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Abstract: Separating overlapped nuclei is a significant challenge in histopathology image analysis.
Recently published approaches have achieved promising overall performance on nuclei segmentation;
however, their performance on separating overlapped nuclei is limited. To address this issue, we
propose a novel multitask learning network with a bending loss regularizer to separate overlapped
nuclei accurately. The newly proposed multitask learning architecture enhances generalization
by learning shared representation from the following three tasks: instance segmentation, nuclei
distance map prediction, and overlapped nuclei distance map prediction. The proposed bending
loss defines high penalties to concave contour points with large curvatures, and small penalties
are applied to convex contour points with small curvatures. Minimizing the bending loss avoids
generating contours that encompass multiple nuclei. In addition, two new quantitative metrics,
the Aggregated Jaccard Index of overlapped nuclei (AJIO) and the accuracy of overlapped nuclei
(ACCO), have been designed to evaluate overlapped nuclei segmentation. We validate the proposed
approach on the CoNSeP and MoNuSegv1 data sets using the following seven quantitative met-
rics: Aggregate Jaccard Index, Dice, Segmentation Quality, Recognition Quality, Panoptic Quality,
AJIO, and ACCO. Extensive experiments demonstrate that the proposed Bend-Net outperforms
eight state-of-the-art approaches.

Keywords: histopathology images analysis; nuclei segmentation; bending loss; multitask learning;
cancer diagnosis

1. Introduction

The histopathology nuclei segmentation aims to extract all nuclei from histopathology
images, and it provides reliable evidence for cancer evaluation. Conventionally, patholo-
gists examine the shapes and distributions of the nuclei under microscopes to determine
the carcinoma and the malignancy level [1]. However, the large number of nuclei makes
the whole process time-consuming, with low throughput, and prone to human error. Au-
tomated nuclei segmentation is highly desirable in clinical practice. Recently, with the
growing interest in digital pathology, the whole slide scanner provides a solution that
transfers glass slides digitally to whole slide images [2].

In an H&E-stained histopathology image, nuclei are the first and the most visible
structures among tissues. Accurate nuclei segmentation is essential in further quantita-
tive analysis [3], e.g., movement tracking, morphological changing, and nuclei counting.
Many computational approaches have been proposed for automatic nuclei segmentation
in histopathology images. Some conventional approaches [4–6] utilized thresholding and
watershed algorithms to segment nuclei, but these approaches are not robust in handling
images with various nucleus types, fat tissue, and staining procedures. In recent years,
deep learning-based approaches have been thriving in numerous biomedical image pro-
cessing tasks [7–9], and have achieved promising results in nuclei segmentation [10–23].
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Xing et al. [10] proposed a convolution neural network (CNN) to produce probability
maps, and improved the robustness by using postprocessing, e.g., distance transforma-
tion, H-minima thresholding, and a region growing algorithm. Kumar et al. [11] demon-
strated a three-class (instance, boundary, and background) CNN that computes the label
for each pixel to segment the nuclei. Naylor et al. [12] constructed a DIST-map that
utilized the regression output of nuclei distance maps for accurate nuclei segmentation.
Although these methods achieved better results compared to conventional approaches, it
is still challenging to segment nuclei accurately due to the existence of a large number of
overlapped nuclei.

