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Abstract: Keeping up with the fast evolution of mobile operating systems is challenging for de-
velopers, who have to frequently adapt their apps to the upgrades and behavioral changes of the
underlying API framework. Those changes often break backward compatibility. The consequence
is that apps, if not updated, may misbehave and suffer unexpected crashes if executed within an
evolved environment. Being able to quickly identify the portion of the app that should be modified to
provide compatibility with new API versions can be challenging. To facilitate the debugging activities
of problems caused by backward incompatible upgrades of the operating system, this paper presents
FILO, a technique that is able to recommend the method that should be modified to implement the fix
by analyzing a single failing execution. FILO can also provide additional information and key symp-
tomatic anomalous events that can help developers understand the reason for the failure, therefore
facilitating the implementation of the fix. We evaluated FILO against 18 real compatibility problems
related to Android upgrades and compared it with Spectrum-Based Localization approaches. Results
show that FILO is able to efficiently and effectively identify the fix-locus in the apps.

Keywords: Android fragmentation; fault localization; regression testing; software evolution

1. Introduction

Mobile frameworks are continuously updated to release new features that exploit the
latest hardware and software upgrades. Evolution is well-known to happen at a dramatic
speed. For instance, the Android API framework evolved at the average rate of 115 API
updates per month [1] between APIs at levels 3 to 15, and the rate even increased between
APIs 16 to 30, reaching up to an average of 160 API changes when considering methods
and field changes, additions, and removals [2].

Unfortunately, the speed of evolution of the Android framework can be a source of
issues for the apps that must able to cope with frequent, and partially unexpected, changes.
For example, Wei et al. found that more than one third of the compatibility issues affecting
popular Android apps are due to API evolution [3]. Note that these problems rarely consist
of faults in the framework, but they rather consist of backward incompatible changes that
require the apps to be fixed to run correctly. This is also confirmed in the study by Mostafa
et al. who found that the large majority of backward compatibility problems are fixed in
the client code of the apps [4].

Adapting apps to a changed API can be particularly expensive since it requires un-
derstanding how the changes in the underlying framework have impacted the app, and
developing the logic necessary to deal with the updated implementation. The cost of
addressing an evolving API is also confirmed in the study by McDonnell et al. [1] who
report an average app migration time of 16 months, in contrast with an API release interval
of a few months only. Mahmud et al. also confirmed that API field updates (that must be
addressed in the app code) take more than three months to get fixed [2].
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Reducing the cost and effort of migrating apps to updated versions of the underlying
framework is extremely important to improve both the quality of the available apps and
their degree of compatibility with the most recent version of the operative system. In this
paper, we focus on the challenge of assisting the problem resolution task by automating
the identification of the code region that must be modified to fix an app that becomes
incompatible with the underlying framework. This can be seen as an instance of spectrum-
based fault localization (SBFL) [5,6], but contrarily to SBFL that requires a full test suite
with passing and failing test cases to be applied, our approach, namely FILO, requires
only a single failed GUI test case to be applied. This has three important benefits: (i) it is
applicable to the many cases where an extensive unit test suite is not available, which is
frequently true for mobile apps, (ii) it can be straightforwardly applied to those cases where
the failure is exposed through GUI interaction, such as an automatic test case derived from
a bug report entered by a user, and (iii) it is fast to execute since it avoids the execution of
large test suites.

In contrast with SBFL techniques that can only localize suspicious code regions, FILO
isolates information about the anomalous app behaviors that are the consequence of the
incompatibility between the app and the newly released framework, providing further
information potentially useful to the developers to understand the failure and implement a
proper fix.

The intuition behind the definition of FILO is twofold:

• The interactions between the framework and the app must contain evidence of the
failure: Since the incompatibility is between an app and its API framework, the
problem must be intuitively visible by observing their interactions (i.e., calls from the
app to the framework, and vice versa). The comparison of the interactions observed
when the app interacts with the compatible and the incompatible versions of the
framework can be used to identify the suspicious interactions that are in turn useful
to identify the code regions that originated them, and are thus likely responsible for
the failure.

• The method that must be fixed is likely responsible for a large and coherent set of
suspicious interactions: Since the faulty code in the app must be the source of the
incorrect interactions between the app and the framework, the method to be fixed
must be a method internal to the app that controls the execution of a significantly large
and coherent set of suspicious interactions. Based on this intuition, FILO generates
a ranked list of methods that the developers can exploit to ease fix location. Each
method is also associated with the suspicious interactions under its influence to
provide insights about the rationale of the selection.

We empirically assessed FILO with 18 incompatibilities between Android apps and
various versions of the Android framework. Results show that FILO can efficiently identify
the method where the fix should be implemented from the analysis of a single failing test
case: it ranked the method that must be modified in the top five positions in the large
majority of the cases, with several cases where the method occurred in the top part of the
ranking. We also compared FILO to SBFL, confirming its higher effectiveness in addition to
its higher applicability.

This paper extends our earlier conference paper [7] in several ways: (1) we generalize
the analysis implemented in FILO by allowing a deeper exploration of the interactions
between the apps and their framework (i.e., we consider not only direct interactions,
but also the internal computations caused by the direct interactions); (2) we improve
the presentation by better framing the three phases of FILO and presenting highlights
of the underlying algorithms; (3) we extend the empirical evidence by increasing the
number of apps used in our evaluation and studying the impact of FILO parameters in its
performance, to demonstrate its resilience and generalization capability; and (4) we present
a more detailed and extensive comparison to related work.

In a nutshell, the main contributions of this paper are:
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• FILO, a technique that addresses the incompatibilities between an app and an up-
dated framework by producing a ranked list of suspicious methods, associated with
supporting evidence about their selection, from a single GUI test case;

• The empirical evidence that FILO can operate efficiently and effectively;
• A freely available implementation of our tool and a replication package (https://gitlab.

com/learnERC/filo accessed on 10 June 2024) that can be used to replicate the results
reported in the paper.

The rest of the paper is organized as follows. Section 2 presents a running example that
is used throughout the paper to illustrate our approach. Sections 3 and 4 describe FILO and
its prototype implementation to be used for validation, respectively. Section 5 describes the
empirical evaluation of FILO. Section 6 discusses related work. Finally, Section 7 provides
final remarks.

2. Running Example

In this section, we describe Good Weather, one of the Android apps that suffers from
an upgrade issue from the list of subjects used in the evaluation phase. The issue is due
to a backward incompatible behavioral change that happened between the Android API
22 and the Android API 23. This change forces apps to explicitly request permissions
when accessing resources for the first time, while before it was enough to list them in the
Manifest file. The Good Weather app, being a weather forecast app, exploits the location
of the phone to give a contextualized forecast. The app has been installed by more than
10,000 Android users according to Google Play, demonstrating how relevant it is to address
incompatibilities between framework versions. We used this app both in the empirical
evaluation and in Section 3 to illustrate how FILO works.

The method with the incorrect implementation can be seen in Listing 1 by not considering
the red code, which are instructions added to obtain the fix, but also considering the code
with the strikethrough font, which represents the instructions removed to obtain the fix.

Listing 1. The Fix for the Good Weather app.

public boolean onOptionsItemSelected(MenuItem item){
switch (item.getItemId()) {
...
case R.id.main_menu_detect_location:
requestLocation();
gpsRequestLocation();
...

}
...

}

private void requestLocation() {
...
detectLocation();
...

}
private void detectLocation() {
...
gpsRequestLocation();
...

}

public void gpsRequestLocation() {
if(checkSelfPermission(this,ACCESS_FINE_LOCATION) == PERMISSION_GRANTED) {
if (VERSION.SDK_INT >= VERSION_CODES.M){
if(checkSelfPermission(

this, ACCESS_FINE_LOCATION)
!= PERMISSION_GRANTED && checkSelfPermission(
this, ACCESS_COARSE_LOCATION)
!= PERMISSION_GRANTED){
return;

https://gitlab.com/learnERC/filo
https://gitlab.com/learnERC/filo
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}
locationManager.requestLocationUpdates(
LocationManager.GPS_PROVIDER, 0, 0, mLocationListener);

}
}

In the faulty implementation, the gpsRequestLocation method invocation checks for
permissions to access both the fine and coarse-grained locations. If those permissions are
granted (as it happens with API versions ≤ 22), the location is regularly updated by the
execution of the method requestLocationUpdates(). Otherwise, in case the permissions
are not granted (as it happens with API versions ≥ 23), the method returns without
updating the location, resulting in the app hanging forever waiting for the update. The
hang is actually caused by the code responsible for removing the progress bar that is
executed only once the location has been updated. The graphical result is that the progress
bar is never dismissed and it blocks the user interface from any other interaction.

