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Abstract: The existing Siamese trackers have achieved increasingly successful results in visual object
tracking. However, the interactive fusion among multi-layer similarity maps after cross-correlation
has not been fully studied in previous Siamese network-based methods. To address this issue, we
propose a novel Siamese network for visual object tracking, named SiamSMN, which consists of a
feature extraction network, a multi-scale fusion module, and a prediction head. First, the feature
extraction network is used to extract the features of the template image and the search image, which
is calculated by a depth-wise cross-correlation operation to produce multiple similarity feature maps.
Second, we propose an effective multi-scale fusion module that can extract global context information
for object search and learn the interdependencies between multi-level similarity maps. In addition,
to further improve tracking accuracy, we design a learnable prediction head module to generate a
boundary point for each side based on the coarse bounding box, which can solve the problem of
inconsistent classification and regression during the tracking. Extensive experiments on four public
benchmarks demonstrate that the proposed tracker has a competitive performance among other
state-of-the-art trackers.

Keywords: object tracking; Siamese network; weighted sum; concatenation operation

1. Introduction

Visual object tracking is one of the fundamental tasks in computer vision. It aims to
track a given object in each frame over a video sequence. Object detection, which focuses
on identifying and locating objects within individual frames, complements object tracking
by providing initial object localization. Together, detection and tracking form a robust
framework for many real-world applications. For instance, detection can identify and
locate objects in the initial frame, and tracking can ensure continuous observation of these
objects across subsequent frames [1]. Object tracking is widely used in many fields, such as
visual surveillance [2], human–computer interaction [3], augmented reality [4], etc. Despite
recent advances, it is still widely acknowledged as being an extremely difficult assignment
because of background clutter, scale variations, significant variations in illumination, etc.

The currently used object tracking methods can be divided into two categories: correla-
tion filter-based [5–12] and deep learning-based trackers [13–17]. In correlation filter-based
tracking, a correlation filter is trained online on the region of interest by minimizing a
least-squares loss. The object is detected in consecutive frames by convolving the trained
filter via the Fast Fourier Transform (FFT) [18]. In order to estimate the object location in
the next frame, the learned filter is applied to the region of interest in which the location of
the maximum response is the target location. Early correlation filter-based trackers such
as MOSSE [5] and CSK [6] exploited intensity features for object tracking. To achieve a
more discriminating image representation, ValMadre et al. [7] proposed a correlation filter-
based network (CFNET) in an offline manner that follows an end-to-end approach. Despite
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significant advancements, correlation filter-based trackers are less resistant to objects in
fast-moving or low-frame-rate films and less flexible with respect to scale changes. In
addition, further research suggests several targeted improvement techniques from a variety
of angles, including scale improvement (e.g., DSST [8], CSR-DCF [9], etc.), elimination
of boundary effects (SRDCF [10], C-COT [11], ECO [12], etc.), etc. These trackers have a
clear advantage in real time, but still need to be optimized in situations such as complex
background interference and similarity occlusion.

Deep learning technologies have significantly advanced the task of visual tracking by
providing a powerful feature representation capacity. A variety of tracking methods based
on deep learning have been presented, such as FCNT [13], MDNet [14], STCT [15], AD-
Net [16], SiamFC [17]. Among them, Siamese-based trackers have the potential advantages
of significantly improving the tracking performance. Bertinetto et al. [17] first introduced
a Siamese network for visual tracking. Since then, object trackers built on Siamese net-
works and object detection frameworks have achieved state-of-the-art performance, such as
SiamRPN [19], SiamRPN++ [20], and SiamMask [21]. The Siamese-based trackers formulate
the object tracking task as a similarity matching problem by computing cross-correlation
similarities between a template image and a search image, which converts the tracking into
finding the target object from an image region by computing the highest visual similarity.
Therefore, it casts the tracking problem into a Region Proposal Network (RPN)-based
detection framework by leveraging Siamese networks, which is the key to boosting the
performance of deep trackers.

