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Abstract: The object detection model in UAV aerial image scenes faces challenges such as significant
scale changes of certain objects and the presence of complex backgrounds. This paper aims to address
the detection of small objects in aerial images using NATCA (neighborhood attention Transformer
coordinate attention) YOLO. Specifically, the feature extraction network incorporates a neighborhood
attention transformer (NAT) into the last layer to capture global context information and extract
diverse features. Additionally, the feature fusion network (Neck) incorporates a coordinate attention
(CA) module to capture channel information and longer-range positional information. Furthermore,
the activation function in the original convolutional block is replaced with Meta-ACON. The NAT
serves as the prediction layer in the new network, which is evaluated using the VisDrone2019-DET
object detection dataset as a benchmark, and tested on the VisDrone2019-DET-test-dev dataset. To
assess the performance of the NATCA YOLO model in detecting small objects in aerial images, other
detection networks, such as Faster R-CNN, RetinaNet, and SSD, are employed for comparison on the
test set. The results demonstrate that the NATCA YOLO detection achieves an average accuracy of
42%, which is a 2.9% improvement compared to the state-of-the-art detection network TPH-YOLOVS5.

Keywords: NAT; CA; Meta-ACON; small object detection

1. Introduction

In recent years, the use of UAVs has become more widespread in various fields,
such as aerial imaging, traffic monitoring, and agricultural production. As a result, the
processing of data captured from these devices and the effective extraction of feature
information have become crucial [1]. Object detection serves as the foundation for these
vision tasks. Currently, the two main frameworks for object detection are Anchor Based
and Anchor Free.

Anchor-Based frameworks utilize predefined anchors in an image to detect objects. This
involves classifying and regressing these anchors through a one-stage detection network
or a two-stage network. One-stage detection networks like SSD [2] and YOLO [3-5] are
fast but have lower accuracy rates. Two-stage detectors such as Faster R-CNN [6,7] and
Cascade R-CNN [8] incorporate a region proposal network (RPN) to generate approxi-
mately 2000 proposal frames, followed by classification and localization. Although slower,
two-stage detectors offer higher accuracy.

Anchor-Free detection does not rely on predefined boxes and instead focuses on
localizing and regressing a few key points. CenterNet [9] predicts the object based on its
centroid and achieves detection by predicting both the centroid and bounding box size.
CornerNet [10] transforms object detection into a key point detection problem, determining
the object’s position and size through the detection of key points. The object is represented
by two key points (the upper left corner and the lower right corner of the bounding box),
which are then grouped based on their associated distance to achieve object detection.

While these generalized object detection models perform well on traditional datasets
like MSCOCO [11], PASCALVOC [12], and ImageNet [13], they exhibit poor detection
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performance on UAV-acquired datasets like VisDrone [14] and UAVDT [15]. These datasets
contain a large number of small objects (less than 32 pixels in size) and significant amounts
of complex background information, which pose challenges for accurate detection.

To address these challenges, DPNet [16] enhances the feature extraction ability of
convolutional neural networks (CNNs) by incorporating global context (GC) and deformable
convolution (DC) into the backbone network, based on ResNeXt [17] and DenseNet [18].
Additionally, scale normalization and image pyramids are employed for multi-scale training.

Despite the improvements achieved by the aforementioned traditional models, there
is still no specific and effective solution or algorithmic structure for the detection of small
objects in the presence of complex backgrounds and variable object sizes. This paper
proposes the addition of a NAT module to the last layer of the feature extraction network,
replacing the original detection head with NAT. The NAT module incorporates domain
attention (neighborhood attention, NA) [19], which performs attention operations on the
domain of each pixel. The key change is constraining the global attention mechanism to
operate locally within a sliding window and introducing more local bias attributes. This
modification enhances object detection performance.

Furthermore, the paper introduces the CA module to the feature fusion network,
mitigating the loss of detail information caused by 2D pooling. Unlike the convolutional
block attention module (CBAM), which extracts channel attention into two parallel 1D
feature encodings, the CA module integrates spatial information from different coordinates
to retain a wider range of location information. As the network’s depth increases, the
resolution of the image decreases, resulting in fewer features for small objects on the feature
map’s extensive receptive field, thereby reducing detection results. To address this, an
additional detection head is added and fused with the shallow feature map. The prediction
layer is also replaced with NAT, resulting in more effective detection of small objects.