Overlapped nuclei segmentation is challenging because of the lack of clear boundaries
among nuclei, similar background textures, and large size and morphology variations.
In recently published deep learning–based approaches, three main strategies have been
proposed to address this challenge. The first strategy utilized the neural network to split
the overlapped nuclei by generating both nuclei regions and boundaries. For example,
Kumar et al. [11] proposed a three-classes CNN, including instances, boundaries, and back-
ground to segment the overlapped nuclei. Chen et al. [14] proposed a multitask learning
framework that outputs instance and boundary maps in separate branches. Vu et al. [15]
constructed a multiscale deep residual network with instances and boundary classes to
segment nuclei. The second strategy integrated features from overlapped nuclei to im-
prove the overall segmentation performance. Zhou et al. [17] proposed the CIA-Net that
utilized spatial and texture dependencies between nuclei and contours to improve the
robustness of nuclei segmentation. Koohbanahi et al. [18] proposed a SpaNet that cap-
tures spatial features in a multiscale neural network. Graham et al. [19] proposed a new
weighted cross-entropy loss that was sensitive to the Hematoxylin stain. Qu et al. [20]
constructed a new cross-entropy loss to learn spatial features for improving localization
accuracy. The third strategy utilized the Watershed algorithm to segment the overlapped
nuclei. Naylor et al. [12] constructed a regression network that generated markers for the
Watershed algorithm to segment overlapped nuclei. Graham et al. [21] proposed the HoVer-
Net architecture to output the instance map and horizontal and vertical nuclei distance
maps for obtaining the markers of the Watershed algorithm. According to the reported
results, these approaches achieved better overall performance than conventional methods,
but their ability to separate overlapped nuclei is still limited (Figure 1). Gudhe et al. [22]
proposed the Bayesian approximation with Monte Carlo dropout during the inference to
estimate the uncertainty of a deep learning model for nuclei segmentation.
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To address the challenges above, we propose a novel bending loss regularized deep
multitask network for nuclei segmentation. First, the proposed multitask network consists of
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three decoder branches as follows: (1) instance segmentation branch, (2) boundary-distance
branch for all nuclei, and (3) boundary-distance branch for overlapped nuclei. The third
branch is designed to identify overlapped nuclei. Second, we propose the bending energy-
based regularizer to penalize large curvatures of nuclei contours. In histopathology images,
the curvatures of nucleus contour points change smoothly; however, if one contour contains
two or multiple overlapped or touching nuclei, their touching points on the contour will
have sharp curvature changes (Figure 2). Inspired by this observation, we develop the
bending loss to generate large penalties for contour points with large curvatures. Third,
we propose two new metrics to evaluate overlapped nuclei segmentation. Previous ap-
proaches evaluate overlapped nuclei segmentation using metrics for overall segmentation
performance, which hides the real performance of the overlapped nuclei segmentation.
Compared to the closest work, HoVer-Net [21], both the proposed approach and the HoVer-
Net follow the multitask learning architecture and use ResNet-50 as the building blocks.
There are two major differences between the two approaches as follows: (1) the proposed
method introduced a new decoder branch to give focus on overlapped nuclei; and (2) we
propose the bending loss to penalize large curvatures of nuclei contours.
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The rest of the paper is organized as follows. Section 2 describes the proposed method,
including the bending loss, multitask learning network, and the loss function of the pro-
posed architecture. Section 3 firstly describes the data sets and evaluation metrics in
our experiments, then presents the implementation and training process. The results are
discussed in Sections 3.3–3.7. Section 4 is the conclusion and future work.

2. Methods

The proposed method, namely Bend-Net, consists of the following two key compo-
nents: the bending loss and multitask learning architecture. First, we propose a bending
energy-based regularizer for penalizing touching nuclei points. Second, we propose a
multitask learning network with three decoder branches that focus on overlapped nuclei
contours. The final loss function consists of regular segmentation loss [21], overlapped
nuclei loss, and bending loss.

2.1. Bending Loss

Bending energy has been widely applied in measuring the shapes of biological struc-
tures, e.g., blood cells [24], cardiac [25], vesicle membranes [26], and blood vessels [27].
Young et al. [28] used the chain-code representations to model bending energy.
Verbeek et al. [29] used the derivative-of-Gaussian filter to model bending energy in
the grayscale image for motion tracking. Bergou et al. [30] modeled the discrete
curvature and bending loss both in kinematic and dynamic treatment to solve the
smoothness problem.

For 2D digital images, a contour is composed of discrete pixels, and the curvature of
a contour point is computed by using the vectors created by neighboring points on the
contour. For histopathology images, a nucleus usually has a smooth contour, and the points
on the contour have small curvature changes; the points on the contour with large curvature
have a high probability of being the touching points of two/multiple nuclei (Figure 2).
To split the touching nuclei, we define the bending loss that gives high penalties to the
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contour points with large curvatures, and small penalties to points with small curvatures.
The proposed total loss is given by

L = L0 + α·Lbe (1)

where L0 refers to conventional segmentation loss (Section 2.3); Lbe denotes the proposed
bending loss; and the parameter α controls the contribution of the bending loss. Let
C = {ci}m

i=1 be the set of contour points of nuclei in an image, and Lbe is defined by

Lbe(C) =
1
m

m

∑
i=1

BE(i) (2)

where BE(i) is the discrete bending energy at the point ci,

BE(i) =
κ(i)2((1 − δ(ci)) + δ(ci)·µ)
|v(i, i + 1)|+ |v(i − 1, i)| , (3)

κ(i) =
2|v(i − 1, i)× v(i, i + 1)|

|v(i − 1, i)||v(i − 1, i)|+ v(i − 1, i)·v(i, i + 1)
(4)

In Equation (3), δ(ci) is 1 if ci is a concave contour point, and 0 if ci is a convex point; κ(i)
is the curvature at ci. For three consecutive pixels on a nucleus boundary with coordinates xi−1,
xi and xi+1, v(i − 1, i) is the edge vector from point i − 1 to i, such that v(i − 1, i) = xi − xi−1;
and v(i, i + 1) is the edge vector from i to i + 1, such that v(i, i + 1) = xi+1 − xi. Operator |·|
calculates the length of a vector and µ defines the weight for concave contour points.