For most of the popular trackers (such as SiamFC [17], SiamRPN [19], and SiamBAN [22]),
multi-level similarity maps can provide different representations. Similarity maps from shal-
low layers focus on low-level information, such as color and shape, which are essential
for localization but lack semantic information; similarity maps from deeper layers have
rich semantic information that is useful in some challenging scenarios, such as motion
blur and huge deformation. Thus, the fusion of different similarity maps plays a critical
role in accurate target tracking. Weighted sum and concatenation operation are common
for aggregating multi-layer similarity maps. However, these methods can only combine
different levels of similarity maps through a fixed linear approach, failing to fully utilize
the complementary information from high-level and low-level similarity maps. This limita-
tion restricts the tracker from achieving an interactive fusion of spatial information and
semantic cues. Inspired by the transformer architecture [23], we design a novel multi-scale
similarity-map fusion module that models the relationship between spatial information
from high-resolution layers and semantic cues from low-resolution layers. The fusion mod-
ule contains only one layer of feature encoder and feature decoder. The feature encoder
aims to learn interdependencies between different similarity maps, while the decoder
aggregates the low-level and high-level semantic information. The main problem in the
tracking process is the inconsistency between classification and regression. Specifically,
the classification probability is high but the positioning is inaccurate. In experiments, we
observed that points near the object boundary were more likely to predict accurate locations.
Motivated by this observation, we devised a learnable prediction module to refine the
bounding boxes based on the predicted offset map. The proposed SiamSMN efficiently
achieved robust and precise performance under complex scenarios, while maintaining
good real-time processing capabilities. This is crucial for practical applications that require
both speed and accuracy. The main contributions of this work are as follows:

• We design a transformer-based similarity-map fusion module that fully explores the
interdependencies among multiple similarity maps associated with different semantic
meanings, which helps the tracker accurately locate objects in complex scenarios.

• We propose a learnable prediction module to generate a boundary point for each
side based on the rough bounding box, which can solve the problem of inconsistent
classification and regression.

• Our methods achieve competitive performance with the state-of-the-art trackers on
four different benchmarks, while maintaining real-time processing capabilities.
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2. Related Work
2.1. Siamese Network-Based Object Tracking

Recently, a Siamese network-based tracking framework has attracted great attention in
the vision tracking community due to its end-to-end training capacity and high efficiency.
The Siamese tracker consists of two branches: a template branch and a search branch. The
template branch receives the target image patch from the previous frame as input, while
the search branch receives the target image patch in the current frame as input. Both of
these branches share CNN parameters so that the two image patches encode the same
transformation, which is suitable for tracking.

As one of the pioneering works, SiamFC [17] adopted a fully convolutional Siamese
network as a feature extractor and introduces correlation layers to combine feature maps.
Inspired by the success of SiamFC, more and more researchers began to pay attention
to the Siamese Network tracking method. Zhu et al. [24] proposed a distractor-aware
Siamese network (DaSiamRPN) that utilized the local-to-global search strategy to deal with
the challenges of full occlusion and out-of-view. Wang et al. [25] put forward a residual
attentional Siamese network (RASNet), which embedded an attention mechanism into
Siamese trackers to promote the discriminating ability of the tracking model. Other methods
include SiamDW [26], SiamMASK [21], SiamFC++ [27], etc. Though the above methods
utilize a multi-scale strategy to cope with scale variation, they cannot handle aspect ratio
changes due to target appearance variations. In order to make more accurate predictions
for target locations, SiamRPN [19] combines a Region Proposal Network (RPN) in the
object detection with a Siamese network. By jointly training a classification branch and a
regression branch for the region proposal, SiamRPN [19] avoids the time-consuming step of
extracting multi-scale feature maps for the object scale invariance and achieves very efficient
results. However, it has difficulty dealing with distractions with a similar appearance to the
object. Based on SiamRPN [19], DaSiamRPN [24] increases the hard-negative training data
during the training phase. Through data enhancement, it improves the discrimination of
the tracker and obtains a much more robust result. SiamRPN++ [20] optimizes the network
architecture by using ResNet [28] as a backbone. At the same time, it randomly shifts the
training object location in the search region during model training to eliminate the center
bias. Despite these advancements, existing methods still face challenges in effectively fusing
multi-layer similarity maps to fully exploit spatial and semantic information. Our proposed
method, SiamSMN, aims to address these shortcomings by introducing a novel multi-scale
fusion module and a learnable prediction head, thereby enhancing tracking performance.