To correctly implement this feature and remove the fault that appears in API ≥ 23
it is necessary to explicitly ask the user to grant access to the location information before
the invocation of the requestLocationUpdates method. The developers of Good Weather
obtained a viable fix by modifying the onOptionsItemSelected and gpsRequestLocation
methods, making them invoke the new methods designed to ask and acquire the permissions.

Given this description, proper analysis and fix-locus identification should report
the gpsRequestLocation and the onOptionsItemSelected methods as the methods to be
modified to obtain the fix. Methods that should be implemented but are not present in the
app cannot be reported by design.

In this case, FILO successfully reports gpsRequestLocation and onOptionsItemSelected
between the first and third method in the ranking in all the configurations that include
interactions from the framework toward the app (see Section 5.3 for further details). In
addition to identifying the fix-locus, FILO can isolate and report anomalous interactions
that happened in the failed execution about both permission checking and access to the
location service to the developers. These anomalous events are well representative of what
the problem is, that is, the app lacks proper permission to access the location service. In
fact, as ancillary information for those methods, FILO reports the checkSelfPermission
method, which is the framework method invoked in gpsRequestLocation and part of the
code that needs to be modified.

Finally, it is interesting to note that the failing execution per se is not explicative of
the fact that the problem is about permissions: the user can only see the app loading view,
without logging any error message. This is why the output of FILO can be helpful to ease
the app fixing task.

3. FIx-LOcus

The main goal of FILO is to support developers in fixing problems caused by the
upgrades to the Android Framework. FILO achieves this by automatically computing and
recommending a list of potential fix locations ordered by their likelihood, annotated with
supporting evidence that specifies the suspicious interactions between the app and the
underlying framework that a faulty method may have originated.

FILO only requires a GUI test case that reproduces the problem to run the analysis. To
analyze a failure, FILO compares the behavior obtained by running the input GUI test case
with the Android API that causes the failure, to the behavior shown by running the same
test case on a (close) version of the API that does not cause the problem. Since compatibility
problems are typically introduced when upgrading the Android framework, the GUI test
case is executed on both the current (problem-free) version of the Android API and the new
(problematic) one.

Figure 1 shows the three main phases of FILO:
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1. The Test Execution phase executes the GUI test case on the two Android APIs to collect
the interactions between the app and the two Android frameworks. These interactions
are collected as execution traces.

2. The Anomaly Detection phase identifies the blocks (i.e., the contiguous sequences) of
suspicious interactions by comparing the two execution traces.

3. The Fix Locus Candidates Identification phase processes the suspicious interactions to
return a list of likely faulty methods of the app, with the methods being associated
with the corresponding suspicious blocks as supporting evidence of the suspicious
interactions that motivate the selection.

App

APIv1

App

APIv2

GUI
Testcase

Baseline

Failure

2. Anomaly
Detection

1. Test
Execution

Suspicious
Invocations 
Blocks

W

W

W

W

W

W

3. Fix Locus
Candidates

Identi�cation

Fix Locus
Candidates

M3

M4

M1

M2

W W

W

W

W

W W

Supporting
Evidence

Figure 1. Overview of the FILO technique.

The next subsections provide details of each phase.

3.1. Test Execution

During the Test Execution phase, FILO collects the interactions between the app and
the framework, both for the base environment, which runs the target app with the compatible
version of the framework API (the test case passes), and the failure environment, which runs
the same target app with an incompatible version of the framework API (the test case fails).
From now on, we will refer to the base environment and the failure environment as v1 and
v2, respectively.

The underlying idea of FILO is that incompatibilities should be observable in the
invocations of API methods from the app and the callbacks from the framework. For this
reason, the test execution phase records every interaction between the framework API and
the app. All the other invocations, that is, calls internal to the framework and calls internal
to the app, are considered only to gain additional knowledge about the consequences of
the interactions between the app and the framework.

We can define a framework method as a method defined within the Android framework
or in a standard library (e.g., java.*); conversely an app method is a method implemented
in the app’s own source code. Therefore, an API call is a call to a framework method
originated from an app method. Similarly, a callback is an invocation of an app method
from a framework method. All other invocations are internal method calls.

Figure 2 represents the different kinds of invocations mentioned. For example, the
invocation am1 → f m1 represents an API call, while the invocation f m2 → am2 represents
a callback. Calls am1 → am3 and f m1 → f m3 represent internal calls within the app and
the framework, respectively.

We refer to API calls and callbacks as direct interactions, while we refer to calls internal
to either the framework or the app as indirect interactions. When an indirect interaction
occurs, we define it as a depth level x interaction if it is the xth indirection interaction in a
row after a direct interaction. More rigorously, given the invocation chain . . . → mk →
mk+1 → mk+2 → . . . → mk+n → . . ., the invocation mj is an indirect interaction of depth
level x if every invocation mi with i ∈ [j − x + 1, j] is an indirect invocation and mj−x is a
direct invocation.
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Framework

fm3

fm1 fm2

internal

Application
am1

am3
am2

am Application method

fm Framework method

Method Invocation

API call

Callback

internal

Figure 2. Interaction types.

The depth of an indirect interaction can be intuitively used to extend the monitoring of
the interactions between the app and its framework to deeper levels, collecting additional
evidence about the consequence of method calls. To this end, we define the concept of
boundary calls as the set of all the method calls that occur near the boundary between the
app and the framework. More rigorously, the boundary calls of level x consist of the union
of the direct interactions with the indirect interactions of level x − 1, where 0 means not
recording the indirect interactions. FILO can monitor the software to collect every boundary
call up to a given level x.

The output of the test execution phase consists of two traces containing all the bound-
ary calls recorded during the execution of the test case in the base and failure environments.
We refer to the trace obtained by running the test case within the base environment as
baseline trace, and it represents how the framework and the app interact with each other
when the execution is correct. Conversely, the failure trace is obtained by running the
same test case with the same version of the app, but running it in the failure environ-
ment, and it represents how the app and the framework interact with each other when the
execution fails.

Listing 2 shows an excerpt of a baseline trace. FILO traces when the invocation of a
method both starts and ends (marked with #b and #e, respectively) regardless of the type of
invocation. If the invocation has a return value, its value is appended at the exit invocation
point, as it happens to the invocation of the method findViewById() in Listing 2. It is
noteworthy that the actual value is returned in the case of primitive types, for non-primitive
types FILO records the output of the method toString() if overridden, otherwise, only
the dynamic type of the returned value is written in the trace. Furthermore, Listing 2
differentiates between callbacks and API calls, with the only callback present, namely
MainActivity.onCreate(), written in italics. The rest of the invocations are API calls,
which in the context of this example, means that the MainActivity.onCreate() method
(implemented within the app) invokes all the other methods in the listing (which are
implemented in the AppCompatActivity class, belonging to the Android Framework).

Listing 2. Excerpt of the Good Weather baseline trace.

MainActivity.onCreate()#b
AppCompatActivity.onCreate()#b
AppCompatActivity.onCreate()#e
AppCompatActivity.getSupportActionBar()#b
AppCompatActivity.getSupportActionBar()#e
AppCompatActivity.setContentView(...)#b
AppCompatActivity.setContentView(...)#e
AppCompatActivity.findViewById(...)#b
AppCompatActivity.findViewById(), returnValue:...#e
AppCompatActivity.setSupportActionBar(...)#b
AppCompatActivity.setSupportActionBar(...)#e
MainActivity.onCreate()#e
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FILO expects the exact same test to be executed in the two environments and restricts
the observations to the chosen level of interaction. This setup reduces incidental differences
between the two traces being analyzed, which implies that the vast majority of the differ-
ences that are actually detected are relevant to the fault under analysis. If large amounts of
non-deterministic interactions are present in the traces, they can be filtered out by repeating
the test execution multiple times within the same environment and then removing those
parts of the traces from the analysis. We, however, never observed relevant changes in the
traces collected for the repeated executions of the same test during our experiments.