2. Related Work
2.1. Generalized Small Object Detection Methods

Data enhancement-based approach for small object detection: In their work,
Yu et al. [20] introduced a scale matching strategy during the data preprocessing stage.
This strategy involves cropping objects of different sizes to reduce the gap between them,
ensuring scale matching and avoiding the loss of information about small objects caused
by scaling operations. To address the issues of sparse distribution and lack of diversity in
small object detection, Kisantal et al. [21] proposed a method called copy enhancement.
This method increases the number of small object samples in the dataset by copying and
pasting them multiple times, thereby improving the detection performance of small objects.
Building upon Kisantal’s method, Chen et al. [22] proposed the Rrnet algorithm. This
algorithm utilizes an adaptive resampling strategy for data enhancement and incorporates
a pre-trained semantic segmentation network to replicate the contextual information of
object images.

Small object detection method based on multi-scale learning: To achieve better small
object detection, it is crucial to leverage both deep semantic information and shallow
representational information. Simonyan et al. [23] addressed this challenge by proposing
the use of multiple small convolution kernels instead of a large one for multi-scale ob-
ject detection. This approach improves the detection performance of small objects while
maintaining a lower computational cost. Yu et al. [24] tackled the problem of multi-size
object detection by introducing dilated convolution, which increases the receptive field for
multi-scale contextual information aggregation without sacrificing resolution. Dai et al. [25]
proposed deformable convolution, which arranges sampling points irregularly to address
multi-scale and rotating object detection. Cai et al. [26] presented a unified multi-scale
deep convolutional neural network that utilizes an inverse convolutional layer to enhance
the resolution of the feature map, significantly improving small object detection perfor-
mance while reducing memory resource usage and computational cost. Liang et al. [27]
proposed a deep feature pyramid network based on FPN, which enhances the semantic
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information of small objects through the feature pyramid structure and lateral connections.
Cao et al. [28] introduced contextual information to SSD through a multilevel feature fusion
network, achieving a better balance between detection speed and accuracy for small objects.
Li et al. [29] addressed the limitation of SSD in fully fusing feature maps between different
layers by proposing a feature fusion single multi-frame detector. This detector employs a
lightweight feature fusion module to connect and fuse features from each layer, generat-
ing a feature map that is then used for detection. This approach improves the detection
accuracy of small objects with minimal loss of detection speed.

2.2. Aerial Image Small Object Detection Method
2.2.1. Dense Small Objects, Uneven Distribution of Objects

Yang et al. [30] proposed a clustered detection (ClusDet) network. This network con-
sists of three sub-networks: the cluster proposal sub-network (CPNet), the scale estimation
sub-network (ScaleNet), and the dedicated detection sub-network (DetectNet). CPNet is
responsible for object clustering and generates object cluster regions. ScaleNet estimates the
scale of the object clusters, while DetectNet detects objects in the cluster regions normalized
to each scale. The ClusDet network significantly improves the detection performance of
dense and small objects and implicitly models a priori contextual information, thereby
enhancing inference speed. However, the network structure is complex, and training the
two sub-networks is time-consuming. Additionally, the fixed setting of the cluster region
does not align with the varying aerial image shooting viewpoints in actual scenes.

Wang et al. [31] proposed a cluster region estimation network (CRENet) for the prob-
lem of an uneven distribution of small targets in aerial images and the target scale across a
large scale, which is a detection network with coarse to fine detection, mainly including
three parts: (1) coarse network (CNet) searches the image containing dense targets using
a clustering algorithm and then calculates the difficulty value of each clustered region to
mine the difficult region and remove the simple clustered region; (2) cropping module uses
Gaussian scaling function to search for regions containing dense targets. (1) Coarse net-
work (CNet) searches for regions with dense targets using a clustering algorithm and then
calculates the difficulty value of each clustered region to excavate the difficult regions and
remove the simple clustered regions. (2) The cropping module scales the difficult clustered
regions with a Gaussian scaling function to reduce the differences between the target scales
and then feeds the difficult clustered regions into the fine network. (3) Fine network (FNet)
uses a softmax algorithm to reduce the differences between the target scales and then feeds
the difficult clustered regions into the fine network. Then, the difficult clustered regions are
fed into the fine network. (3) Fine network (FNet) fuses the detection results of each region
of interest (ROI) and the global image with softmax. Compared with ClusDet and DMNet,
CRENet concentrates its computational resources on the region containing dense targets
and eliminates the simple clustering region, which improves detection efficiency. Because
the clustering region has different sizes, the clustering algorithm is used directly instead of
the network to predict the clustering region, and the problem of duplicating the anchor
and clustering region can be avoided.