2.2. Transformer in Object Tracking

The Vision Transformer (ViT) [29] first presented a pure vision transformer architecture,
obtaining an impressive performance on image classification. Briefly, a transformer is an
architecture for transforming one sequence into another with the help of attention-based
encoders and decoders. The attention mechanism observes an input sequence and decides at
each step which other parts of the sequence are important, facilitating the capture of global
information from the input sequence. In recent years, some studies attempted to introduce
the transformer to object tracking and achieved promising performance. Yu et al. [30]
proposed a deformable Siamese attention network, referred to as SiamAttn, by introducing
a new Siamese attention mechanism that computed deformable self-attention to improve
the discriminating ability of target features before applying depth-wise cross-correlation.
CGACD [31] learns attention from the correlation result between the template and search
region and then adopts the learned attention to enhance the search region features for further
classification and regression. TransT [32] is a transformer-based fusion network for target-
search information incorporation. Although these works have improved tracking accuracy
with the attention mechanism, they still heavily rely on the correlation operation in fusing
the template and search region feature. In this work, we exploit a transformer to directly fuse
multi-layer similarity maps without using any weighted sum or concatenation operations.
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3. Proposed Method

In this section, we present a detailed description of the proposed SiamSMN framework.
As shown in Figure 1, our SiamSMN consists of three components: a feature extraction
network, a multi-scale fusion module, and a prediction head. First, the feature extraction
network separately extracts the features of the template image and the search image. Second,
these features are calculated by a depth-wise cross-correlation to produce multiple similarity
maps. Then, these different scales of similarity maps are aggregated by the proposed feature
fusion network. Finally, the fused feature maps are input into the prediction head, which
is responsible for classifying the enhanced features and regressing the bounding boxes to
generate the final tracking results.

Figure 1. Framework of SiamSMN, which contains a feature extraction network, a multi-scale fusion
module, and a prediction head.

3.1. Feature Extraction Network

Like Siamese-based trackers, the proposed SiamSMN method takes a pair of image
patches as the inputs of the backbone network. The Siamese backbone network consists
of two identical branches. One is called the template branch, which receives the template
patch as input (denoted as Z). The other is the search branch, which receives the search
patch as input (denoted as X). The two branches share parameters to embed the inputs Z
and X into a common feature space for cross-correlation. The cross-correlation between
template and search regions is implemented in the common feature embedding space
as follows:

S = ϕ(X) ⋆ ϕ(Z), (1)

where ⋆ denotes the channel-by-channel correlation operation. The generated similarity
map S has the same number of channels as ϕ(X), and it contains massive information for
classification and regression.

Object tracking requires rich representations that span levels from low to high, scales
from small to large, and resolutions from fine to coarse. Many methods take advantage of
fusing both low-level and high-level features to improve tracking accuracy. In our network,
multi-layer features are extracted to collaboratively infer the target location. We utilize the
ResNet-50 as our backbone network and use blocks 3, 4, and 5 of the ResNet-50 to extract
features from the target template and the search region. Features from different blocks of
the backbone focus on different hierarchical information about objects. We use a depth-wise
cross-correlation to aggregate the features extracted from the last three residual blocks
of the backbone, which helps the trackers produce multiple semantic similarity maps.
The cross-correlation between the template feature and search feature is implemented
as follows:

Si = ϕi(X) ⋆ ϕi(Z), i = 3, 4, 5, (2)

where ⋆ represents the cross-correlation operator, and ϕ(·) is the embedding function for
feature extraction. As shown in Figure 1, S

′
3 , S

′
4 , and S5 are fed into the feature fusion

module individually to aggregation multi-layer similarity maps.
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3.2. Multi-Scale Fusion Module

Inspired by the transformer [23], we fuse different levels of similarity maps by de-
signing a novel transformer fusion network. Unlike the original transformer [23], our
transformer fusion model only contains one layer for both feature encoder and decoder.
A feature encoder aims to learn the interdependencies among different similarity maps,
while the feature decoder aggregates the low-level and high-level semantic information.