It is important to report that, even limiting the scope of observation to boundary calls
of depth 1, the size of the traces acquired and analyzed by FILO can be significant. As an
example, the baseline trace for Good Weather (the running example), contains between
33 and 70,100 entries (configurations A1F0 and A2F2, respectively, see Section 5) with
sizes going from 39 KB up to 231 MB. Within our experiment, the largest trace produced
belongs to the Inventory Agent app [8], with up to 730,090 entries and ∼2.0 GB in terms of
disk space.

Algorithm 1 summarizes the test execution phase. The core of this phase is represented
by the run_test() function, which boots the required emulator, configures the monitor to
collect the right set of boundary calls, and then runs the available test case, finally retrieving
the generated trace. This process is repeated twice in order to acquire both the baseline and
the failure traces.

Algorithm 1: Test Execution
Input:
t: failing testcase
envbaseline: the baseline environment
env f ailure: the failure environment
k: depth level of interaction
Output:
baseline: trace generated by t in envbaseline
failure: trace generated by t in env f ailure

1 Function test_execution(t, envbaseline, env f ailure, k):
2 start_appium()
3 baseline = run_test(t, envbaseline, k)
4 failure = run_test(t, env f ailure, k)
5 stop_appium()

6 Function run_test(t, env , k):
7 boot(env)
8 configureMonitor(k)
9 execute_junit_test(t)

10 trace = retrieve_trace()
11 shutdown(env)
12 return trace

3.2. Anomaly Detection

The Anomaly Detection phase compares the two traces produced by the test execution
phase to isolate the most suspicious invocations. In particular, anomaly detection focuses
on invocation blocks. An Invocation Block is a contiguous sequence of interactions extracted
from a trace. More formally, given a recorded trace e1, . . . en of boundary calls, we define an
invocation block as any sub-sequence ei, ei+1, . . . ei+k, s.t., i ≥ 1 and i + k ≤ n.

During the anomaly detection phase, FILO identifies the differences between the
baseline trace and the failure trace. It also groups these differences and assigns them
weights based on their size. Since the compared traces contain the interactions collected
while running the same test case, the detected differences are very likely due to the changes
that happened within the underlying framework and their impact on the app.
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FILO firstly identifies these differences by using diff [9], which returns the invocation
blocks in the failure trace that have no counterpart in the baseline trace. Since these blocks
are the main manifestation of the problem caused by the updated framework, we refer to
them as the Suspicious Invocation Blocks (SIBs).

The set of differences represented by SIBs is usually rather large. In fact, a single dif-
ferent behavior of the framework may produce several differences in the flow, parameters,
and return values of boundary calls. For example, the traces generated from the running
example contain hundreds of differences grouped in 61 SIBs.

To categorize and analyze the content of the SIBs, FILO undertakes two distinct
operations: firstly, it designates a single method invocation within each SIB to serve as its
representative, and secondly, it assigns a weight to each SIB according to the number of
interactions it encompasses. Consequently, larger SIBs are deemed to be more significant
and informative, as opposed to sporadic differences in the execution traces.

An example of SIB is shown in Listing 3. This SIB starts with an invocation to the
method MainActivity.onLocationChanged, which is chosen as a representative for the
whole block (shown in red). Since the SIB is composed of 30 invocations (omitted in the
listing), FILO assigns a total weight of 30 to the SIB, which is also shown in Listing 3 near
the representative invocation.

Listing 3. Excerpt of a Suspicious Invocation Block.

MainActivity.onLocationChanged(...)#b Weight 30
android.app.Dialog.cancel()#b
android.app.Dialog.cancel#e
android.location.Location.getLatitude()#b
android.location.Location.getLatitude, returnValue: ...#e
...

The final output of this phase is thus a series of weighted SIBs that FILO exploits to
identify the fix-locus in the next phases. Note that usually, the anomaly detection phase
identifies several blocks. For instance, in the running example, FILO isolates between
1 and 61 different SIBs, depending on the depth level of interaction considered. In the
Good Weather app, the vast majority of the SIBs are yielded by the interactions from the
framework toward the app. While this behavior is common among most of the apps
we analyzed, there are some cases in which the contribution of the invocations from the
app toward the framework is more relevant than their counterparts, an example is the
FilePicker app.

Finally, it is noteworthy that the actual fix-locus method is not usually representative
of a SIB and, in fact, it often does not appear as an invocation at all nor in the baseline, or in
the failure trace. For instance, one of the methods that should be modified in the running
example is gpsRequestLocation() and this method never occurs in the traces. This is
confirmed in our empirical evaluation where in about 50% of the cases the fix-locus is not
included in any trace at all.

Algorithm 2 shows the detailed execution of the anomaly detection phase. It starts by
running the Linux diff tool. Then, it identifies the SIBs from the diff (function get_SIBs) by
creating a SIB for each difference occurring in the traces, assigning to it the first method of
the block as representative and the length of the block as weight (lines 7 and 8, respectively).
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Algorithm 2: Anomaly Detection
Input:
baseline: the baseline trace
failure: the failure trace
Output:
SIBs: the list of weighted SIBs

1 Function anomaly_detection(baseline, failure):
2 diff_trace = linux_diff(baseline, f ailure)
3 SIBs = get_SIBs(diff_trace)
4 return SIBs

5 Function get_SIBs(diff_trace):
6 for each diff_block in diff_trace do
7 representative = first(diff_block)
8 weight = len(diff_block)
9 SIBs.append(new SIB(representative, weight, diff_block)

10 return SIBs

3.3. Fix-Locus Candidates Identification

The Fix-Locus Candidates Identification phase processes the set of weighted SIBs and
creates a ranked list of app methods that represent the fix-locus candidates, ordered
according to the likelihood of pointing at the faulty method. The ranking of each method
is explained by the set of SIBs that are under its influence. Intuitively, the SIBs associated
with a specific method in the ranking represent the failure symptoms that resulted from
the execution of that method. That is, these symptoms could be potentially eliminated by
fixing the method, in case it is faulty. The SIBs associated with a method are also useful to
the developers, since they add contextual information to the identification of fix-locus.

The ranked list of suspicious methods is created in two main steps from the SIBs.
In the first step, construction of the failure call tree, the set of app methods that might be
responsible for a SIB is determined by inspecting the call stack at the time the suspicious
calls in the SIBs are generated. In the second step, ranking, the app methods are ranked
according to their influence on the detected SIBs.

3.3.1. Construction of the Failure Call Tree

The fix-locus is not necessarily in the set of methods that belong to the SIBs. On the
contrary, the SIBs include anomalous invocations originated by faulty methods, which are
often placed elsewhere in the code of the app. To identify the set of methods that must
be taken under consideration, FILO builds a Failure Call Tree (FCT). A FCT is a graph that
is built from the SIBs representatives by considering their stack trace (this information
is collected in the traces when executing the test case). Nodes in the FCT are method
invocations and direct edges represent method invocations detected in the stack trace.

More rigorously, for each SIB sibi with weight wi and representative call ci, FILO
collects its stacktrace ⟨m1, . . . , mni , ci⟩, where m1 is always the method ZygoteInit.main.
The failure call tree is a triple (N, E, r), where N = {m1, . . . , mni , ci|∀sibi} is the set of nodes,
E = {(mni , ci), (mi, mi+1), i = 1, . . . ni − 1|∀sibi} is the set of edges, and r = ZygoteInit.main
is the root of the tree. The root of the FCT is always the ZygoteInit.main method as it is
the initial method that handles the fork of every app launched within the Android OS. The
leaves of the tree are the SIBs representatives and FILO assigns a weight that corresponds
to the weight of the corresponding SIBs to each leaf. The higher the weight is, the more
relevant that leaf is.