Deng et al. [32] proposed an end-to-end global-local self-adaptive network (GLSAN)
for the problem of dense small targets and uneven distribution, which mainly consists
of three parts: global-local detection network (GLDN), self-adaptive region selecting
algorithm (SARSA), and local super-resolution network (LSRN). GLSAN integrates the
global-local fusion strategy into a progressive size-changing network. GLSAN integrates
the global-local fusion strategy into a progressively size-varying network to achieve higher
precision detection. The local fine detector can adaptively detect the target region detected
by the global coarse detector with high resolution by cropping the original image, SARSA
can dynamically crop the dense region in the input image, and LSRN can be used to
increase the size of the cropped image to provide more detailed information to improve
the detection accuracy of the detector. However, GLSAN also suffers from the problem
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of over-parameterization, and the targets in the corners of the image are easily ignored,
resulting in missed detection.

2.2.2. Very Small Object Detection in Large-Scale Scenes

Li et al. [33] proposed the density map-guided object detection network (DMNet),
which comprises three components: a density map generation network for generating
density maps, an image cropping network for segmenting the input map into foregrounds
based on the density map, and an object detector for detecting objects using the gener-
ated foregrounds. Nevertheless, the determination of the number of clipping blocks and
the density threshold heavily relies on the designer’s expertise, and the quality of the
density map directly impacts the clipping results, subsequently affecting the accuracy of
object detection.

Yu et al. [34] introduced the scale match (SM) strategy to address the issue of scale
mismatch between the network pre-training dataset and the dataset utilized for detection
learning. The scale-matching strategy aims to adjust the object scale between these two
datasets, thereby enhancing the feature representation for detecting very small objects.
By effectively leveraging the scale information of these objects, it has the potential to
enhance detection performance. Nevertheless, it is imperative to note that this scale-
matching approach is currently limited to a basic image-level method and necessitates
further refinement.

In order to solve the problem of very small target detection in aerial images, Xu et al. [35]
proposed the dot distance (DotD) metric. The sensitivity of intersection over union (IOU)
to offset is shown in the fact that a small relative movement between two bounding boxes
will lead to a large change in IOU and a large number of positive samples are wrongly
categorized as negative samples in RPN, which makes it difficult for the training to converge.
At the same time, the NMS may treat some real prediction frames as redundant frames,
which seriously affects the detection accuracy of the performance targets. DotD is the
Euclidean distance between the centers of the two normalized bounding boxes, which is
insensitive to small offsets and has better performance than the IOU series in detecting very
small targets. Applying DotD to the region proposal network (RPN) and none-maximum
suppression (NMS) modules can achieve better detection performance. DotD can also be
easily inserted into many anchor-based detectors, and DotD can be used as a threshold
for deciding positive and negative samples, which solves the problem that some positive
samples will be regarded as negative samples under the IOU.

Wang et al. [36] proposed the normalized Wasserstein distance (NWD) in order to
solve the problem of detecting very small targets in aerial images. Firstly, the bounding
box is modeled as a two-dimensional Gaussian distribution, and then the NWD is used to
measure the similarity of the Gaussian distribution. The biggest advantage of the NWD
is that it can measure the similarity of the distribution even if the two bounding boxes do
not overlap or contain each other. The biggest advantage of NWD is that the distribution
similarity can be measured even if the two bounding boxes do not overlap or include each
other. In addition, NWD is insensitive to targets with different scales, so it is suitable for
measuring the similarity between very small targets. NWD can be used in both single-
phase and multi-phase detectors, and it can be used instead of IOUs in label assignment,
NMS, and loss function to solve the problem of sensitivity to positional shifts in IOUs. The
problem of sensitivity to positional offset in IOU is solved.

3. Proposed Method
3.1. Overall Network Architecture

The NATCA YOLO network is specifically designed for small object detection in aerial
images. The overall architecture of the network consists of three main parts: the feature
extraction part (Backbone), the feature fusion part (Neck), and the prediction layer (Head).
The Backbone is responsible for extracting features from the input image and generating a
feature map. The Neck utilizes the features extracted at different levels in the Backbone
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stage to aggregate and reprocess them. The Head is responsible for detecting the location
and category of the object by utilizing the Neck to aggregate the refined feature maps. The
network structure of the NATCA YOLO is illustrated in Figure 1.