Feature encoder: As shown in Figure 2, first, a learnable position encoding is used to
encode the similarity maps from the 3th and 4th layers, denoted as S

′
3 and S

′
4 . Then, we

perform an addition and normalization operations on S
′
3 and S

′
4 , and the result is used

as the K and Q inputs of the multi-head attention module. S
′
3 serves as its V input. The

multi-head attention output of this feature encoder can be obtained by:

M1
E = MultiHead

(
Norm

(
S
′
3 + S

′
4

)
,

Norm
(

S
′
3 + S

′
4

)
, S

′
3

)
.

(3)

Figure 2. Detailed workflow of the multi-scale fusion module. The left sub-window illustrates the
feature encoder. The right one shows the structure of the decoder.

Eventually, the encoded information can be calculated through FFT and normalization.
The output of the encoder can be used by the decoder as its input for the multi-head
attention module.

Feature decoder: The feature decoder follows the same structure as the encoder.
Differently, we built the effectively feature decoder without positional encoding and a
global average pooling. In addition, the feature decoder has two heads of attention.

Specifically, the output of the first multi-head attention can be expressed as:

N1
E = MultiHead(S5, S5, S5). (4)
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In order to further increase the tracking accuracy, the second multi-head attention
aggregates the semantic information from the low-layer similarity map. We can obtain a
fusion result from the following equation:

N2
E = MultiHead

(
Norm

(
N1

E + S5

)
, M5

E, M5
E

)
. (5)

The final response map (R∗) can be calculated through FFT and normalization.

3.3. Prediction Head

As shown in Figure 1, the classification branch, regression branch, and centerness
branch are applied to localize objects and estimate their shapes. When testing, the final
score (used for ranking the detected bounding boxes) is computed by multiplying the
predicted centerness with the corresponding classification score, which helps suppress the
low-quality detected bounding boxes and improves the overall performance by a large
margin. For a response map (R∗) obtained using a multi-scale similarity-map fusion net-
work, the classification branch outputs a classification feature map Acls

w×h×2 , the regression
branch outputs a predicted offset map Areg

w×h×4 , the centerness branch outputs a centerness
feature map Acen

w×h×1 , where each point value gives the “centerness score” of the corre-
sponding location. Each point (i, j) in Acls

w×h×2 contains a 2D vector, which represents the
foreground and background scores of the corresponding location in the search region. Simi-
larly, each point (i, j) in Areg

w×h×4 contains a 4D vector t(i, j) = (l, t, r, b), which represents
the distance from the corresponding location to the four sides of the bounding box in the
input search region.

In the experiments, we observed that points near the object boundary were more
likely to predict accurate locations. Inspired by this, we propose a box refinement module
to refine the bounding boxes based on the regression branch; as shown in Figure 3, the
feature map (F∗), regression (Reg), and response map (R∗) are the three inputs for this
box refinement. First, the feature map obtains a set of offsets after a set of convolution
operations, denoted as T t. Next, we perform a reshape function on regression, and the
result is recorded as Z0. Z0 represents the distance from the given point to the 4 boundaries.
Then, we obtain T0 by Equation (8):

T0 = θc(R∗), (6)

where θc(·) maps the points on the response map R∗ back to the search patch and obtains
the generated points on each layer. After that, we utilize Z0 and T0 as the input of ϕc(·) to
obtain a coarse bounding box. This Bb is defined as follows:

Bb = ϕc(Z0, T0), (7)

where ϕc(·) decodes the distance prediction into a bounding box. Finally, the coarse bound-
ing box generates a boundary point for each side based on a set of offsets generated by the
feature map. A finer bounding box is generated by aggregating the prediction results of the
four boundary points.

Loss function: The training loss function in this paper is defined as follows:

L = Lcls + λ1Lcen + λ2Lreg, (8)

where Lcls represents the focal loss for classification, Lcen refers to the IoU loss, and Lreg
is the binary cross-entropy loss. λ1 and λ2 are the weight parameters of Lcen and Lreg,
respectively. During model training, we empirically set λ1 = 1 and λ2 = 3.
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Figure 3. Illustration of the box refinement.

4. Experiments
4.1. Implementation Details

Our entire network was trained end-to-end on large-scale datasets. The training sets
included COCO [33], ImageNet VID [28], ImageNet DET [28], and LaSOT [34].