After building the FCT, FILO scores each node in the tree, based on its degree of
influence on the SIBs, its number of children, and its distance from the root. This score is
the suspiciousness of that node and it is used by FILO to create the final ranking.

More formally, we compute the suspiciousness of a method m as a linear combination
of three attributes as shown in Equation (1). The sum of k1 + k2 + k3 is always 1.
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Susp(m) = k1 × in f luence(m) + k2 × depth(m) + k3 × children#(m) (1)

Influence(m) measures the degree of influence of node m in terms of the weights of the
leaves in the (sub-)tree rooted by m. It is computed by summing the weights of the leaves
that can be reached from m normalized with respect to the sum of all the weights of all the
nodes in the tree. Note that by definition, the root of the FCT influences all the SIBs, and
therefore in f luence(root) = 1. Similarly, a leaf node sib that can only influence itself has
in f luence(sib) = w

W , where w is the weight of the SIB and W is the sum of all the weights
in the FCT.

Depth(m) measures the position of m with respect to the height of the FCT. The value
is normalized with respect to the height of the tree itself. Therefore, depth(root) = 0 and
depth(sibd) = 1, where sibd is the deepest SIB in the tree.

Children#(m) measure the number of direct children of m. The value is normalized
with respect to the node with the higher number of children in FCT, which means that
children#(m) = #childrenm/#childrenMax where Max is the node with the highest number
of children.

The three scores influence, depth, and children# are designed to suitably interact with
one another favoring different characteristics of the methods in the FCT, with the idea that
the method that obtains the highest score considering all three dimensions has the highest
probability of being the fix-locus.

The influence(m) score is defined to identify the nodes that control the execution of a
large number of SIBs. Since SIBs are the symptoms of the changes in the execution of the
test case, this criterion works under the assumption that the fix-locus has an impact on a
significant number of SIBs.

The depth(m) score is designed to privilege the choice of nodes that are close to the
leaves of the FCT, therefore discouraging the selection of methods higher up in the tree.
The general idea is that methods close to the SIBs are preferable to methods close to the root as
they are executed too early during the failure to be relevant.

The children#(m) score is designed to favor the nodes that have many direct children,
in contrast with those that for instance have one. The intuition is that any node with a
large number of children is a node that acted as a differentiation point for multiple SIBs, since it
occurred in multiple stack traces of multiple SIBs.

The interaction of these three attributes should favor the selection of nodes that influence
the execution of a large and cohesive set of SIBs with relevant weights. In fact, considering the
leaf nodes, it is worth selecting an ancestor node, that is a method executed earlier in the
failure, only if the loss in terms of depth is compensated by the gain in terms of influence
and number of children.

Algorithm 3 shows the creation of the FCT graph. The process starts with the function
generate_FCT() that takes the list of SIBs as input. For each SIB, its stack trace is retrieved
and then recursively added to the FCT graph starting from the root node. The last node
added (the leaf) shall represent the SIB itself. The recursion is handled by the add_to_FCT()
function, which, for each stack trace method, checks if that method is already present in the
set of children of the current FCT node. If the method is present, the function iterates the
process with that node as a target. If the method is not present, the function creates a new
child and continues by iterating the process with the newly added child. Once a new child
is added, the rest of the stack trace will generate a new branch in the FCT.
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Algorithm 3: Failure Call Tree Generation
Input:
SIBs: the list of weighted SIBs
influence, depth, children#: the weights for the suspiciousness score
Output:
fct: the failure call tree graph

1 Function generate_FCT(SIBs):
2 fct = new FCT()
3 for each sib in SIBs do
4 stacktrace = sib.representative.get_stacktrace()
5 if fct.get_root() == null then
6 fct.set_root(stacktrace.pop() )

7 add_to_FCT(stacktrace, fct.get_root() )

8

9 for each fct_node in fct do
10 fct.set_susp_score(k1,k2,k3)

11 return fct

12 Function add_to_FCT(stacktrace, current_FCT_node):
13 current_method = stacktrace.pop()
14 if current_method == null then
15 return

16 if current_method not in current_FCT_node.children then
17 current_FCT_node.add_child(method)

18 next_FCT_node = current_FCT_node.get_child(current_method)
19 add_to_FCT(stacktrace, next_FCT_node)

Finally, the generate_FCT() loops on all the nodes in the graphs and using the three
weights (influence, depth, and children#) assigns a suspiciousness score to each one.

3.3.2. Ranking

In this step, FILO generates the final ranking that shall include the list of methods
ordered by suspiciousness, associated with the SIBs that motivate their ranking.

Since the FCT represents the method calls present in the stack trace at the time of the
failure, the same method might be invoked multiple times and appear in multiple places in
the tree. The choice here is to consider the most suspicious occurrence of a method call as the
suspiciousness of the method. Indeed, a highly suspicious instance of a method is enough
to justify its careful inspection, independent from the existence of other, less suspicious,
occurrences of calls to the same methods. More rigorously, given a FCT and its set of nodes
nodes(FCT), the suspiciousness susp(m) of a method m is susp(m) = max susp(mc) with mc
calls to m occurring in nodes(FCT).

Since the goal of FILO is to suggest the fix-locus in the app, that is, the place where the
app must be adapted to work with the updated framework, the location must necessarily
be a method in the app. Thus, FILO discards every invocation to the framework from the
final ranking.

The final ranking reported by FILO for the running example when analyzing level 2
interactions from the app toward the framework and level 1 interactions from the frame-
work toward the app is shown in Table 1. Note that the methods that require the fix, that
is gpsRequestLocation and onOptionsItemSelected, are ranked at the top, they are thus
the first methods that a developer is supposed to inspect. As previously mentioned, it is
important to note that the top-ranked method never occurred in the set of interactions in
the traces, meaning that a trivial comparison of the traces could not have suggested it. We
study the effectiveness of direct trace comparison in our empirical evaluation confirming
its low effectiveness when supporting fault localization.
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Table 1. Ranking returned by FILO (A2F1).

MethodName Susp

org.asdtm.goodweather.MainActivity.onOptionsItemSelected 0.48
org.asdtm.goodweather.MainActivity.gpsRequestLocation 0.47
org.asdtm.goodweather.MainActivity$1.onLocationChanged 0.05

Of course, there are cases in which the returned ranking may miss the faulty method,
for instance, because the fault is in a method that is not part of the stack traces found in
the SIBs representatives. This, however, occurs rarely. For instance, in our evaluation, it
happened 3 times out of 21 cases, if considering callback levels higher than zero.

4. Prototype

Our prototype implementation consists of two main components: the Tracer and the
Analyzer. The former component records the execution of the app producing the traces with
the boundary calls, while the latter component processes the collected traces to produce
the final ranking.

To make our experiments and results reproducible we produced a failing test case
for each app. Each test case represents the shortest interaction sequence that reveals the
incompatibility between the framework and the app. These test cases are implemented as
Appium [10] test cases for automatic execution.

Our prototype implements two interfaces: a command–line interface, to ease automa-
tion, and a GUI interface integrated within the Android Studio IDE [11], to provide an
interface usable by developers. In particular, the integration with the Android Studio IDE
is achieved by implementing a plug-in that also provides integrated views that support
direct navigation from the ranking to the corresponding code element.

The Tracer is a platform-specific component that collects information about the failures
exposed with the test case, by creating execution traces that log the entry and exit points
of each boundary call. We implemented a specific tracer rather than using the Android
Profiler [12], because it does not collect data about return values and generates huge traces
that include method invocations that are not boundary calls.

We thus leveraged the XPosed Framework [13] and implemented the tracer as an
Xposed Module. Our Tracer is able to produce traces with boundary calls only, according
to a programmable depth. Moreover, it collects extra information such as parameter values,
stack traces, and return values for each call. For primitive values, the Tracer reports the
actual values in the trace, while for custom objects it provides a string representation,
obtained by concatenating the result of the invocation of method toString, jointly with the
value returned by method isEmpty if present. To reduce its impact on the system, the Tracer
selectively instruments only the methods that may occur as boundary calls, identified from
an initial run of the test case.

