last dimension, h(k)i , h(k)j ∈ Rn×hk , hk is the hidden size for each head,
U is a n × r × n trainable parameter, r is the number of heads, and HT ∈ Rn×n×r.

We then perform multi-head attention calculations using the weight information and
sequence information as our context-table fusion modules, obtaining the new sequence
representation S:

S = HT × H (7)

where S ∈ Rn×h. In the final sequence-aware module, we use two separate feed-forward
neural network (FFNN) layers with the residual structure to encode representations S.
The interaction function is defined as follows:

S = Layernorm(Relu(Linear(S)) + H) (8)

S = Layernorm(FFNN(S) + S) (9)

Finally, we transform the features S through a non-linear transformation Q and K
and calculate the attention score to generate a predicted score for each relationship of the
2D word-pair:

Q = Linear1(S) (10)

K = Linear2(S) (11)

P = σ(QKT) (12)

where p ∈ Rn×n is the interaction matrix for prediction results, n means the length of
sentence, each entry corresponds to a word-pair, σ is a sigmoid function, and we consider
P(·) valid when the value of P(·) exceeds threshold σ(σ > 0.5). The representation Pij of
the word-pair (xi , xj) can be considered as a combination of the representation hi of xi and
hj of xj.

3.5. Training

Given the input and its gold label y′ (0 or 1), the binary cross entropy loss is used
for training:

L =
n×n

∑
i=1

BCELoss(y, y′) (13)

where y is the predicted results, and n is the length of the sentence.

4. Results

In this section, we present the experimental part, including the datasets, evaluation
metrics, and experiment settings to evaluate the performance of our proposed model for
entity and relation extraction. Additionally, we conduct exhaustive ablation studies to
further investigate the effectiveness of the model.
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4.1. Datasets

To evaluate the performance of our proposed method, we tested it across three datasets
from different domains, namely SciERC, ADE and CoNLL04:

SciERC: ref. [29] is derived from 500 AI paper abstracts and defines scientific terms
and relations specifically for scientific knowledge graph construction. This dataset includes
six scientific entities, including task, method, metric, material, other-scientific-term, generic
and seven relation types, including compare, conjunction, evaluate-for, used-for, feature-
of, part-of, hyponym-of, and includes 2687 sentences. We adopt the official training
(1861 sentences)/validation (275 sentences)/testing (551 sentences) splits.

ADE: ref. [30] propose the Adverse Drug Events (ADE) dataset for extracting drug-
related adverse effects from medical text, which focuses on one relation category and two
entity categories, including drug and adverse-effect. ADE consists of 4272 sentences and
6821 relations, these sentences describe the adverse effects arising from drug use. Given
there are no official train-test splits, we report the mean performance based on 10-fold
cross-validation, where results are based on averaging performance across the ten folds,
as in prior work.

CoNLL04: ref. [31] contains 1441 sentences with annotated named entities and rela-
tions extracted from news articles. It has four entity categories, including person, loca-
tion, organization, and other, and five relation categories, including Live_In, Located_In,
OrgBased_In, Work_For, and kill. We employ the training (1153 sentences) and test set
(288 sentences), where 20% of the training set is used as a held-out development part, which
is consistent with [13,32]. This dataset contains no overlapping entities.

4.2. Evaluation Metrics

We evaluate these models on both entity recognition and relation extraction tasks,
following the approach of prior work. For the NER task, an entity is considered correct
if its predicted boundary and type match the ground-truth. For the RE task, previous
works have used different metrics: (1) boundaries evaluation (Re), where a relation is
considered correct if its relation type, as well as the two related entities, are both correct,
without considering the correctness of the entity type; (2) strict evaluation (Re+), where
a predicted relation is treated as a true positive if it is exactly matched to a relation in the
ground truth based on boundaries and type of subject/object entities and relation type.
For the convenience of comparison, we report multiple evaluation metrics consistent with
them. In our experiments on these datasets, we report a micro-F1 score for the ADE and
CoNLL04 datasets, and we also report the macro-F1 score.