For the video datasets, we directly sampled the image pairs from one video sequence
to collect training samples. For the COCO detection datasets, we applied some transforma-
tions to the original images to generate pairs. Common data augmentation techniques were
applied to enlarge the training set. For easy comparison, the input sizes of the search patch
and template regions were 255 × 255 and 127 × 127, respectively. The backbone parameter
was initialized on ImageNet and then we used the parameter as initialization to retrain
our model.

Training details: In total, there were 20 epochs; for the first 10 ones, the parameters
of the Siamese sub-network were frozen while training the classification and regression
sub-networks. For the last 10 epochs, the last three blocks of ResNet-50 were unfrozen to be
trained together. In addition, the stochastic gradient descent (SGD) was adopted, and batch
size, momentum, and weight decay were set to 32, 0.9, and 0.0001, respectively. Our tracker
was trained in Python using PyTorch on a PC with a RTX 2080 Ti. Our approach was trained
with only the specified training set provided by the official website for fair comparison.

Testing details: During the testing process, we used an offline tracking strategy. Only
the object in the initial frame of a sequence was adopted as the template. Consequently,
the target branch of the Siamese sub-network could be pre-computed and fixed during the
whole tracking period. The search region in the current frame was adopted as the input of
the search branch.

4.2. Comparison with State-of-the-Art Trackers

We compared our approach with the state-of-the-art trackers on four tracking datasets.

4.2.1. OTB100

The OTB100 [35] dataset is a public tracking benchmark that contains 100 sequences
from different scenes. All frames in the sequence are divided into seven categories: camera
motion, illumination change, occlusion, size change, motion change, unassigned, and
overall. The shortest sequence “Deer” in OTB100 has 71 frames, and the longest sequence
“Doll” is 3872 frames. The average length of each sequence in this benchmark is about
590 frames. We followed the one pass evaluation (OPE) protocol and report the AUC scores
of the success plot.

As shown in Figure 4, we compared our tracker with some recent top-performing
trackers, including SiamAttn [30], SiamBAN [22], SiamRPN++ [20], ECO [12], Transforming
Tracking [32], SiamFC++ [27], Ocean [36], SiamDW [26], and DaSiamRPN [24]. Our tracker
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achieved the best performance. Compared with the recent SiamBAN [22], our SiamSMN
improved by 1.6% in success and 1.5% in precision.

Figure 4. Comparison among the top-10 trackers on OTB100.

4.2.2. UAV123

The UAV123 [37] dataset contains a total of 123 video sequences, including more than
110K frames. All sequences are fully annotated with upright bounding boxes. The objects
in the dataset mainly suffer from fast motion, large scale variation, large illumination
variation, and occlusions, which make tracking challenging.

We compared our trackers with other nine state-of-the-art real-time trackers, including
SiamAttn [30], SiamGAT [38], Ocean [36], CGACD [31], SiamCAR [39], SiamRPN++ [20],
SiamBAN [22], SiamRPN [19], and SiamDW [26]. Figure 5 shows the success and precision
plots. Our tracker outperformed all other trackers. Compared with the state-of-the-art
SiamAttn [30], SiamSMN obtained competitive results with a much simpler network and
without heuristic tuning parameters.

Figure 5. Comparisons on UAV123. Our SiamSMN achieves the best results.

4.2.3. LaSOT

To further validate the proposed framework on a larger and more challenging dataset,
we conducted experiments on LaSOT [34]. The LaSOT dataset provides large-scale, high-
quality dense annotations with 1400 videos in total and 280 videos in the testing set. Such a
large test dataset brings a great challenge to the tracking algorithms. The official website of
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LaSOT provides 35 algorithms as baselines. Normalized precision plots, precision plots,
and success plots in one-pass evaluation (OPE) were considered as the indicators.

We compared our SiamSMN with the top-nine trackers including SiamBAN [22],
ATOM [40], SiamRPN++ [21], SiamMask [3], and so on. The results of SiamBAN [22] are
provided on the website of its authors, while other results are provided by the official
website of LaSOT. Figure 6 reports the overall performances of our SiamSMN tracker on
the LaSOT testing set. SiamSMN increased the AUC and the normalized distance precision
relatively by 1.6% and 1.4% over SiamBAN [22], which is the best tracker reported in the
original paper.

Figure 6. Comparisons among the top-10 trackers on LaSOT. Our SiamSMN significantly outperforms
the state-of-the-art methods.