Analyzer

The Analyzer is a technology-agnostic component that takes as input the execution pro-
duced by the Tracer and is composed of two essential sub-components: the Anomaly Detector
and the Ranking Generator. The Anomaly Detector is responsible for comparing the traces
collected during the test execution and identifying SIBs along with their respective weights.
The Ranking Generator constructs the failure call tree, executing the scoring algorithm, and
generates a ranked list of potential fix locations, which includes supporting evidence.

To understand how the Analyzer works, we detail the operational workflow in the
case of an application experiencing compatibility issues after a framework upgrade. The
Anomaly Detector analyzes the execution traces from the base and failure environments,
identifying deviations and anomalous patterns in the interactions between the app and
the framework. The output of the Anomaly Detector is a set of SIBs, each assigned a weight
based on the severity of THE anomaly. Then, Ranking Generator constructs a failure call tree
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analyzing the set of SIBs. By running the scoring algorithm, the Ranking Generator produces
a ranked list of methods that are likely to be the fix locations of the compatibility issue.
This list not only prioritizes potential fix locations but also includes supporting evidence in
the form of suspicious method invocations, which represent symptoms of failure that can
be mitigated by implementing appropriate fixes in the identified methods.

The Analyzer implements additional features useful for our experiments. For example,
it can perform the parameters space exploration presented in RQ4 and can generate the list
of methods to be instrumented. For a demonstration of the Analyser in action, readers are
invited to view the demo showcasing its functionalities and capabilities [14].

5. Empirical Evaluation

In our evaluation, we investigated five research questions.

RQ1: What is the sensitivity of FILO to the choice of the parameters? This RQ investigates
how the choice of a configuration impacts the performance of FILO. To answer this RQ,
we performed an exhaustive exploration of the configuration space and studied how the
results changed with changing configurations.
RQ2: What is the quality of the ranking produced by FILO? This RQ investigates how well
the ranking returned by FILO identifies the method that should be modified to implement
the fix. To answer this RQ, we obtained the rankings for a number of different apps
with different characteristics and checked whether FILO is able to place the methods that
should be modified to produce the fix at the top positions of the ranking, specifically
within the first 10 positions or, ideally, within the first five positions as recommended by
Kochhar et al. [15].
RQ3: What is the effectiveness of FILO compared to both Naive Trace Analysis and SBFL
techniques? This RQ compares the performances of FILO to two competing approaches.
Naive Trace Analysis (NTA) represents the strategy of simply comparing the baseline trace
with the failure one. This comparison is designed to demonstrate that the only comparison
of the traces is not enough to localize the faulty method. We also compared FILO to
Ochiai [1], which is an extensively used fault localization technique. This comparison is
defined to demonstrate that a strategy specifically designed to localize problems introduced
by framework changes is more effective than general-purpose fault localization. It is also
noteworthy that FILO has weaker assumptions than Ochiai, since it does not require a full
test suite with several passing tests to be applied, but it can be applied from a single failing
test case.
RQ4: What is the relevance of the information that FILO associates with the methods in
the ranking? This RQ investigates if the SIBs produced by FILO are really representative of
the symptoms of the failures, and thus they can be used to obtain a better understanding
of the failure root causes. To answer this RQ, we compared the content of the SIBs to the
actual set of methods related to the incompatibility between the framework and the app.
RQ5: Is FILO actually useful to developers when fixing app issues? This RQ determines
the perceived usefulness of FILO by developers. To answer this RQ we performed a human
study with 24 developers, comparing the effort needed to debug apps with and without
using FILO.

5.1. Subject Apps

To empirically evaluate FILO, we looked for Android apps that have issues caused
by a framework upgrade. We searched for these apps on GitHub [16] with keywords
such as “after upgrade to Lollipop” using API levels and names from 21 to 26 for an initial
selection. Since our evaluation requires both the capability to reproduce the failures and
the knowledge of the fix, we removed from the results the apps where it was not possible to
replicate the upgrade-related issue (e.g., because specific hardware is required, or some of
the backend services are not available anymore). When available, we used the official fixes
for the issues, looking at the commits tagged with the closure of the issue, or subsequent
commits that silently fixed it. When a fix was not available, we implemented it ourselves
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following common design principles and Android development guidelines. We ended up
with a total of 18 actual upgrade problems and corresponding Appium test cases that are
able to replicate the problems.

Table 2 reports information about the apps, their failures, and the faults that caused
the failures. Specifically, the App, Ver, and Locs columns indicate the name of the app, the
version of the app (specified with the identifier of the commit), and the number of lines of
code, respectively.

Table 2. Subject apps.

App Locs Inc. API Failure Fault

Activities 1.1 K 26 Crash on startup Missing Oreo adaptive icon support

BossTransfer 2.6 K 23 Crash when opening the details about
items in a list Wrong permission logic

FakeGPS 2.4 K 23 Crash when opening the view to set the
fake position Missing permission logic

FilePicker 2.9 K 23 Folders erroneously shown as empty Faulty support to the new api

FirefoxLite 102 K 22 Back button doesn’t work when tracker
popup window appears Popup in background has to be explicit

FOSSBrowser 18 K 25 Crash on startup Faulty support to the previous api
GetBack GPS 9.0 K 23 Unable to retrieve current position Missing permission logic
GoodWeather 6.3 K 23 Hang when refreshing meteo forecast Missing permission logic
InventoryAgent 10.0 K 23 App stuck when loading inventory Missing permission logic
KanjiFix 1.3 K 21 Unable to fix Japanese glyph rendering Fonts require a new procedure to be loaded
MapDemo 0.6 K 23 Crash when retrieving the current position Missing permission logic
OpenTraining 60.8 K 26 Notification does not show up New library for notification
PoGoIV 14.3 K 24 Unable to perform the auto update New api requires the use of FileProvider
PrivacyPolice 1.3 K 23 Unable to connect to wifi networks Api methods with changed semantics
QuotoGraph 11.5 K 24 Crash on startup Api methods with changed semantics
SearchView 3.9 K 21 Crash on startup Api methods with changed semantics

ToneDef 3.4 K 23 Error message when dialling from the
phone contacts list Missing permission logic

TrebleShot 40.6 K 22 External storage cannot be written Minimum version was erroneously setted

Activities is an app to launch hidden activities within an Android App and create
shortcuts to them on the home screen [17]. BossTransfer is a game app [18]. FakeGPS is a
GPS device simulator [19]. FilePicker is an app for selecting files and folders in a device [20].
FirefoxLite is a web browser [21] by Mozilla. FOSSBrowser is a privacy-friendly web
browser [22]. GetBack GPS is an app for storing the location of points of interest [23].
GoodWeather is a weather app [24]. InventoryAgent is an app for corporations to handle
corporate devices [8]. KanjiFix is an app to fix Japanese glyph rendering [25]. MapDemo
is an app to test the setup of Google Play services [26]. PoGoIV is an IV calculator for
Pokemon Go [27]. OpenTraining is a fitness app [28]. PrivacyPolice is an app that prevents
the leaking of sensitive information via Wi-Fi networks [29]. QuotoGraph is an app to create
custom wallpapers [30]. SearchView is a persistent search and view library in material
design [31]. ToneDef is a tone dialer app [32]. TrebleShot is a peer-to-peer local file sharing
app [33].

Column Inc. API indicates the version of the API that makes the app fail. This means
that the specific version of the app in the column Ver works according to the app’s intended
behavior when executed in all prior API versions with respect to the one in the Inc. API
column, but does not work with that specific API version.

The Failure column provides a short description of the failure caused by the fault
described in column Fault. The * indicates the faults that do not have an official fix or
a commit that resolves the fault. In these cases, we implemented the fix ourselves. It is
interesting to report that some of the faults fixed by the developers have not been trivial to
debug and fix, requiring from one day up to several months before a working version was
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pushed in the repository. Three of the faults also required multiple commits and attempts
before they were fixed (up to 23 commits in one of the apps).