The 8-neighborhood system is applied to search neighbors for contour points. Ideally,
a contour point only has two neighboring points, and their coordinates are used to calculate
the edge vectors in Equations (3) and (4). As shown in Figure 3, a point with eight neighbors
has 28 combinations of possible curve patterns. All curve patterns are divided into five
groups; in each group, the concave points and the convex points have different discrete
bending loss values. In the first group, the four patterns construct straight-line segments,
and their bending losses are all 0 s. The second group shows patterns with a 3π/4 angle
between edge vectors, and their bending losses are relatively small. In the last group, the
eight patterns have large curvatures, and their bending losses are the largest in all patterns.
The third and fourth groups illustrate patterns with the same angles between edge vectors,
but they have different bending loss due to the different vector lengths.
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Figure 3. Discrete bending losses for different curve patterns. In the value pairs “A/B,” “A” represents
the convex bending loss for the center point, and “B” denotes the concave bending loss. The value
rounds to two decimal places.

To determine the concave and convex points, the midpoint of two extended neighbor-
ing points is calculated. If the midpoint is out of the predicted nucleus, we define it as a
concave point; otherwise, the point is a convex point. The concave points are more likely to
be overlapped contour points, and the convex points are usually regular/normal points.

Equation (3) gives a larger penalty to concave points. The previous approach [31]
calculated bending loss using curvature directly. Points with the same curvatures could
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be convex or concave; and convex points are more likely regular contour points, and
concave points are likely to be overlapped contour points. The previous approach cannot
distinguish convex and concave contour points and tends to over-segment nuclei.

A sample of the overlapped nucleus contour is shown in Figure 4. The red dots
highlight the concave points, and the green dots highlight the convex points. The concave
points’ bending loss values are 28.28. The midpoints of green dots are inside of the predicted
nucleus, and they are convex points; their bending loss values are less than 1.41. In Figure 4,
the concave points with a bending loss 28.28 and the convex points with a bending loss
1.41 have the same curve pattern; however, the concave points produce 20 times as much
loss as the convex points.

Information 2024, 15, x FOR PEER REVIEW 5 of 15 
 

 

a concave point; otherwise, the point is a convex point. The concave points are more likely 
to be overlapped contour points, and the convex points are usually regular/normal points. 

Equation (3) gives a larger penalty to concave points. The previous approach [31] 
calculated bending loss using curvature directly. Points with the same curvatures could 
be convex or concave; and convex points are more likely regular contour points, and con-
cave points are likely to be overlapped contour points. The previous approach cannot dis-
tinguish convex and concave contour points and tends to over-segment nuclei. 

A sample of the overlapped nucleus contour is shown in Figure 4. The red dots high-
light the concave points, and the green dots highlight the convex points. The concave 
points’ bending loss values are 28.28. The midpoints of green dots are inside of the pre-
dicted nucleus, and they are convex points; their bending loss values are less than 1.41. In 
Figure 4, the concave points with a bending loss 28.28 and the convex points with a bend-
ing loss 1.41 have the same curve pattern; however, the concave points produce 20 times 
as much loss as the convex points. 

 
Figure 4. A contour with both concave and convex points. Red dots highlight the concave points, 
and green dots highlight the convex points. 

The proposed bending loss is rotation invariant since all patterns with the same angle 
between two edge vectors have the same bending loss. In practice, if two nuclei contours 
share some contour segments, one contour point may have more than two neighbors. In 
this scenario, we calculate the bending loss for all possible combinations and choose the 
smallest loss as the discrete bending loss for the point. 

As shown in Figure 5, for poorly segmented nuclei contours, all these touching con-
tour points have relatively high (red and green points) bending losses. If the touching 
nuclei are well separated (Figure 5c), then the bending loss values of all contour points 
values should be less than 9.66. 

