Bend-Net: Bending Loss Regularized Multitask Learning Network for Nuclei Segmentation in Histopathology Images
Abstract
:1. Introduction
2. Methods
2.1. Bending Loss
2.2. Multitask Learning Network
2.3. Loss Function
3. Experimental Results and Discussion
3.1. Data Sets and Evaluation Metrics
3.2. Implementation and Training
3.3. Effectiveness of the Network Architecture
3.4. Effectiveness of the Bending Loss
3.5. Parameter Tuning
3.6. Performance Comparison of State-of-the-Art Approaches
3.7. Overlapped Nuclei Segmentation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, L.; Long, L.R.; Antani, S.; Thoma, G.R. Histology Image Analysis for Carcinoma Detection and Grading. Comput. Methods Programs Biomed. 2012, 107, 538–556. [Google Scholar] [CrossRef] [PubMed]
- Pantanowitz, L. Digital Images and the Future of Digital Pathology. J. Pathol. Inform. 2010, 1, 15. [Google Scholar] [CrossRef] [PubMed]
- Aeffner, F.; Zarella, M.D.; Buchbinder, N.; Bui, M.M.; Goodman, M.R.; Hartman, D.J.; Lujan, G.M.; Molani, M.A.; Parwani, A.V.; Lillard, K. Introduction to Digital Image Analysis in Whole-Slide Imaging: A White Paper from the Digital Pathology Association. J. Pathol. Inform. 2019, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, H.; Zhou, X. Nuclei Segmentation Using Marker-Controlled Watershed, Tracking Using Mean-Shift, and Kalman Filter in Time-Lapse Microscopy. IEEE Trans. Circuits Syst. I Regul. Pap. 2006, 53, 2405–2414. [Google Scholar] [CrossRef]
- Cheng, J.; Rajapakse, J.C. Segmentation of Clustered Nuclei With Shape Markers and Marking Function. IEEE Trans. Biomed. Eng. 2009, 56, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Madabhushi, A. An Integrated Region-, Boundary-, Shape-Based Active Contour for Multiple Object Overlap Resolution in Histological Imagery. IEEE Trans. Med. Imaging 2012, 31, 1448–1460. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 234–241. ISBN 9783319245744. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Xing, F.; Xie, Y.; Yang, L. An Automatic Learning-Based Framework for Robust Nucleus Segmentation. IEEE Trans. Med. Imaging 2016, 35, 550–566. [Google Scholar] [CrossRef]
- Kumar, N.; Verma, R.; Sharma, S.; Bhargava, S.; Vahadane, A.; Sethi, A. A Dataset and a Technique for Generalized Nuclear Segmentation for Computational Pathology. IEEE Trans. Med. Imaging 2017, 36, 1550–1560. [Google Scholar] [CrossRef]
- Naylor, P.; Laé, M.; Reyal, F.; Walter, T. Segmentation of Nuclei in Histopathology Images by Deep Regression of the Distance Map. IEEE Trans. Med. Imaging 2019, 38, 448–459. [Google Scholar] [CrossRef]
- Oda, H.; Roth, H.R.; Chiba, K.; Sokolić, J.; Kitasaka, T.; Oda, M.; Hinoki, A.; Uchida, H.; Schnabel, J.A.; Mori, K. BESNet: Boundary-Enhanced Segmentation of Cells in Histopathological Images. In Lecture Notes in Computer Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 228–236. ISBN 9783030009342. [Google Scholar]
- Chen, H.; Qi, X.; Yu, L.; Heng, P.-A. DCAN: Deep Contour-Aware Networks for Accurate Gland Segmentation. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Vu, Q.D.; Graham, S.; Kurc, T.; To, M.N.N.; Shaban, M.; Qaiser, T.; Koohbanani, N.A.; Khurram, S.A.; Kalpathy-Cramer, J.; Zhao, T.; et al. Methods for Segmentation and Classification of Digital Microscopy Tissue Images. Front. Bioeng. Biotechnol. 2019, 7, 433738. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Xie, W.; Zhang, Y.; Lu, Y. RIC-Unet: An Improved Neural Network Based on Unet for Nuclei Segmentation in Histology Images. IEEE Access 2019, 7, 21420–21428. [Google Scholar] [CrossRef]