5.2. RQ1: What Is the Sensitivity of FILO to the Choice of the Parameters?

We investigated the effectiveness of FILO for a range of configurations, concerning
both the amount of information collected from the failing execution and the values assigned
to weights k1, k2, and k3 in Formula 1. While collecting more data may increase the chance
of obtaining information useful to identify the faulty method, it may also introduce noisy
and irrelevant information in the analyzed traces. For this reason, we experienced different
combinations of data recording, distinguishing between direct and indirect invocations of
different levels, and considering both independent and joint invocations from the app to the
framework, and vice versa. In particular, we considered the following eight configurations:

A1F0: it records the level 1 interactions (direct method invocations) from the app to the
framework, while it does not record any interaction from the framework to the app.
A0F1: it records the level 1 interactions (direct method invocations) from the framework to
the app, while it does not record any interaction from the app to the framework.
A1F1: it records the level 1 interactions (direct method invocations) from the framework to
the app and vice versa.
A2F0: it records the level 2 interactions (direct method invocations and indirect method
invocations of depth 1) from the app to the framework, while it does not record any
interaction from the framework to the app.
A0F2: it records the level 2 interactions (direct method invocations and indirect method
invocations of depth 1) from the framework to the app, while it does not record any
interaction from the app to the framework.
A1F2: it records the level 1 interactions (direct method invocations) from the app to the
framework, and the level 2 interactions (direct method invocations and indirect method
invocations of depth 1) from the framework to the app.
A2F1: it records the level 1 interactions (direct method invocations) from the framework
to the app, and the level 2 interactions (direct method invocations and indirect method
invocations of depth 1) from the app to the framework.
A2F2: it records the level 2 interactions (direct method invocations and indirect method
invocations of depth 1) from the framework to the app and vice versa.

Concerning parameters k1, k2, and k3 we simply considered every possible combina-
tion that can be obtained by varying the parameter value by 0.01, resulting in 5.151 configu-
rations. The resulting size of the configuration space that is investigated is thus 41.208 con-
figurations (5.151 × 8) for each app, with a total of 741.744 executions (41.208 × 18 apps).

To evaluate how good each configuration is we systematically executed every con-
figuration with every subject app. To measure how good each ranking is, we used AveP,
which is a metric commonly used in information retrieval [34]. The idea is to first compute
the precision and recall of the ranking for every position p of the items in the returned
raking. The value of AveP is obtained by computing the area under the precision–recall
curve obtained by considering the items in the order they are in the ranking. The best result
is obtained by returning all and only the relevant items (AveP = 1). Moreover, a ranking
with the relevant items at the top will have a higher AveP than a ranking with the relevant
items ranked at lower positions. In details, AveP is computed as follows:

AveP =
n

∑
k=1

P(k)∆r(k) (2)

where n represents the number of items in the ranking, k is the position of an item in the
ranking, P(k) is the precision calculated only considering the first k results, and ∆r(k) is
the change in recall between k − 1 and k.

AveP gives us an evaluation of the rankings obtained by FILO with a given config-
uration for each app individually. To combine those values and obtain a comprehensive
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score for each set of parameters, we use the Mean Average Precision (MAP). MAP is another
common metric that can score the ordering of the results of a set of queries and it is based
on the AveP we already calculated [34].

MAP =
∑Q

q=1 AveP(appq)

Q
(3)

As shown in Equation (3), MAP is given by the sum of all the AveP(appq) over the
total number of apps Q, where AveP(appq) is the AveP value for a specific app appq ∈ Q.

The first part of Table 3 shows the min, max, and average MAP values for each configu-
ration throughout the 18 apps tested and the 5151 parameters combinations of weights, for
a total of 741,744 rankings produced (5151 AveP values ×18 apps ×8 invocations levels).
Results show that the most relevant contribution to the localization of the faulty method is
obtained by observing the callbacks, that is, the interactions from the framework toward the
app (e.g., configuration A0F1). Increasing the level of interactions or adding the calls from
the app toward the framework is mostly a confounding effect, decreasing performance.

Table 3. MAP values and distributions for the considered interaction combinations.

MAP Distribution Best MAP MAP∆ ≤ 0.05 MAP∆ ≤ 0.1 MAP∆ > 0.1

Min Max Average # % # % # % # %
A0F1 0.3991 0.6134 0.4750 230 4.47% 679 13.18% 1418 27.53% 3733 72.47%
A0F2 0.3527 0.5407 0.4361 8 0.16% 680 13.20% 2951 57.29% 2200 42.71%
A1F0 0.1250 0.1667 0.1388 660 12.81% 5151 100.00% 5151 100.00% 0 0.00%
A1F1 0.3483 0.5755 0.4443 1 0.02% 996 19.34% 2054 39.88% 3097 60.12%
A1F2 0.3120 0.5019 0.3849 5 0.10% 568 11.03% 5091 98.84% 60 1.16%
A2F0 0.1528 0.2222 0.1918 660 12.81% 4675 90.76% 5151 100.00% 0 0.00%
A2F1 0.3761 0.5755 0.4579 1 0.02% 835 16.21% 2054 39.88% 3097 60.12%
A2F2 0.3119 0.5111 0.3885 5 0.10% 550 10.68% 4511 87.58% 640 12.42%

The remainder of Table 3 reports the percentage and number of configurations (i.e., set
of parameters values) that return the best MAP value (column Best MAP) or that return
MAP values differing at most by 0.05 (column MAP∆ ≤ 0.05) and 0.1 (column MAP∆ ≤ 0.1).
Finally, we port the number of configurations whose MAP value differs from the best value
by more than 0.1 (column MAP∆ > 0.1).

It is interesting to note that in most cases, multiple combinations of parameters can
yield the same best MAP. For example, A0F1, which is the overall best-performing configu-
ration, has 230 different parameters distributions that give the max MAP value of ∼0.6134
and more than a quarter of all the possible distributions (1418, or 27.53%) give a MAP
value that have a delta from the max that is ≤0.1. This suggests that the technique is not
particularly sensitive to the choice of the parameters.

From Table 3 we can also see that A1F0 and A2F0 have the highest number of parameter
distributions that give their best MAP values and their whole spaces have only values
within the 0.1 delta boundary. However, they are not very good configurations for FILO as
they perform poorly, with A1F0 being the worst configuration in terms of MAP values and
A2F0 being the second worst.

To better visualize the resilience of FILO with different values of parameters, Figure 3
shows a 3D plot for each configuration. The three axes represent the contribution of each
parameter, since they must sum to 1.0 to be a valid set of parameters, only the outer surface
of the plot is considered. Each plot contains 5151 MAP values colored based on the four
ranges of values (Best, delta ≤ 0.05, delta ≤ 0.1, and delta > 0.1).

We can see from Figure 3 that the most influential parameter is Children as most of
the distributions of the best yielding parameters have a high value for this parameter.
Conversely, the least impactful parameter is Depth, with the Influence parameter in between
the other two.
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Figure 3. MAP values for the different invocations level: (a) A0F1 MAP values; (b) A1F0 MAP values;
(c) A0F2 MAP values; (d) A2F0 MAP values; (e) A1F1 MAP values; (f) A1F2 MAP values; (g) A2F1
MAP values; and (h) A2F2 MAP values
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5.3. RQ2: What Is the Quality of the Ranking Produced by FILO?

To assess the quality of the rankings we consider the position of the faulty method
in the rank. Table 4 shows the results obtained by FILO for every configuration when
executed in one of its Best MAP set of parameters. When a fix requires changes to multiple
methods (apps GoodWeather, InventoryAgent, and ToneDef), we consider the position
of every method in the ranking (Column Rank). We do not consider any new method
introduced by developers in order to organize the code of the fix, since these methods were
not present in the faulty version of the app and thus cannot be localized. We also report
the number of SIBs associated with the ranked methods (Column #SIB). In case a faulty
method is not present in the returned ranking, we report a “-". The best results for each app
are highlighted in bold.

Table 4. FILO rankings for multiple configurations of the recording depth.