 
Figure 5. Different bending losses of different segmentation results: (a) ground truth of eight nuclei 
contours; (b) bending losses of contour points of poorly segmented nuclei; and (c) bending losses of 
well-segmented nuclei. Red: BE = 193.14, green: BE = 28.28, and BE = 40.0, blue: BE ≤ 9.66, and gray: 
BE = 0. 

2.2. Multitask Learning Network 
The proposed multitask learning architecture is shown in Figure 6. The network fol-

lows an encoder–decoder design, and has three decoder branches. The encoder employs 
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The proposed bending loss is rotation invariant since all patterns with the same angle
between two edge vectors have the same bending loss. In practice, if two nuclei contours
share some contour segments, one contour point may have more than two neighbors. In
this scenario, we calculate the bending loss for all possible combinations and choose the
smallest loss as the discrete bending loss for the point.

As shown in Figure 5, for poorly segmented nuclei contours, all these touching contour
points have relatively high (red and green points) bending losses. If the touching nuclei are
well separated (Figure 5c), then the bending loss values of all contour points values should
be less than 9.66.
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Figure 5. Different bending losses of different segmentation results: (a) ground truth of eight nuclei
contours; (b) bending losses of contour points of poorly segmented nuclei; and (c) bending losses
of well-segmented nuclei. Red: BE = 193.14, green: BE = 28.28, and BE = 40.0, blue: BE ≤ 9.66, and
gray: BE = 0.

2.2. Multitask Learning Network

The proposed multitask learning architecture is shown in Figure 6. The network
follows an encoder–decoder design, and has three decoder branches. The encoder employs
ResNet-50 [32] as a feature extractor. In the first convolutional layer, 64 7 × 7 kernels
with a stride of 1 are applied, but the following max-pooling layer is removed to preserve
more information. The network has three decoders/tasks. The first task predicts the
nuclei instance map (INST); the second produces each nucleus’s horizontal and vertical
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boundary-distance map (HV); and the third outputs the overlapped nuclei’s horizontal and
vertical boundary-distance map (OHV). All decoders in the three branches have the same
sub-architectures and dense units [33]. The OHV and HV branches share weights through
skip connections.
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The weight-sharing among decoders is designed to use features learned from similar
tasks. In traditional multitask learning networks, different branches typically address
different tasks. However, in the proposed network, both the HV and OHV branches share
some comment results; one for all nuclei, and the other for overlapped nuclei. To take
advantage of the features from two similar tasks, we design the skip connections among
two branches to share weights. Specifically, the network first learns the distance maps
of overlapped nuclei and aggregates them through skip connections to distance maps in
the HV branch.

2.3. Loss Function

As shown in Figure 6, the loss function of the proposed network has four terms as
follows: the losses from three different decoders and the proposed bending loss. Let LINST
denote the loss of the binary instance map; LHV denote the loss of the horizontal and
vertical distance maps from the HV branch; and LOHV denote the loss of the horizontal
and vertical distance maps from the OHV branch. Lbe is the bending loss. The proposed
loss function also can split into the segmentation loss (L0) and the bending loss regularizer
(Equation (1)). The total loss is given by

L = LINST + LHV + LOHV︸ ︷︷ ︸
L0

+ α·Lbe (5)

where α is the weight of the bending loss. We follow the design in [21] to set the losses of
the three branches to have equal contributions to the total loss.

Loss of the INST branch. To segment the nuclei instance, we calculate the binary
classification for each image pixel. I and I* are the predicted instance map and the ground
truth instance map for all nuclei. The loss (LINST) is a summation of the cross-entropy loss
(LCE) and Dice loss (LDice). They are given by

LINST(I, I*) = LCE(I, I*) + LDice(I, I*) (6)
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LCE(I, I*) = − 1
n

n

∑
i

I*
i log(Ii) (7)

LDice(I, I*) = 1 −
2 × ∑n

i Ii I*
i

n
∑
i

Ii +
n
∑
i

I*
i

(8)

where Ii is the class prediction at point i, and n denotes the number of pixels in an image
patch. The INST branch separates the nuclei instance from the background.

Loss of the HV branch. The loss function is to compare the predicted distance
maps (D) with the ground truth distance maps (D*) for all nuclei. We employed the
distance loss function in [21]. The distance loss function is defined by

Ldist(D, D*) = LMse(D, D*) + 2·LMsge(D, D*) (9)

LMse(D, D*) =
1
n

n

∑
i

d2
i (10)

LMsge(D, D*) =
1
n

n

∑
i
(∇di

)2 (11)

where LMse is the mean square error loss and LMsge is the mean square gradient error loss;
d is D − D*, and ∇ denotes the gradient calculation.