4.2.4. GOT-10K

GOT-10K [41] is a recent large-scale dataset that contains 10K sequences for train-
ing and 180 for testing. After uploading the tracking results, the analysis is performed
automatically by the official website.

The provided evaluation indicators include success plots, average overlap (AO), and
success rate (SR). All the results are provided by the official website of the GOT-10K.
Table 1 shows that SiamSMN can outperform all the trackers on the GOT-10K. As shown in
Table 1, our tracker ranked first in terms of all the indicators. Compared with Ocean [36],
our SiamSMN improved the scores by 2.1%, 3.7% and 5.0%, relatively, for AO, SR0.5,
and SR0.75.
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Table 1. Comparison results on the GOT-10K test set. The best two results are highlighted in red and
blue fonts, respectively.

Method SiamFC ECO ATOM SiamRPN++ SiamFC++ PrDiMP SiamCAR D3s DCFST Ocean SiamSMN
[17] [12] [40] [20] [27] [42] [39] [43] [44] [36] ours

AO 34.8 31.6 55.6 51.7 59.5 63.4 56.9 59.7 63.8 61.1 63.2
SR0.5 35.3 30.9 63.4 61.6 69.5 73.8 67.0 67.6 75.3 72.1 75.8
SR0.75 9.8 11.1 40.2 32.5 47.9 54.3 41.5 46.3 49.8 47.3 52.3

4.3. Ablation Study

To analyze and verify the effectiveness of each proposed module, an ablation experi-
ment was performed on the UAV123 [37] dataset.

4.3.1. Box Refinement

To verify the effectiveness of the box refinement (BR), an ablation experiment was
performed, and the results are shown in Table 2. Without box refinement, our method
reached 63.6% and 82.5%. When we added the box refinement, the success and precision
improved by 2.4% and 2.2%, respectively. The outcome in Table 2 demonstrates that the
box refinement can consistently improve tracking performance.

Table 2. The ablation study results of the box refinement (BR). The best results are highlighted in red.

MFM Weighted Sum Concatenation BR UAV123
Suc Pre

✓ ✓ 0.660 0.847
✓ ✗ 0.636 0.825

✓ ✓ 0.626 0.802
✓ ✗ 0.604 0.795

✓ ✓ 0.647 0.827
✓ ✗ 0.615 0.804

4.3.2. Multi-Scale Fusion Module

To analyze the effectiveness of the multi-scale fusion module (MFM), we designed
three variants: weighted sum, concatenation operation, and MFM. As shown in Table 3,
it was found that the use of the MFM yielded better results than the other two methods.
When we used the multi-scale fusion module to fuse multi-layer features, it was obvious
that our method showed a great improvement in tracking performance compared to the
traditional fusion methods (weighted sum and tandem).

Table 3. The ablation study results of the multi-scale feature fusion. The best results are highlighted
in red.

MFM Weighted Sum Concatenation UAV123
Suc Pre

✓ 0.636 0.825
✓ 0.604 0.795

✓ 0.615 0.804

4.4. Speed Analysis

In Table 4, we show the evaluation of OTB100 with respect to frames per second (FPS).
The reported speed was evaluated on a machine with one RTX 2080 Ti, and those of other
methods are provided by the OTB100 official results. As shown in the table, although
TransT [32] was faster than our method, the accuracy was 3.8% lower than that of our
method. In addition, our network was much simpler than others, and no specially designed
parameters were needed for training.



Information 2024, 15, 418 11 of 13

Table 4. The results in terms of success and speed for different methods on OTB100. The best results
are highlighted in red.

SiamBAN [22] SiamRPN [20] TransT [32] SiamATL [45] Ours

Success 0.696 0.640 0.689 0.655 0.727
Speed (FPS) 40.00 34.17 50.00 21.30 42.00

5. Conclusions

In our paper, we exploited the expressive power of the transformer and proposed a
simple yet effective visual-tracking framework named SiamSMN that fully explores the
interdependencies among multi-level similarity maps. SiamSMN directly classifies objects
and regresses bounding boxes in a unified network and does not require pre-defined candi-
date boxes. Experimentation results demonstrated that the proposed SiamSMN method
could achieve competitive performance and real-time speed on four popular tracking
benchmark datasets, confirming its effectiveness and efficiency.
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