A0F1 A0F2 A1F0 A1F1 A1F2 A2F0 A2F1 A2F2

Application #SIB Rank #SIB Rank #SIB Rank #SIB Rank #SIB Rank #SIB Rank #SIB Rank #SIB Rank

Activities 18 1, 8 18 2, 6 2 - 17 2, 8 17 2, 6 2 - 17 2, 8 17 2, 6
BossTransfer 33 1 37 1 18 - 36 1 40 2 18 - 36 1 40 2
FakeGPS 43 1 71 2 4 - 45 1 73 1 4 - 45 1 73 1
FilePicker 45 1 63 1 91 1 135 1 152 1 91 1 135 1 152 1
FirefoxLite 2170 1 2822 1 66 - 2630 1 3016 1 83 - 2649 1 3036 1
FOSSBrowser 131 6 218 - 2 - 131 - 218 - 3 - 132 - 219 -
GetBackGPS 35 3 41 3 7 - 40 1 48 3 9 - 43 1 49 2
GoodWeather 49 2, 3 61 2, 3 1 - 49 1, 2 61 2, 3 1 - 49 1, 2 61 2, 3
InventoryAgent 2456 6, 12 3134 2, 7 266 - 3010 7, 16 3149 2, 9 482 - 3486 6, 14 3842 2, 8
KanjiFix 1 1 1 - 1 1 1 1 1 - 1 1 1 1 1 -
MapDemo 5 2 257 1 0 - 5 1 262 5 0 - 5 1 262 5
OpenTraining 301 1 461 1 90 - 400 5 601 1 90 - 400 5 601 1
PoGoIV 72 3 105 5 24 - 90 5 155 6 24 - 90 5 155 6
PrivacyPolice 44 1 45 1 2 1 44 3 45 1 2 1 44 3 45 1
QuotoGraph 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1
SearchView 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
ToneDef 178 - 182 5, 3 1 - 178 - 182 6, 3 1 - 178 - 182 6, 3
TrebleShot 41 2 91 3 4 - 47 4 100 2 10 - 52 4 110 2

While the number of SIBs returned by the anomaly detection phase varied greatly
among the apps, FILO has been consistently able to report the method to be fixed in the
first positions of the ranking. As anticipated by the results reported in Table 3, the ranking
generated by A0F1 and A2F1 is better than the others, while A1F0 and A2F0 are worse.
Indeed, A0F1 and A2F1 consistently reported the faulty methods in the top position of the
ranking in most cases. This result can be considered rather good, since practitioners have
been reported to consider acceptable inspecting up to 10 methods, with a preference for
techniques that require inspecting 5 methods at most [15].

It is interesting to notice, however, how, for example, the fix-locus of ToneDef and one of
the two fix-locus of Activities are always better identified when in the A*F2 configurations.

5.4. RQ3: How Does FILO Compare to Both Naive Trace Analysis and SBFL Techniques?

This RQ compares FILO to other common approaches for fault localization, namely
Naive Trace Analysis (NTA) and Spectrum-Based Fault Localization (SBFL) [35]. NTA
consists of a straight comparison between the baseline trace and failure trace to report to
the user the suspicious method invocations that occur at the boundary between the app
and the framework. This baseline method is considered to validate the hypothesis that a
simple comparison between the two traces is not effective, and an analysis considering the
computations internal to the app is necessary. Moreover, we considered Ochiai [1], one of
the most commonly used and effective SBFL techniques (see Section 6 for further details on
SBFL) to compare our solution for the localization of upgrade problems in Android to a
general purpose fault localization solution.
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It is important to remark that SBFL techniques have stricter requirements than FILO
and produce a more limited output. In fact, they usually require a full test suite containing
both passing and failing test cases to compute the ranking, and they do not offer any
ancillary information that helps justifying the methods in the ranking. On the contrary,
FILO only needs a single failing test case and augments the ranking with contextual
information in the forms of SIBs that may help understanding the reason of the failure.

Since the apps used in this work are released without a full test suite, in principle
the whole category of SBFL techniques would not be applicable at all. To overcome this
issue, we generated a test suite of passing test cases exploiting the Monkey automatic
testing tool [36]. We used a setting that favours the generation of an extensive test suite
by configuring Monkey to emit 10,000 events per test case (200 times the default value)
and we ran it for 10 min for each app (2 times the time needed to produce advances in
coverage [37]).

Moreover, we set up the testing environment in order to prevent the generation of
failures and inspected the logs to make sure that no failing test case was included in the
suite (so to have only the same failing test case as with FILO). We collected coverage data
at the method level to be consistent with the granularity offered by FILO and NTA, but
also at the statement level, to investigate the effectiveness at a finer granularity. We then
computed the rankings using Ochiai.

Table 5 shows the positions of the faulty methods in the rankings returned by the
top two performing configurations of FILO, NTA exploiting the traces produced by the
same two levels, and Ochiai, both at method and statement levels. To avoid issues due
to overfitting, we also report two parameter distributions that fall within the MAP ≤ 0.1
area, which in the case of A2F1 covers almost 40% of the whole possible combinations of
parameters. Rows Top-1, Top-5, and Top-10 indicate the number of times each technique
has ranked the target method in the top, top 5, and top 10 positions, respectively. We
assessed up to the first 10 positions of the ranking, since these have been reported as useful
positions for practitioners, with a preference for the top 5 positions [15]. Not in the ranking
counts the number of times the techniques were not able to include the target method in
the respective ranking (marked with a “-” in each row). Finally, values in bold represent
the best-performing technique for each one of the 18 considered apps, and for the Top-x
groups, in the case of Not in the ranking less is better, while more is better in every other
row. In 3 out of the 18 apps, the methods to modify or add to perform the fix were 2 instead
of 1, so we evaluated them individually as if they were two distinct cases, with a total of
21 values.

NTA generates the worst results, with the NTA A0F1 configuration unable to identify
the correct method in all 21 cases, while NTA A2F1 performed only slightly better, being able
to detect the faulty method only 5 times out of 21 and only once among the top 5 results.

Ochiai is able to detect the fix-locus in 15 and 14 cases at method and statement
levels, respectively, both levels outperforming or equating FILO in only 2 and 3 cases. The
Ochiai-method was able to obtain a perfect result only twice, while Ochiai-statement only in
one case.

In all the other cases at least one of the four configurations of FILO outperformed
Ochiai at both levels. In fact, FILO A2F1 ranked 9 faulty methods at the top position,
15 among the top 5 positions, and 17 among the top 10. Even better, FILO A0F1 ranked
9 faulty methods at the top position, 15 among the top 5 positions, and 18 among the top 10.

If we consider non-optimal parameters distribution, FILO still outperforms SBFL
techniques with 7 perfect scores and up to 15 ranked methods within the top 5.

It is also important to remark that FILO is cheaper to execute than SBFL. Its main cost is
based on the execution time of the failing test case only. In contrast, SBFL techniques require
the execution of a complete test suite with the instrumentation to collect full coverage data,
which is orders of magnitude more expensive.

In summary, our empirical results show that FILO is more effective than NTA and
SBFL in detecting the fix-locus in problems introduced by framework upgrades.
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Table 5. Comparison between FILO, Naive trace analysis, and Ochiai.