- Zhou, Y.; Onder, O.F.; Dou, Q.; Tsougenis, E.; Chen, H.; Heng, P.-A. CIA-Net: Robust Nuclei Instance Segmentation with Contour-Aware Information Aggregation. In Information Processing in Medical Imaging; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 682–693. ISBN 9783030203511. [Google Scholar]
- Alemi Koohbanani, N.; Jahanifar, M.; Gooya, A.; Rajpoot, N. Nuclear Instance Segmentation Using a Proposal-Free Spatially Aware Deep Learning Framework. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2019; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 622–630. ISBN 9783030322397. [Google Scholar]
- Graham, S.; Rajpoot, N.M. SAMS-NET: Stain-Aware Multi-Scale Network for Instance-Based Nuclei Segmentation in Histology Images. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Qu, H.; Yan, Z.; Riedlinger, G.M.; De, S.; Metaxas, D.N. Improving Nuclei/Gland Instance Segmentation in Histopathology Images by Full Resolution Neural Network and Spatial Constrained Loss. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2019; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 378–386. ISBN 9783030322397. [Google Scholar]
- Graham, S.; Vu, Q.D.; Raza, S.E.A.; Azam, A.; Tsang, Y.W.; Kwak, J.T.; Rajpoot, N. Hover-Net: Simultaneous Segmentation and Classification of Nuclei in Multi-Tissue Histology Images. Med. Image Anal. 2019, 58, 101563. [Google Scholar] [CrossRef]
- Gudhe, N.R.; Kosma, V.-M.; Behravan, H.; Mannermaa, A. Nuclei Instance Segmentation from Histopathology Images Using Bayesian Dropout Based Deep Learning. BMC Med. Imaging 2023, 23, 162. [Google Scholar] [CrossRef] [PubMed]
- Kadaskar, M.; Patil, N. Image Analysis of Nuclei Histopathology Using Deep Learning: A Review of Segmentation, Detection, and Classification. SN Comput. Sci. 2023, 4, 698. [Google Scholar] [CrossRef]
- Canham, P.B. The Minimum Energy of Bending as a Possible Explanation of the Biconcave Shape of the Human Red Blood Cell. J. Theor. Biol. 1970, 26, 61–81. [Google Scholar] [CrossRef] [PubMed]
- Duncan, J.S.; Lee, F.A.; Smeulders, A.W.M.; Zaret, B.L. A Bending Energy Model for Measurement of Cardiac Shape Deformity. IEEE Trans. Med. Imaging 1991, 10, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Liu, C.; Wang, X. Simulating the Deformation of Vesicle Membranes under Elastic Bending Energy in Three Dimensions. J. Comput. Phys. 2006, 212, 757–777. [Google Scholar] [CrossRef]
- Stuhmer, J.; Schroder, P.; Cremers, D. Tree Shape Priors with Connectivity Constraints Using Convex Relaxation on General Graphs. In Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; IEEE: Piscataway, NJ, USA, 2013. [Google Scholar]
- Young, I.T.; Walker, J.E.; Bowie, J.E. An Analysis Technique for Biological Shape. Inf. Control 1974, 25, 357–370. [Google Scholar] [CrossRef]
- Verbeek, P.W.; Van Vliet, L.J. Curvature and Bending Energy in Digitized 2D and 3D Images. In Proceedings of the 8th Scandinavian Conference on Image Analysis, Tromso, Norway, 25–28 May 1993. [Google Scholar]
- Bergou, M.; Wardetzky, M.; Robinson, S.; Audoly, B.; Grinspun, E. Discrete Elastic Rods. ACM Trans. Graph. 2008, 27, 1–12. [Google Scholar] [CrossRef]
- Wang, H.; Xian, M.; Vakanski, A. Bending Loss Regularized Network for Nuclei Segmentation in Histopathology Images. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Kumar, N.; Verma, R.; Anand, D.; Zhou, Y.; Onder, O.F.; Tsougenis, E.; Chen, H.; Heng, P.-A.; Li, J.; Hu, Z. A Multi-Organ Nucleus Segmentation Challenge. IEEE Trans. Med. Imaging 2019, 39, 1380–1391. [Google Scholar] [CrossRef] [PubMed]
- Dice, L.R. Measures of the Amount of Ecologic Association between Species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Kirillov, A.; He, K.; Girshick, R.; Rother, C.; Dollar, P. Panoptic Segmentation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Vahadane, A.; Peng, T.; Sethi, A.; Albarqouni, S.; Wang, L.; Baust, M.; Steiger, K.; Schlitter, A.M.; Esposito, I.; Navab, N. Structure-Preserving Color Normalization and Sparse Stain Separation for Histological Images. IEEE Trans. Med. Imaging 2016, 35, 1962–1971. [Google Scholar] [CrossRef] [PubMed]