4.3. Experiment Settings

For fair comparison, we used bert-base-cased as the encoder on most datasets and
replaced with scibert-scivocab-uncased for the SciERC dataset. We fixed the length of the
input sentence to 100. We employed multi-head biaffine decoding with heads = 4 and
embedding size = 300. The Adam Optimizer [33] is used with a linear warmup-decay
learning rate schedule. We trained the entity model for 100 epochs with a learning rate of
1 × 10−5 for all experiments. To mitigate overfitting, we applied a dropout strategy with
a rate set between 0.2 and 0.4. We used a batch size of 4/20 for SciERC/other datasets,
respectively. In our experiments, we ran all experiments with five different seeds and
reported the average score.

4.4. Results

Tables 1–3 present the test set evaluation results for the SciERC, ADE, and CoNLL04
datasets.

Regarding entity recognition, our model achieves an absolute F1-score improvement of
+0.1% on the SciERC dataset and +0.52% on the ADE dataset, using the ALBERT PLM. In our
experiments on the CoNLL04 dataset, our model demonstrates notable improvements and
competitive performance across various metrics. Notably, under the macro metric, our
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model exhibits a precision advantage over the best-reported model [34] and achieves an
F1-score enhancement of 0.68% compared to the second-best model [35]. Additionally, our
approach yields competitive results in terms of Micro-F1 values. This demonstrates that
entity-type information is useful for the entity model, and pre-trained transformer encoders
are able to capture long-range dependencies from context.

For relation extraction, our approach outperforms the best previous methods by an
absolute F1 of +0.7% and +1.2% on the SciERC dataset for RE and RE+ tasks, respectively.
Additionally, we achieve +1.12% and +2.27% F1-score improvements on the ADE dataset
when using bert and albert PLM, respectively. On the CoNLL04 dataset, our model
achieved the highest precision and recall across both macro and micro metrics. Our model
is competitive without using additional data. Notably, under the micro metric, our model
surpassed the second-best performing model [20] with a competitive F1-score improvement
of 0.4%.

By comparing the results presented in recent papers, our proposed model attains
consistently strong performance over all three datasets, from which we can observe that
our word-pair tagging method and learned multi-level features are effective for entity and
relation extraction.

Table 1. Overall precision (%), recall (%) and F1-scores (%) on the SciERC dataset, calculated using
micro-averages. All methods employ a pre-trained scibert-scivocab-uncased model for feature
extraction. Scores highlighted in bold represent the highest values.

Method Metric NER RE RE+

Luan et al. (2018) [29]
Prec. 67.2 47.6 -
Rec. 61.5 33.5 -
F1 64.2 39.3 -

Wadden et al. (2019) [36]
Prec. - - -
Rec. - - -
F1 67.5 48.4 -

Eberts and Ulges (2020) [13]
Prec. 70.9 53.4 40.5
Rec. 69.8 48.5 36.8
F1 70.3 50.8 38.6

Shen et al. (2021) [37]
Prec. 70.2 52.6 -
Rec. 70.2 52.3 -
F1 70.2 52.4 -

Zhong and Chen (2021) [3]
Prec. - - -
Rec. - - -
F1 68.9 50.1 36.8

Wang et al. (2021) [14]
Prec. 65.8 - 37.3
Rec. 71.1 - 36.6
F1 68.4 - 36.9

Yan et al. (2021) [38]
Prec. - - -
Rec. - - -
F1 66.8 - 38.4

Santosh et al. (2021) [39]
Prec. 69.8 51.9 39.9
Rec. 71.3 50.6 39.0
F1 70.5 51.3 39.4

Ye et al. (2022) [4]
Prec. - - -
Rec. - - -
F1 69.9 53.2 41.6
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Table 1. Cont.

Method Metric NER RE RE+

Jeong et al. (2022) [40]
Prec. - - -
Rec. - - -
F1 70.8 45.5 -

Ours
Prec. 71.4 58.3 47.1
Rec. 69.2 50.1 39.2
F1 70.9 53.9 42.8

Table 2. Overall precision (%), recall (%) and F1-scores (%) on the ADE dataset. These methods
employ the macro metric. Bold marks the highest score.