Input Backbone Output

In the feature extraction layer of NATCA-YOLOVS5, the Meta-ACON [37] activation
function is used instead of the SiLU activation function in the original network. Addition-
ally, behind the SPP layer, NAT is added and the features of different layers are fed into
the Neck part. After three rounds of up-sampling, the NAT is employed instead of the
prediction layer of the original network, enabling the detection of four different object sizes,
ranging from smallest to largest.

3.2. Neighborhood Attention Converter

For visual tasks, such as object detection, the image resolution is typically much higher
compared to classification tasks. In the case of aerial images, the resolution can be exception-
ally high. However, when the image resolution is high, the self-attention (SA) mechanism
in the vision Transformer (ViT) [38] introduces excessive complexity and computation,
negatively impacting the model’s performance in visual tasks. Convolutional networks
primarily benefit from their inductive bias, whereas SA is a global operation. Although the
multi-layer perceptron (MLP) layer provides some localization and translation invariance,
other inductive biases need to be compensated for by a large amount of data. Consequently,
the ViT model is less effective on the VisDrone dataset, which has limited samples.

The neighborhood attention Transformer (NAT) is a hierarchical vision converter
based on NA. The structure of the NAT network is depicted in Figure 2.

L layer Neighborhood | ] layer Multilayer

normalization Attention normalization Perceptron

3
\ 4

Figure 2. Neighborhood attention converter network architecture.

As a comparison to self-attention (SA), NAT adopts NA instead of SA, which restricts
the global attention mechanism to local attention within a local window. This modification
introduces more local bias properties and enhances NAT’s performance, even surpassing
CNN on small sample datasets like VisDrone. NAT also demonstrates superior feature
extraction capabilities and preserves more global context information compared to ViT. Fur-
thermore, NAT maintains the hierarchical pyramid structure, incorporating downsampling
operations after each layer to reduce size by half. Unlike non-overlapping convolutions,
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NAT employs small kernel convolutions for embedding and downsampling. The simplicity
and flexibility of neighborhood attention are illustrated in Figure 3.

Figure 3. The architecture of neighborhood attention.

The selection of the key vector, Key, and the value vector, Value, from a neighborhood
centered on the question vector, Query, is enforced by it. In comparison to SA, NA reduces
computational cost and introduces a local inductive bias similar to convolution. When the
neighborhood size reaches the maximum (i.e., the input image size), NA degrades to a
neighborhood attention mechanism. Similarly, NA degrades to SA when the neighborhood
size reaches its maximum (i.e., the size of the input image). NAT utilizes overlapping
convolutions to downsample the feature mapping between different levels. NA restricts
each pixel in the feature map to solely concentrate on its adjacent pixels. In this study, p(; ;)
is used to denote the neighborhood of a pixel at (i, j), which is a fixed-length set of indexes
of the closest pixel to (i, ). For size L x L,||o(i,j)|| = L?, and thus the single pixel on the
NA of a single pixel is defined as

kT Ny
Qi K, tBij

NA(X;;) = softmax( scale 0(i.j)

1)
where, for the input vector X, the problem vector Q, the key vector K, and the value vector
V are the linear projections of X, respectively; scale is the normalization scaling factor, and
B, is the relative positional bias, which is added to each attention based on the relative
position weights. This operation can be further extended to all pixels (i, j), resulting in a
form of localized attention.

When p; ; maps each pixel to all pixels, the

Kyijy = K (2)
Vo) =V ®3)

NA degenerates into SA with positional bias, and after removing the bias term, the
expression of SA can be obtained as

QK™
Vd

In this study, Q represents the problem vector, K represents the key vector, V represents
the value vector, and /d is the scaling parameter. d represents the dimension of Q and K.

The operation depicted in Figure 3 is iteratively performed for every pixel in the
feature map. For corner pixels that cannot be centered, the sense field is enlarged by
expanding the neighborhood in order to maintain its small size. For example, for L = 3,
each query will end with nine key—value pixels surrounding it (a 3 x 3 grid centered on
the query). For corner pixels, the neighborhood is also a 3 x 3 grid, but the query is not in
the center.