Loss of the OHV branch. LOHV is also defined using the mean square error and the
mean square gradient error (Equation (9)). But LOHV is calculated using the predicted
distance maps (D) and the ground truth distance maps of overlapped nuclei.

3. Experimental Results and Discussion
3.1. Data Sets and Evaluation Metrics

In this paper, we validate the proposed method using the following two histopathology
nuclei data sets: CoNSeP [21] and MoNuSegv1 [11]. CoNSeP is provided by the University
of Warwick, and has 41 H&E-stained images from 16 colorectal adenocarcinoma (CRA)
WSIs collected using the Omnyx VL120 scanner. Six types of nuclei (normal epithelial,
tumor epithelial, inflammatory, necrotic, muscle, and fibroblast) exist in the data set. The
data set contains 24,319 manually annotated nuclei (13,256 overlapped). The image size
is 1000 × 1000 with the magnification at 40×. In the experiment, 27 images are utilized for
training and validation and 14 images for testing. The training and validation sets have
15,582 nuclei, and the test set has 8791 nuclei.

MoNuSegv1 contains 30 images from TCGA (The Cancer Genomic Atlas) data set.
The original size of the images is 1000 × 1000, and there are more than 21,000 manually
annotated nuclei from the breast, liver, kidney, prostate, bladder, colon, and stomach. The
magnification is at 40×. In experiments, 16 images (4 breasts, 4 livers, 4 kidneys, 4 prostates)
are used for training and validation, and 14 images for testing. The training and valida-
tion sets contain over 13,000 nuclei (4431 overlapped), and the test set has 6000 nuclei
(2436 overlapped). The author recently extended the data set and published in [34]; how-
ever, it was not adopted in this study because their new test set contains much less over-
lapped nuclei compared with the previous test set [11].

Multifold cross-validation is not applied in this work because the two data sets have a
large number of annotated nuclei, and a simple setting with randomly selected training,
validation, and test sets is sufficient to produce reliable evaluation. We employed the
following five quantitative metrics to evaluate the overall performance of nuclei segmen-
tation approaches: Aggregate Jaccard Index (AJI) [11], Dice coefficient [35], Recognition
Quality (RQ) [36], Segmentation Quality (SQ) [36], and Panoptic Quality (PQ) [36]. We
propose the following two new metrics to evaluate the overlapped nuclei segmentation:
Aggregated Jaccard Index of overlapped nuclei and accuracy for overlapped nuclei.
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Let G = {Gi}N
i=1 be the nuclei ground truth of an image and N denote the total amount

of segments in G; and let S = {Sk}M
k=1 be the predicted segments of the corresponding

image and M denote the total amount of segments in S. AJI is an aggregate version of the
Jaccard Index and is defined by

AJI =
∑N

i=1 Gi ∩ Sj

∑N
i=1 Gi ∪ Sj + ∑SkϵU Sk

where Sj is the matched predicted segments that produce the largest Jaccard Index value
with Gi; and U denotes the set of unmatched predicted segments, where the total amount
of U is (M – N).

Dice coefficient (DICE) is utilized to evaluate overall segmentation performance, and
the DICE is given by

DICE =
2|G ∩ S|

(|G|+ |S|)
where operator |·| denotes the cardinalities of the segments.

PQ is used to estimate both detection and segmentation results. RQ is the familiar
F1-score and SQ is known as the average Jaccard Index of matched pairs. RQ, SQ, and PQ
are defined as

RQ =
TP

TP + 1
2 FP + 1

2 FN

SQ =

∑
(p,g)∈TP

IoU(p, g)

TP
PQ = RQ × SQ

where p refers to prediction and g refers to the ground truth. The matched
pairs (p,g) are mathematically proven to be unique matching [36] if their IoU(p,g) > 0.5. The
unique matching splits the prediction and ground truth into the following three sets: the
number of matched pairs (TP), the number of unmatched predictions (FP), and the number
of unmatched ground truths (FN).