Method Model Score NER RE+

Giannis et al. (2018) [41] -
Prec. 84.72 72.10
Rec. 88.16 77.24
F1 86.40 74.58

Eberts and Ulges (2020) [13] BERT
Prec. 89.26 78.09
Rec. 89.26 80.43
F1 89.25 79.24

Wang and Lu (2020) [42] ALBERT
Prec. - -
Rec. - -
F1 89.70 80.10

Cabot and Navigli (2021) [43] BART
Prec. - 81.50
Rec. - 83.10
F1 - 82.20

Yan et al. (2021) [38] ALBERT
Prec. - -
Rec. - -
F1 91.30 83.20

Crone (2020) [35] BERT
Prec. 89.06 80.51
Rec. 89.63 86.81
F1 89.48 83.74

Zhao et al. (2021) [44] BERT
Prec. - -
Rec. - -
F1 89.40 81.14

Wan et al. (2023) [20] BERT
Prec. - -
Rec. - -
F1 91.30 83.07

Wang et al. (2022) [34] GLM
Prec. - -
Rec. - -
F1 91.1 83.8

Ours

BERT
Prec. 88.39 82.09
Rec. 93.31 87.82
F1 90.78 84.86

ALBERT
Prec. 90.88 83.90
Rec. 92.78 87.10
F1 91.82 85.47
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Table 3. Overall precision (%), recall(%) and F1-scores (%) on the CoNLL04 dataset. These methods
employ a pre-trained bert-base-cased model to obtain feature representations. Bold marks the
highest score.

Method Model Metric Score NER RE+

Li et al. (2019) [45] - Micro
Prec. 89.00 69.20
Rec. 86.60 68.20
F1 87.80 68.90

Eberts and Ulges (2020) [13] BERT Macro
Prec. 85.78 74.75
Rec. 86.84 71.52
F1 86.25 72.87

Crone (2020) [35] BERT Macro
Prec. 87.92 77.73
Rec. 86.42 68.38
F1 87.00 72.63

Wang and Lu (2020) [42] ALBERT Macro
Prec. - -
Rec. - -
F1 86.90 75.40

Cabot and Navigli (2021) [43] BERT

Macro
Prec. - -
Rec. - -
F1 - 76.65

Micro
Prec. - -
Rec. - -
F1 - 75.40

Shen et al. (2021) [37] - Micro
Prec. 90.30 73.00
Rec. 90.30 71.60
F1 90.30 73.60

Zhao et al. (2021) [44] - Micro
Prec. - -
Rec. - -
F1 90.62 72.97

Wan et al. (2023) [20] BERT Micro
Prec. - -
Rec. - -
F1 91.43 74.39

Wang et al. (2022) [34] GLM Macro
Prec. - -
Rec. - -
F1 90.70 78.30

Ours BERT

Macro
Prec. 90.72 77.56
Rec. 84.84 75.03
F1 87.68 76.27

Micro
Prec. 91.01 75.13
Rec. 89.58 74.46
F1 90.28 74.79

5. Ablation Study

Our model basically consists of four modules: max-pooling aggregation module (A),
table structural-aware module (B), context-table fusion module (C) and sequence-aware
module (D). We report the ablation analysis results for the ADE and SciERC datasets,
focusing on the RE+ from Table 4, and the layers of the encoded block are all set to one:
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Table 4. Ablation study for ADE and SciERC datasets, focusing on the RE+. Each row after the first
indicates the removal of a particular component.

Method Metric ADE SciERC

Our model
Prec. 82.14 47.88
Rec. 85.88 37.51
F1 83.97 42.07

A
Prec. 81.98 43.62
Rec. 85.30 35.75
F1 83.61 39.29

B&C
Prec. 82.17 47.78
Rec. 83.77 37.87
F1 82.96 40.07

D
Prec. 80.78 45.34
Rec. 83.92 37.51
F1 82.32 41.26

While the max-pooling aggregation module had a positive effect for F1-score on ADE
and SciERC datasets, it also helped the model improve the precision to a certain extent.
When removing table structural-aware and context-table fusion modules, for the ADE
and SciERC datasets, we find that recall has a large negative impact and approximately
decreased by 2.11–3%. When removing the sequence-aware module, the system shows a
decrease of 1.65% and 0.81% in F1-scores for the ADE and SciERC datasets, respectively.
These results indicate that the BERT encoder itself can capture type-specific dependencies
among tokens and labels within its architecture, the joint addition of table structure-aware,
context-table fusion and sequence-aware modules have a significant effect on NER and
RE improvement.

5.1. Effect of Encode Layers

To investigate whether a deeper module can further model dense interactions over
label spaces, we stack multi-level attention units in depth from 0 to 5 on the ADE and
SciERC datasets and analyze the performance. The results are presented in Figure 4:
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Figure 4. Performances with respect to the number of layers setting on the ADE and SciERC test sets.