Attention(Q, K, V) = softmax(

4 4)

3.3. Coordinate Attention Mechanism

CNN is capable of effectively amalgamating feature information from various layers.
However, as the network becomes more complex, pooling operations lead to the loss
of intricate details between channels and feature positions. Following the convolution
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of the input feature map, each position encompasses information pertaining to a local
region of the original image. The convolutional block attention module (CBAM) computes
the maximum and average of multiple channels at each position to serve as weighting
coefficients. Nevertheless, this approach solely considers local region information and fails
to capture long-range dependencies. By employing the coordinate attention mechanism,
channel attention is decomposed into two parallel one-dimensional feature encodings.
Subsequently, these encodings contain directional information, enabling each feature map
to acquire longer-range information along a spatial direction within the input feature
maps. Consequently, the model can more accurately locate and identify object areas. The
coordinate attention mechanism is illustrated in Figure 4.

l Input

Residual

X Avg Pool Y Avg Pool

l l

Concat+Conv2d

l

BatchNorm+Non-linear

| o |

Conv2d Conv2d
Sigmoid Sigmoid
Re-weight
l Output

Figure 4. The architecture of coordinate attention.

To address the challenge of preserving position information while compressing it
into channel information for channel attention, we propose a novel approach. Firstly, we
perform one-dimensional global pooling on the two dimensions, allowing us to obtain
longer dependency information in one direction while still retaining position information
in the other direction. For input x, use (H, 1) and (1, W) to encode each channel along the
horizontal and vertical coordinates, respectively, that is

Zlg(h) = %Zo<i<wxc(h/ 1) )
1 .
z¢ (h) = ﬁzo<j<wxc(]r w) (6)

where z" (1) denotes the feature vector after global pooling of spatial information on the
channel along the horizontal direction, z¥ (1) denotes the feature vector after global pooling
of spatial information on the channel along the vertical direction, x. denotes the input
feature vector, W denotes the width of the feature map, and H denotes the height of the
feature map.

The two pooled vectors are concatenated along the spatial dimensions, followed by a
2D convolution to decrease the number of channels and model complexity. Subsequently,
regularization techniques and nonlinear activation functions are applied, which is

f=o(R([Z"2"))) )
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where f denotes the output feature map, J denotes the nonlinear activation function, F;
denotes the regularization, z" denotes the vector encoded along the horizontal coordinates,
and z% denotes the vector encoded along the vertical coordinates.

f is divided into two tensors (¢/r,1, H) and (c/r,1, w) along the spatial dimension,
and then recovered to the same number of channels as the input x. by convolution with the
same number of channels, and finally weighted by sigmoid normalization, that is

§" = a(F(f") 8)

8" = o(Fu(f*)) ©)

where ¢ denotes the horizontal component with the same number of channels as the
input x., F, denotes the horizontal regularization, f" is the horizontal component of f, g
denotes the vertical component with the same number of channels as the input x., F; is the
vertical component of f¥, and ¢ is the sigmoid activation function. Equating g" and g as
weights, attention along the horizontal and vertical directions is applied to the input tensor
simultaneously to obtain coordinate attention as

ve(ij) = xe(i, ) 2 (i) x g2 (j) (10)

where (i, j) denotes the coordinate attention at pixel (i,j), g(i) denotes the equiva-
lent weight in the horizontal direction, and g¥(j) denotes the equivalent weight in the
vertical direction.

In the deep feature space, the channel attention (CA) mechanism operates by employ-
ing two one-dimensional global pooling operations. This enables the network to acquire a
broader sensory field and encode precise spatial location information. Consequently, the
object region can be detected and localized with greater accuracy.

3.4. Activation Function

In order to enhance the model’s generalization ability, we substitute the activation
function in the convolution module of the original network with Meta-ACON [33], which
allows for the adaptive activation of neurons. The ReLU activation function is essentially
a MAX function, and its differentiable variant for smoothing maxima when considering
only two inputs can be represented as follows. The differentiable variant of the smoothed
maxima of ReLU is

ReLU(x) = MAX(0,x) == {0 ¥ <0 (11)
x x>0

It can be seen that the value and the gradient are both 0 in the part less than 0, while

the derivative remains 1 in the part greater than 0

Sp(11a(x), 115 (x)) =(11a(x) — 11(x))
*0[B(na(x) — 1mp(x))] + 1p(x)

where o denotes the sigmoid function; § is a smoothing factor, and Smooth Maximum is the
standard MAX function when  tends to infinity, and Smooth Maximum is the arithmetic
mean when § is zero. #,(x)and 7, (x) denote linear functions.