Metrics for Overlapped Nuclei Segmentation. We improved the Aggregated Jaccard
Index (AJI) and accuracy metrics, and proposed the following two new metrics to evaluate
overlapped nuclei segmentation: AJI of overlapped nuclei (AJIO) and accuracy for overlapped
nuclei (ACCO). Because of the existence of many nonoverlapped nuclei in images, traditional
evaluation metrics cannot accurately validate the performance of overlapped nuclei segmenta-
tion. The proposed two metrics exclude all nonoverlapped nuclei and focus on the evaluation
of overlapped nuclei. Let G = {Gi}N

i=1 be the overlapped nuclei in a ground truth image and
S = {Sk}M

k=1 be the nuclei in the output image. AJIO is defined by

AJIO =
∑N

i=1 Gi ∩ Sj

∑N
i=1 Gi ∪ Sj

where Sj is the matched nucleus in S that produces the largest Jaccard Index with Gi.
Let M be the number of matched nuclei pairs between the segmentation and ground

truth and O denote the total number of overlapped nuclei in an image. For each overlapped
nuclei, we iterate all the predicted segments, and count two nuclei matched if their Jaccard
Index value is larger than a threshold τ (0.5). The ACCO is given by

ACCO =
M
O

The two metrics (AJIO and ACCO) are generic and can be applied to other overlapped
object segmentation.
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3.2. Implementation and Training

The proposed approach is trained using an NVIDIA Titan Xp GPU. The encoder was
pretrained on ImageNet and we trained the decoder for 100 epochs to obtain the initial
parameters for the decoder branches. The network was further fine-tuned for 100 epochs on
the nuclei training set. The size of the final output images is 80 × 80 pixels, and these output
images are merged to form images with the same size (1000 × 1000) as the original images. In
experiments, the initial learning rate is 10-4 and is reduced to 10-5 after 50 epochs. The batch
size is eight for training the decoder and two for fine-tuning the network. Moreover, processing
an image of size 1000 × 1000 with our architecture takes about one second.

The input dimensionality of the network is 270 × 270 × 3. We prepare the training,
validation, and test sets by extracting patches from images with a size of 270 × 270.
During the training stage, data augmentation strategies (i.e., rotation, Gaussian blur, and
median blur) are utilized to generate more images. The ground truths of overlapped
nuclei are two or multiple individual nuclei having connected-component labeling. An
example histopathology image, the ground truth of all nuclei, and the overlapped nuclei
are demonstrated in Figure 7.
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The proposed scheme comprises the following three stages: (1) preprocessing,
(2) training of the proposed multitask learning network, and (3) postprocessing. The
preprocessing performs color normalization [37] to reduce the impact of variations from the
H&E staining and scanning processes. The postprocessing described in [21] is employed
in this study, which applies Sobel operators to the distance maps to generate the initial
contour map; then, the difference between the initial nuclei contour map and nuclei in-
stance map is used to generate markers, and finally, the watershed algorithm is applied to
generate nuclei regions.

3.3. Effectiveness of the Network Architecture

The proposed multitask learning architecture uses HoVer-Net as the backbone and
integrates our newly proposed overlapped nuclei (OHV) branch and skip connections
(Figure 6). To demonstrate the effectiveness of the proposed architecture, we compare
the proposed network with the single-task network (Instance-Net), and two-task network
(HoVer-Net). To perform a fair comparison, the proposed bending loss is not used. The
approaches are evaluated on the CoNSeP data set by using AJI, Dice, RQ, SQ, and PQ
scores. As shown in Table 1, the Instance-Net does not apply any strategy to separate the
overlapped nuclei and achieves limited performance, e.g., AJI is only 0.371. The proposed
network with the OHV branch (“Ours-OHV”) achieved better average performance than
the Instance-Net and HoVer-Net. With the new skip connections between the HV and OHV
branches, the AJI, RQ, and PQ scores of the proposed approach (“Ours-skip”) increased
by 3.54%, 3.30%, and 4.04%, respectively. The AJIO scores demonstrate that the proposed
approach outperforms HoVer-Net in separating overlapped nuclei.
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Table 1. Effectiveness of the proposed multitask learning architecture using the CoNSeP data set.

Methods
Metrics

AJI Dice RQ SQ PQ AJIO

Instance-Net 0.371 0.841 0.603 0.771 0.471 0.296
HoVer-Net 0.545 0.840 0.674 0.773 0.522 0.520

Ours-OHV * 0.559 0.847 0.692 0.774 0.537 0.531
Ours-skip * 0.565 0.850 0.697 0.779 0.544 0.537

* Ours-OHV denotes the proposed approach with the OHV branch; Ours-skip has additional skip connections
between the HV and OHV branches.