In Figure 4, we demonstrate improvements of model performance through adjust-
ments to the model’s layer settings and explore the effect of the superposition of different
layers. We found that increasing the number of layers from 0 to 2 leads to a significant
improvement in the F1 scores for both tasks. However, we found that the F1 score did not
improve further by continuing to increase the number of layers. Therefore, in our final
model, we use two layers as the optimum configuration.
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5.2. Effect of Table Encoding

In this section, we conducted numerous experiments to explore the performance
impact of several different table encoding strategies on entity and relation extraction. Each
model utilized in these experiments was structured with two layers. We conducted a study
using the ADE dataset, and the experimental results are shown in Table 5:

Table 5. Study on the ADE dataset. The separate-type method employs two tables within the
same model. Bold marks the highest score.

Method NER RE

Our model 90.78 84.86
Concat 90.09 (−0.69) 83.46 (−1.40)
Multi-heads CNN 90.54 (−0.24) 84.40 (−0.46)
CLN 88.95 (−1.83) 83.92 (−0.94)

Separate-type 87.91 (−2.87) 83.25 (−1.61)

• Concat: the concat method represents each word-pair representation via concatenating
the corresponding distinct tokens features. While this method collects information at
the token level, it overlooks the connections between tokens, leading to coarse-grained
formative features. Consequently, using the Concat model leads to a drop in NER and
RE+ F1-score performance by 0.69% and 1.4%, respectively.

• Multi-head CNN: the convolutional approach is a natural method to merge all of the
features, and it might be necessary to utilize all local features and predict scores on a
global scale. Fusion features that are composed of correlations between unit features
can help the model in capturing local sentence features and in learning connections
between features, thus learning semantic structural information in sentences. When
constructing the CNN structure, we still employed a two-layer CNN with convolu-
tional kernels of 3, and we set its output dimension number of the decoder to be the
same as the number of heads. CNN-based models are effective in capturing local
features of adjacent cells, but make it difficult to capture long-distance dependen-
cies. As shown in Table 5, using the multi-head CNN has a small negative impact,
with performance declining by 0.24% and 0.46% for NER and RE.

• CLN: we use the Conditional Layer Normalization (CLN) proposed in [46], which
generates a high-quality representation of the word-pair grid. The layer normalization
is conducted in the feature dimension. The results, as displayed in Table 5, show a
decrease of 1.83% in NER and a decrease of 0.96% in RE.

The experiments demonstrate that it is necessary to fuse the representations of table
structure to predict the entity and relations. Furthermore, the application of multi-head
biaffine can enhance the learning of table structural information.

5.3. Effect of Type Information

To examine the influence of the interaction of information on the types of entities
and relations, we separate the entity or relation-type sequences from the input sentence
to model the two tables independently, denoted as the separate-type model. Specifically,
we obtain the sequence embeddings of the input sentence, including the natural language
texts of entity type, and the input sentence, including the natural language texts of relations
with the same BERT encoder. From these, we generated two tables to jointly decode the
predicted two tables. As this method takes entity and relation types as separate inputs,
the network can only independently model the correlations of the entity part and relation
part, without capturing the interdependencies between task interactions. As shown in
Table 5, the separate-type model has marked performance degradation on both tasks
compared to a joint-type model, with F1-scores dropping by 2.87% for NER and 1.61% for
RE. Experimental results prove the interdependencies between the type’s information of
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entities and relations, and our model benefits from unifying these elements in the modeling
process. The integration of type information improves the performance of all sub-tasks.

6. Conclusions

In this paper, we present an effective approach for joint entity and relation extraction.
Our method is able to simultaneously and efficiently recognize boundaries and types of
entities, as well as the relations among them. By utilizing our novel word-pair tagging
method, we overcome the spatial and semantic limitations of previous methods, thereby ef-
fectively generating more accurate triplets through the fusion of structural information. Our
experiments demonstrate that our method is competitive with the previous state-of-the-art
results on three standard benchmarks and consistently delivers significant enhancements
over the runner-up models in a majority of the evaluated scenarios. We illustrate the feasi-
bility of integrating entity and relation type information within the pre-trained language
model, which enriches the final contextual representation of the model. Simultaneously,
the extraction model will be relieved of insufficient interaction of two tasks. In future work,
we plan to further study the effect of fusion representation in our framework and expand
the model framework to support a wider array of information extraction tasks.
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