Sp(0, x) is the ReLU in the smooth form based on which the activate or not (ACON)
series of activation functions, of which ACON-C is one of the most widespread forms, is

(12)

ACON — C(x) =Sg(p1x, p2x) = (p1 — p2)x

(13)
* 0[B(p1 — p2)x] + pax
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Meta-ACON switches the activation to activate or not as the switching factor  controls
it to be non-linear or linear. The adaptive function for calculating channel-wise f is

,Bc =W WQZlezuvY:lxc,h,w (14)

where H denotes the height of the feature map, W denotes the width of the feature map,
X, . denotes the number of input feature vectors of ¢, height of 1 and width of w, ¢ is the
sigmoid activation function, and W1(c,c/r) and W2(c/r,c) are used to save the parameter
counts, with the number of channels being ¢, and the scaling parameter r.

Meta-ACON-C’s S is learned channel-wise, and a 1 x 1 convolution was used to
let each channel share a weight. However, 1 x 1 convolution increases the number of
parameters, so a scaling parameter r(r = 16 by default) is added and two 1 x 1 convolutions
are performed, reducing the number of parameters and allowing each channel to share
a weight.

4. Experimental Results and Analysis
4.1. Activation Function

The VisDrone2019-DET benchmark dataset comprises 10,209 still images captured by a
UAV platform in diverse scenarios. The dataset is divided into a training set (6471 images),
a validation set (548 images), a test set (1610 images), and a test challenge set (1580 images).
UAV-captured images exhibit significant scale variations, complex background interference,
and predominantly small objects (less than 32 pixels) with variable viewpoints. Further-
more, there are noticeable differences even for the same object due to these factors. The
dataset contains 10 categories of data, with an imbalanced distribution, where pedestrians
and cars constitute a larger portion of the data. The data distribution of VisDrone2019-DET
is illustrated in Figure 5. In this paper, all the models are trained on the training set and
evaluated on the test set.

16,000
14,000
12,000
10,000

8,000

instances

6,000
4,000
2,000

0

x
=1
H

= c
8 s
o >

bus

—
bicycle .

tricycle
motor

awning-tricycle

Figure 5. VisDrone2019-DET data distribution.

4.2. Evaluation Indicators

Similar to the evaluation metrics employed in MS COCO [11], this paper assesses
the performance of the detection algorithms using the mean accuracy (mAP). The mAP
is determined by averaging the results obtained at 10 intersection and intersection over
union (IOU) thresholds, ranging from 0.50 to 0.95 with a uniform step size of 0.05 across all
categories. It serves as the primary metric for evaluating the performance of the algorithm
in object detection.

4.3. Contrast Test and Ablation Test

The algorithm presented in this paper is implemented using the PyTorch deep learning
framework and YOLOvVS5. The NVIDIA GeForce RTX 2080Ti 11GB graphics card is used
for model training. Stochastic gradient descent (SGD) is employed as the optimizer with
a weight decay of 0.0005. The initial training includes three rounds of warm-up training,
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where the momentum of SGD is set to 0.8. The learning rate is updated using a one-
dimensional linear difference during warm-up. After warm-up, a cosine annealing function
is used to reduce the learning rate, starting from an initial value of 0.02 and reaching a
minimum value of 0.2 x 0.01. The model is trained for 100 rounds.

To evaluate the effectiveness of the NATCA YOLO model in small object detection
tasks in aerial images, comparative testing is conducted using Faster R-CNN, RetinaNet [39],
SSD, FCOS [40], DETR [41], and TPH-YOLOVS5 [42] detection networks on the test set. The
mean average precision (mAP) is used as the main evaluation metric, and the comparison
results are shown in Table 1.

Table 1. Comparison results of the average accuracy of each model.

Model mAP%
Faster R-CNN 19.32
RetinaNet 21.02
SSD 20.36
FCOS 21.14
DETRZ 38.02
TPH-YOLOvV5 39.10
NATCA-YOLO(ours) 42.00

From Table 1, it can be observed that the NATCA-YOLOvV5 model exhibits stronger
generalization ability compared to traditional CNN models.

To analyze the impact of each module on the NATCA-YOLOv5 model, ablation exper-
iments are performed to assess the effects of the coordinate attention module, coordinate
attention mechanism and Meta-ACON activation function. The average accuracy results
for each model are presented in Tables 2 and 3.

Table 2. Results of ablation experiments with average accuracy for each model.

Model mAP%
YOLOv5 28.9
YOLOV5+NAT 39.3
YOLOvV5+NAT+CBAM 39.7
YOLOvV5+NAT+CA 41.2

Table 3. Results of ablation experiments with isolation model.