3.4. Effectiveness of the Bending Loss

First, we compare the proposed multitask learning network without any bending
loss, with the bending loss (Lbe v1) in [31], and with the newly proposed bending loss
(Lbe v2) in Equations (2)–(4). Lbe v1 calculates the bending loss only based on the curvature
changes and cannot distinguish convex and concave points. The newly proposed bending
loss Lbe v2 improves Lbe v1 by characterizing the difference between the concave and convex
contour points and gives more penalties to concave points. Second, we demonstrate the
effectiveness of the bending loss by adding it to HoVer-Net. The CoNSeP data set and
AJI, Dice, RQ, SQ, and PQ scores are used in experiments. As shown in Table 2, the
proposed architecture with the v1 bending loss achieves better performance than that
of the network without any bending loss, and the proposed architecture with the newly
proposed v2 bending loss outperforms the network with the v1 bending loss. The results
demonstrate that the v2 bending loss can improve the overall performance (AJI: from
0.565 to 0.578) of nuclei segmentation. Meanwhile, adding the v1 or v2 bending losses to
HoVer-Net improves its overall performance, which demonstrates the potential of applying
the bending loss to improve the performance of other approaches. In addition, the AJIO
scores demonstrate that the proposed approach with the v2 bending loss outperforms all
other approaches in separating overlapped nuclei.

Table 2. The performance of the Hover-Net and the proposed approach with two different versions
of bending loss (Lbe v1 and Lbe v2) on the CoNSeP data set.

Methods w/o Bending Loss Lbe v1 * Lbe v2 *
Metrics

AJI Dice RQ SQ PQ AJIO

HoVer-Net
✓ 0.545 0.840 0.674 0.773 0.522 0.520

✓ 0.552 0.844 0.683 0.774 0.530 0.523
✓ 0.559 0.846 0.690 0.776 0.537 0.528

Ours
✓ 0.565 0.850 0.697 0.779 0.544 0.537

✓ 0.570 0.847 0.701 0.777 0.547 0.541
✓ 0.578 0.851 0.709 0.781 0.555 0.552

* Lbe v1 and Lbe v2 refer to our previous bending loss [31] and the newly proposed bending loss
(Equations (2)–(4)), respectively.

3.5. Parameter Tuning

Two hyperparameters, α and µ, exist in the proposed loss function. α balances the
bending loss and all other losses (Equation (5)) and µ (Equation (3)) gives different weights
to the concave and convex contour points when calculating the bending loss. We conducted
a grid search for the two parameters on the CoNSeP data set by using the AJI score.
Figure 8 shows the AJI results of nine parameter combinations (µ: 10, 20, 40; α: 0.5, 1.0, 2.0).
As shown in Figure 8, the proposed approach achieved the best performance when µ is 20 and
α is 1.0. Therefore, the bending loss of a concave curve pattern is 20 times the quantity of the
same convex curve pattern. Refer to Figure 3 for the bending loss of different curve patterns.
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3.6. Performance Comparison of State-of-the-Art Approaches

We compared eight deep learning-based approaches, including three widely used biomed-
ical segmentation architectures (FCN8 [7], U-Net [8], and SegNet [9]) and five state-of-the-art
nuclei segmentation approaches (DCAN [14], DIST [12], Micro-Net [38], HoVer-net [21],
and BEND [31]). Table 3 shows the overall performance of nine approaches on two public
data sets (CoNSeP and MoNuSegv1) using five metrics (AJI, Dice, RQ, SQ, and PQ). Note
that all other approaches are tested using the described experiment settings and, therefore,
the values in Table 3 may not be the same as those reported in the original publications. The
Watershed algorithm is applied to FCN8, U-Net, and SegNet for postprocessing, whereas
the rest of the approaches are implemented by following the same strategy as in the original
papers. As shown in Table 3, the proposed method outperforms the other eight approaches
in terms of all five metrics. Among the three general biomedical segmentation architectures,
U-Net achieves the highest AJI and RQ scores, but it has lower Dice and SQ scores than
those of FCN8. DCAN and DIST are built upon FCN8 and U-Net, respectively. DCAN
outperforms the FCN8 in all five metrics, and DIST outperforms U-Net in all five metrics.
However, their overall segmentation performances are still are limited. Micro-Net and
HoVer-Net achieves comparative segmentation results. The proposed Bend-Net achieves
better results than all other approaches on the two data sets in all five metrics.

Table 3. Overall test performance on the CoNSeP and MoNuSegv1 data sets.