- Raza, S.E.A.; Cheung, L.; Shaban, M.; Graham, S.; Epstein, D.; Pelengaris, S.; Khan, M.; Rajpoot, N.M. Micro-Net: A Unified Model for Segmentation of Various Objects in Microscopy Images. Med. Image Anal. 2019, 52, 160–173. [Google Scholar] [CrossRef] [PubMed]
Methods | Metrics | |||||
---|---|---|---|---|---|---|
AJI | Dice | RQ | SQ | PQ | AJIO | |
Instance-Net | 0.371 | 0.841 | 0.603 | 0.771 | 0.471 | 0.296 |
HoVer-Net | 0.545 | 0.840 | 0.674 | 0.773 | 0.522 | 0.520 |
Ours-OHV * | 0.559 | 0.847 | 0.692 | 0.774 | 0.537 | 0.531 |
Ours-skip * | 0.565 | 0.850 | 0.697 | 0.779 | 0.544 | 0.537 |
Methods | w/o Bending Loss | Lbe v1 * | Lbe v2 * | Metrics | |||||
---|---|---|---|---|---|---|---|---|---|
AJI | Dice | RQ | SQ | PQ | AJIO | ||||
HoVer-Net | ✓ | 0.545 | 0.840 | 0.674 | 0.773 | 0.522 | 0.520 | ||
✓ | 0.552 | 0.844 | 0.683 | 0.774 | 0.530 | 0.523 | |||
✓ | 0.559 | 0.846 | 0.690 | 0.776 | 0.537 | 0.528 | |||
Ours | ✓ | 0.565 | 0.850 | 0.697 | 0.779 | 0.544 | 0.537 | ||
✓ | 0.570 | 0.847 | 0.701 | 0.777 | 0.547 | 0.541 | |||
✓ | 0.578 | 0.851 | 0.709 | 0.781 | 0.555 | 0.552 |
Methods | CoNSeP | MoNuSegv1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
AJI | Dice | RQ | SQ | PQ | AJI | Dice | RQ | SQ | PQ | |
FCN8 | 0.289 | 0.782 | 0.426 | 0.697 | 0.297 | 0.426 | 0.779 | 0.592 | 0.708 | 0.421 |
U-Net | 0.482 | 0.719 | 0.490 | 0.668 | 0.328 | 0.520 | 0.722 | 0.635 | 0.675 | 0.431 |
SegNet | 0.461 | 0.699 | 0.482 | 0.667 | 0.322 | 0.508 | 0.797 | 0.672 | 0.742 | 0.500 |
DCAN | 0.408 | 0.748 | 0.492 | 0.697 | 0.342 | 0.515 | 0.778 | 0.659 | 0.718 | 0.473 |
DIST | 0.489 | 0.788 | 0.500 | 0.723 | 0.363 | 0.560 | 0.793 | 0.618 | 0.724 | 0.449 |
Micro-Net | 0.531 | 0.784 | 0.613 | 0.751 | 0.461 | 0.581 | 0.785 | 0.700 | 0.737 | 0.517 |
HoVer-Net | 0.545 | 0.840 | 0.674 | 0.773 | 0.522 | 0.606 | 0.818 | 0.765 | 0.767 | 0.588 |
BEND | 0.553 | 0.846 | 0.683 | 0.776 | 0.530 | 0.627 | 0.827 | 0.770 | 0.766 | 0.590 |
Bend-Net | 0.578 | 0.851 | 0.709 | 0.781 | 0.555 | 0.635 | 0.832 | 0.780 | 0.771 | 0.601 |
CoNSeP | MoNuSegv1 | |||
---|---|---|---|---|
Methods | AJIO | ACCO | AJIO | ACCO |
FCN8 | 0.350 | 0.328 | 0.337 | 0.358 |
U-Net | 0.486 | 0.395 | 0.472 | 0.464 |
SegNet | 0.411 | 0.262 | 0.407 | 0.406 |
DCAN | 0.417 | 0.293 | 0.427 | 0.423 |
DIST | 0.542 | 0.476 | 0.543 | 0.536 |
Micro-Net | 0.513 | 0.495 | 0.513 | 0.504 |
HoVer-Net | 0.520 | 0.558 | 0.542 | 0.613 |
BEND | 0.529 | 0.561 | 0.553 | 0.627 |
Bend-Net | 0.552 | 0.586 | 0.570 | 0.656 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Vakanski, A.; Shi, C.; Xian, M. Bend-Net: Bending Loss Regularized Multitask Learning Network for Nuclei Segmentation in Histopathology Images. Information 2024, 15, 417. https://doi.org/10.3390/info15070417
Wang H, Vakanski A, Shi C, Xian M. Bend-Net: Bending Loss Regularized Multitask Learning Network for Nuclei Segmentation in Histopathology Images. Information. 2024; 15(7):417. https://doi.org/10.3390/info15070417
Chicago/Turabian StyleWang, Haotian, Aleksandar Vakanski, Changfa Shi, and Min Xian. 2024. "Bend-Net: Bending Loss Regularized Multitask Learning Network for Nuclei Segmentation in Histopathology Images" Information 15, no. 7: 417. https://doi.org/10.3390/info15070417
APA StyleWang, H., Vakanski, A., Shi, C., & Xian, M. (2024). Bend-Net: Bending Loss Regularized Multitask Learning Network for Nuclei Segmentation in Histopathology Images. Information, 15(7), 417. https://doi.org/10.3390/info15070417