Model mAP%
NATCA-YOLO 42.0
Our-NAT 39.3 (—2.7)
Our-ACON 41.2 (—0.8)
Our-CA 40.6 (—1.4)

As shown in Table 2, YOLOV5 serves as the basic model structure without the NAT
module and coordinate attention, using the Meta-ACON [33] activation function in the
convolution block. Incorporating the NAT module into the last layer of the Backbone and
replacing the prediction layer of the original network with the NAT module leads to a 10.4%
improvement in AP metrics compared to YOLOVS5. The addition of the coordinate attention
module (CA) improves AP metrics by 1.5% compared to the CBAM module. Replacing the
activation function of the convolutional layer in the original network with the Meta-ACON



Information 2024, 15, 414

11 of 16

activation function further boosts the AP metric to 42%. These experiments demonstrate
that the integration of the NAT module and coordinate attention, along with the use of the
Meta-ACON activation function, enhances the accuracy and generalization ability of the
model in small object detection tasks on a limited aerial image dataset.

The accuracy vs. recall (PR) curve for the model predictions is illustrated in Figure 6.

peope 0353 “ pedestrion 0459
people 0.351

—— bicycle 0.145

—— car0.781

—— van 0.415

—— truck 0.398
tricycle 0.301

— awning-tricycle 0.150
bus 0.539
motor 0.432

= all classes 0.397 MAP@0.5

—— bicycle 0.189
—— car 0.768
—— van 0.420
—— truck 0.365
tricycle 0.271
—— awning-tricycle 0.134
bus 0.530
motor 0.442
= all classes 0.393 mAP@0.5

—— pedestrian 0.486

—— pedestrian 0.487
people 0.384

people 0.389
—— bicycle 0.208
—— car0.793
—— van0.437
— truck 0.391
tricycle 0.290
—— awning-tricycle 0.166
bus 0.562
motor 0.474
= all classes 0.420 MAP@0.5

—— bicycle 0.182
— car0.789
—— van 0.426
— truck 0.391
tricycle 0.274
—— awning-tricycle 0.149
bus 0.563
motor 0.472
= all classes 0.412 MAP@0.5

(d)

Figure 6. Accuracy vs. recall curves for model predictions (the y-axis is precision and the x-axis is
recall). (a) PR Curves for YOLOvV5 + NAT; (b) PR Curves For YOLOv5 + NAT + CBAM,; (c¢) PR Curves
for YOLOV5 + NAT + CA; (d) PR Curves for YOLOv5 + NAT + CA NATCA YOLO.

As illustrated in Figure 6, the addition of the NAT module to the YOLOv5 network
resulted in AP metrics of 39.3% for all categories, with 76.8% for cars and 46% for pedestri-
ans. This performance is considered good, especially considering the small sample dataset.
The inclusion of the convolutional block attention module did not significantly improve
the overall performance, with an average accuracy of 39.7%. However, the addition of coor-
dinate attention in the deep network allowed for information exchange not only between
different channels but also within the same channels, as well as obtaining longer-range
information through position encoding. This led to an improvement in the AP metrics for
all categories, reaching 41.2%, with 78.9% for cars and 48.6% for pedestrians, representing
a 2.1% and 2.6% improvement compared to Figure 6a

To further enhance the detection accuracy, the activation function in the original
network’s convolutional block was replaced with Meta-ACON, resulting in the achievement
of AP metrics of 42% for NATCA YOLO in all categories. This improvement is particularly
significant for objects with fewer samples and similar categories, such as bicycles, tricycles,
and awning tricycles.

We split the Visdrone dataset, sampled without repetition, into three parts, Fold1,
Fold2, and Fold3, taking turns using two of them as the training data and one as the test
data and conducting unrepeated experiments in different models.

As shown in Table 4, model3 gives the best results, so we follow the results from this
training on the test set.
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Table 4. k-fold cross-validation results for NATCA-YOLO.

Model Model 1 Model 2 Model 3
mAP% 47.5 48.3 51.3

Figure 7 clearly shows the detection instance performance of several models on the
same dataset. For complex background images, small target images, dense target images,
and images with uneven target distribution, such as the circular obstacle in the middle of
the first column of images (marked with a red circle in the figure), VistrongerDet, ViT-YOLO,
and TPH-YOLOv5 models have all undergone false detections. The model proposed in this
paper achieved accurate detection results.