Methods
CoNSeP MoNuSegv1

AJI Dice RQ SQ PQ AJI Dice RQ SQ PQ

FCN8 0.289 0.782 0.426 0.697 0.297 0.426 0.779 0.592 0.708 0.421
U-Net 0.482 0.719 0.490 0.668 0.328 0.520 0.722 0.635 0.675 0.431
SegNet 0.461 0.699 0.482 0.667 0.322 0.508 0.797 0.672 0.742 0.500
DCAN 0.408 0.748 0.492 0.697 0.342 0.515 0.778 0.659 0.718 0.473
DIST 0.489 0.788 0.500 0.723 0.363 0.560 0.793 0.618 0.724 0.449

Micro-Net 0.531 0.784 0.613 0.751 0.461 0.581 0.785 0.700 0.737 0.517
HoVer-Net 0.545 0.840 0.674 0.773 0.522 0.606 0.818 0.765 0.767 0.588

BEND 0.553 0.846 0.683 0.776 0.530 0.627 0.827 0.770 0.766 0.590
Bend-Net 0.578 0.851 0.709 0.781 0.555 0.635 0.832 0.780 0.771 0.601

3.7. Overlapped Nuclei Segmentation

We propose two new metrics, AJIO and ACCO, to evaluate overlapped nuclei segmen-
tation. Table 4 shows the performance of overlapped nuclei segmentation on the CoNSeP
and MoNuSegv1 data sets by using AJIO and ACCO scores. The DIST, Micro-Net, HoVer-
Net, and the proposed method applied strategies to separate overlapped nuclei; therefore,
their performances are significantly better than FCN8, U-Net, and SegNet. Our method
achieved the best AJIO and ACCO scores on two data sets. Figure 9 shows segmentation
examples of six image regions with overlapped nuclei from the CoNSeP and MoNuSegv1
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data sets. In the ground truth images, overlapped nuclei are represented using different col-
ors. In the result images, if an approach can separate two overlapped nuclei, the two nuclei
should be in two different colors. As shown in Figure 9, FCN8, SegNet, and U-Net tend
to miss small nuclei, and cannot separate overlapped nuclei. DCAN is slightly better at
handling overlapped nuclei than FCN8, SegNet, and U-Net, but tends to miss nuclei that
are not small. DIST separates overlapped nuclei better than the last four approaches, but it
tends to over-segment nuclei and generate many small regions. Micro-Net performs well in
segmenting overlapped nuclei; but it produces smaller nuclei regions than the ground truth
and tends to over-segment nuclei. Hover-Net shows better segmentation results than the
other six approaches. It can segment out small nuclei, and the sizes of the resulting nuclei
regions are close to those of the ground truth. It outperforms the other six approaches
in segmenting overlapped nuclei; however, it has difficulty in separating closely touched
nuclei. In Figure 9, the proposed method achieves the most accurate results on six images.
The proposed approach not only can segment small nuclei but also can separate closely
touched nuclei accurately.

Table 4. Overlapped nuclei segmentation performance on the CoNSeP and MoNuSegv1 data sets.

CoNSeP MoNuSegv1

Methods AJIO ACCO AJIO ACCO

FCN8 0.350 0.328 0.337 0.358
U-Net 0.486 0.395 0.472 0.464
SegNet 0.411 0.262 0.407 0.406
DCAN 0.417 0.293 0.427 0.423
DIST 0.542 0.476 0.543 0.536

Micro-Net 0.513 0.495 0.513 0.504
HoVer-Net 0.520 0.558 0.542 0.613

BEND 0.529 0.561 0.553 0.627
Bend-Net 0.552 0.586 0.570 0.656
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4. Conclusions

In this paper, we propose a novel deep multitask learning network to address the
challenge of segmenting overlapped nuclei in histopathology images. First, we propose the
bending loss regularizer, which defines different losses for the concave and convex points
of nuclei contours. Experimental results demonstrate that the bending loss effectively
improves the overall performance of nuclei segmentation, and it can also be integrated into
other deep learning-based segmentation approaches. Second, the proposed multitask learn-
ing network integrates the OHV branch to learn knowledge from the overlapped nuclei,
which enhances the segmentation of touching nuclei. Third, we propose two quantitative
metrics, AJIO and ACCO, to evaluate overlapped nuclei segmentation. The extensive
experimental results on two public data sets demonstrate that the proposed Bend-Net
achieves state-of-the-art performance for nuclei segmentation. In the future, we will extend
the proposed approach to more challenging tasks, such as gland segmentation and semantic
image segmentation.
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