(a) Aerial image

(b) VistrongerDet

(¢) VIT-YOLO

(d) TPH-YOLOvS

(e) NATCA-YOLO (ours)

Figure 7. Comparison of detection performance of different models on the VisDrone Net dataset.

The detection results of NATCA YOLO in various scenarios are presented in Figure 7.

Table 5 shows the comparison of the quantitative results of different aerial photog-
raphy small target detection models on the VisDrone dataset, and compared with other
mainstream aerial photography small target detection models, the method proposed in this
paper has better detection performance.

Table 5. Quantitative comparison of detection results of different models on VisDrone dataset.

Model mAP% AP50%
VistrongerDet [43] 33.72 56.42
ViT-YOLO [44] 38.6 62.81
TPH-YOLOvV5 39.18 63.3
NATCA-YOLO(ours) 42 66.27

From Figure 8, it is evident that the model proposed in this paper effectively detects
dense small objects in Figure 8a, eliminates the interference of the rectangular green
background in Figure 8b, and accurately detects objects of different scales in Figure 8c. In
summary, the NATCA YOLO model demonstrates accurate localization and identification
of objects, even in the presence of challenges such as complex background interference,
small objects, and a wide range of object sizes.
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We analyze the inference speed of our method and other methods for different input
sizes and on the same platform. Our inference speed is measured in “milliseconds”. We test
it on the same platform NVIDIA GeForce 2080 Ti. In addition, we set the size of the input
images to small (1 x 3 x 320 x 320), medium (1 x 3 x 640 x 640), and large (1 x 3 x 960 x 960).
The final results are shown in Table 6. The results show that our model improves the
detection accuracy while the detection speed is well maintained.

(b)

Figure 8. Detection results of NATCA YOLO in different scenarios. (a) Small intensive objects;
(b) complex context; (c) multiple object sizes.

Table 6. Quantitative comparison results of the inference efficiency among different methods on
different input sizes (320 x 320, 640 x 640, 960 x 960).

Model 320 x 320 640 x 640 960 x 960
. 12.2 ms 16.5 ms 31.1 ms
VIT-YOLO (100 FPS) (73 FPS) (32 FPS)
8.4 ms 12.5ms 26 ms
TPH-YOLOV5 (124 FPS) (97 FPS) (45 FPS)
9.3 ms 14.6 ms 28.1 ms
NATCA-YOLO(ours) (109 FPS) (83 FPS) (37 FPS)

5. Limitation and Future Work

Although the proposed neighborhood attention Transformer aerial small target de-
tection method in this paper reflects a more excellent performance in the small target
detection task but the method in this paper is not ideal in foggy weather. Similar target
detections affect similar targets due to more similar features, resulting in poor detection.
Therefore, it is hoped that in future work we will try to improve the network prediction
classifier to solve the problem of similar target detection difficulty through multi-level label
prediction. Additionally, the experimental results obtained in the computer environment
may differ when the model is deployed on the UAV due to limited computational and
space resources. Therefore, further research should focus on improving the algorithm to
increase the detection accuracy of similar objects and designing a lightweight network
structure to reduce model complexity while maintaining high detection accuracy.

6. Conclusions

This paper investigates deep learning-based small object detection for aerial images,
analyzing the basic principles and limitations of general object detection models and exist-
ing aerial object detection models. Furthermore, it examines the characteristics of aerial
images, such as the presence of numerous small objects, a wide range of object sizes, and
complex backgrounds. By comparing existing aerial object detection algorithms, a new
network architecture called NATCA is proposed based on the YOLOv5 model. To address
the issue of poor detection accuracy of small objects, a neighborhood attention converter
is added, and feature information is extracted from a shallower layer of the network for
prediction. Additionally, coordinate attention is incorporated to eliminate interference
from complex background information and retain global and contextual information. The
activation function of the original network is also improved to enhance the model’s general-
ization ability. Experimental results demonstrate that the proposed network model exhibits
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stronger visual information, feature extraction ability, and generalization ability compared
with the generalized object model, resulting in significantly improved detection accuracy.
UAVs offer advantages such as low cost, high flexibility, and simple operation, and their
application scenarios are more diverse compared to aerial remote sensing technology. How-
ever, directly applying generalized object detection models to UAVs is less effective due to
the diverse viewpoints of aerial images. Therefore, studying object detection algorithms
specifically applicable to UAVs is of great significance for their applications.
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