Application BestMAP
A0F1

BestMAP
A2F1

MAP∆ ≤ 0.1
A0F1

MAP∆ ≤ 0.1
A2F1

NTA
A2F1

NTA
A0F1

Ochiai
(Method)

Ochiai
(Statement)

Activities 1, 8 2, 8 2, 2 2, 2 -, - -, - - -
BossTransfer 1 1 1 2 - - 4 32
FakeGPS 1 1 1 1 612 - 13 65
FilePicker 1 1 1 1 347 - 81 -
FirefoxLite 1 1 1 1 - - 88 279
FOSSBrowser 6 - 6 - - - - -
GetBack GPS 3 1 3 3 - - - -
GoodWeather 2, 3 1, 2 2, 3 1, 2 -, - -, - 1, 32 5, 5
InventoryAgent 6, 12 6, 14 6, 11 8, 17 -, - -, - 5, 52 17, 199
KanjiFix 1 1 1 1 2 - 19 23
MapDemo 2 1 2 2 - - 1 1
OpenTraining 1 5 3 6 - - 195 1008
PoGoIV 3 5 3 3 - - 48 283
PrivacyPolice 1 3 1 1 41 - 21 130
QuotoGraph 1 1 1 1 - - - -
SearchView - - - - 311 - - -
ToneDef - - - - - - 24 13
TrebleShot 2 4 2 4 - - 15 635

Top-1 9 9 7 7 0 0 2 1
Top-5 15 15 15 14 1 0 4 3
Top-10 18 17 18 17 1 0 4 3
Not in the
ranking 2 3 2 3 17 22 5 6

5.5. RQ4: What Is the Relevance of the Information Captured in the SIBs Obtained by Comparing
the Execution Traces?

To Answer RQ4, we analyzed the SIBs produced by the anomaly detection phase of
FILO. During its normal execution, FILO exploits the comparison between the baseline
trace and the failure trace to estimate the changes during the app execution that can be
related to the fault. To be able to objectively identify the execution differences introduced by
the fault and check if they are captured by the SIBs, we compared the failure trace with
the fix trace, a different trace that is obtained by the (successful) execution of the test case
on the fixed version of the app within the upgraded framework. The differences between
the failure trace and the fix trace represent the suppressed or novel method invocations
caused by the fix of the application. We define such differences as Fault-Related Method
Calls (FRMCs). If the SIBs normally obtained by FILO are representative of the fault, they
should contain the FRMCs (minus the invocations of methods added in the fix) and should
be exploited to obtain the fix-locus. To measure how SIBs are related to FRMCs, we defined
the Soundness of the content of the SIBs as follows:

Soundness =
#SIB_with_FRMCs

#SIB
(4)

where #SIB_with_FRMCs represents the number of SIBs that contains at least one FRMCs.
We computed this metric for all the applications considering the various depths config-
urations introduced in Section 5.2. Similarly, to measure the Completeness of information
reported by the SIBs, we computed the ratio of FRMCs contained in the SIBs as

Completeness =
#FRMCs_in_SIBs

#FRMCs
(5)

The average soundness and completeness for each application, as well as the overall
values, are reported in Table 6.

Table 6 shows that the most of the SIBs carry information relevant to the fault, with
six applications where every SIBs contain at least one FRMC. The only application with
a soundness lower than 50% is TrebleShot (37.58%). The completeness values are more
variegated, indicating that, in general, not all the FRMCs are reported in the SIBs produced
by FILO. It is interesting to note, however, that even with low percentages of soundness
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and completeness, FILO is able to exploit the information available to produce meaningful
rankings. For example, TrebleShot, which also has the lowest completeness value (18.17%)
has the correct fix-locus identified within the top five elements six times over eight configu-
rations. It must also be highlighted, however, how SearchView has both soundness = 100%
and completeness = 69.57% and yet FILO is not able to detect the fix-locus. This might
be related to the fact that the anomaly detection phase produces a single SIB, suggesting
differences in the early stage of the application.

Table 6. Suspicious invocation blocks.

Application Soundness Completeness

Activities 100.00% 99.79%
BossTransfer 95.79% 97.78%
FakeGPS 100.00% 74.72%
FilePicker 91.56% 65.41%
FirefoxLite 88.37% 91.20%
FOSSBrowser 81.03% 27.32%
GetBack GPS 63.65% 49.82%
GoodWeather 87.50% 84.11%
InventoryAgent 98.29% 99.45%
KanjiFix 75.00% 75.00%
MapDemo 100.00% 49.71%
OpenTraining 94.18% 85.52%
PoGoIV 80.46% 55.57%
PrivacyPolice 100.00% 79,78%
QuotoGraph 100.00% 81.14%
SearchView 100.00% 69.57%
ToneDef 95.31% 34.54%
TrebleShot 37.58% 18.17%

Average 88.09% 68.57%

In summary, although the information contained in the SIBs is not noise-free and may
be incomplete, SIBs are confirmed to carry relevant information about the failure and can
be exploited to identify the methods that realistically need to be fixed in order to resolve
the fault, as shown in RQ2.

5.6. RQ5: Is FILO Actually Useful to Developers When Fixing App Issues?

To answer RQ5, we designed an experiment with actual human subjects to determine
if the results provided by FILO are useful and can ease debugging tasks. We selected two
apps: GoodWeather and TrebleShot. We chose these two apps because they are relatively
simple apps, which would give the developers a chance to understand their code base in
the limited time available for experimentation. To support the study, we implemented an
Android Studio plugin that allows users to compute the ranking with FILO and navigate
to the implementation of methods in the ranking within the native editor.

We considered the availability of FILO as the treatment. We thus divided the subjects
into two groups. Group 1 debugged the fault in GoodWeather exploiting the ranking
returned by FILO, but they debugged TrebleShot without accessing the ranking. Vice
versa, Group2 had access to the ranking for TrebleShot, but not for GoodWeather. This
design of the experiment allows each subject to perform the same task with and without
the treatment. Table 7 summarises the structure of the groups.

The debugging task performed by each subject consisted of identifying the fault and
possibly fixing it. When a subject believes the fault is identified, he/she notes down the
class(es) and method(s) where he/she thinks the fix-locus is and a brief description of
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the cause. Then, he/she can continue the debugging activity until he/she believes the
fault is fixed, or the time expires (we assigned a max of 30 min to each debugging task).
Each subject was asked to fill out an entry questionnaire regarding their experience in
development in general and specifically with Android apps and Android Studio (the IDE
used in the experiment). They were also asked to fill out an exit questionnaire for each app,
where they noted if they think they found the fault, specific details (classes and methods), a
description of the cause, and if they were able to fix it, how the fix was produced. They also
uploaded the modified version of the app. Furthermore, the exit questionnaires included
questions regarding their perception of the usefulness of the ranking provided by FILO.

For this experiment, we recruited 24 students, most of them with a declared experience
in Android development with at least 1–3 Android apps developed in the past. Five out of
twenty-four subjects had previous professional experiences in mobile development and two
out of twenty-four had developed more than four Android apps at the time of the experiment.
They participated in the study in supervised lab sessions, after an initial warm-up training on
the subject apps. We judged the capability to identify the cause of the fault and the fix-locus
through their answers in the exit questionnaire, and we judged the correctness of the fix, when
produced, by reviewing the answers in the questionnaire and manually checking the code.
In case any subject identified the wrong fix-locus or produced a non-suitable fix, we marked
it as if the fix-locus was not identified and the fix was not produced. Informed consent was
obtained from all participants prior to their participation in the study.

Table 7. Design of the experiment to respond to RQ5.

Group Ranking for
GoodWeather

Ranking for
TrebleShot #Subjects

1 Yes No 12
2 No Yes 12

In general, the debugging tasks were not easy. Out of the total 48 reports collected
(2 for each subject, 1 with the ranking and 1 without), only in 27.08% of the times the fix-
locus has been identified within the time constraints (13 times). The availability of FILO’s
ranking helped to increase the success rate, as 33.33% of people with the ranking were
globally able to determine the cause of the issue, as opposed to only 20.83% of the subjects
without the ranking. As shown in Figure 4, FILO increased the chances of identifying the
fix-locus by 12.5%, with an increase of 16.67% in the case of GoodWeather and 8.33% in
the case of TrebleShot.

Some subjects reported that they might have needed more time to produce the fix.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

GoodWeather TrebleShot Overall

FILO Available FILO NOT Available

Fix-Locus identified?

Figure 4. Percentage of subjects that correctly identified the fix-locus with and without FILO.
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5.7. Threats to Validity

Our study is affected by internal and external threats to validity.
An internal threat to validity is about the comparison to Ochiai. As discussed, FILO

only requires a failing execution to be applied, while Ochiai, like other SBFL techniques,
needs a test suite of passing test cases to be applied, and such a test suite was not available
for the apps used in our evaluation. This case is quite frequent in practice: the vast
majority of the apps in GitHub are developed without having an associated test suite. This
practical scenario confirms the value of FILO being independent of test case suites. To
obtain information about the comparison of FILO to SBFL we derived a quite extensive
test suite of passing test cases for each app and then applied SBFL. In principle, since the
outcome of the localization depends on the test suite, we cannot know if the results would
be different using another test suite. However, we worked conservatively, generating as
many passing test cases as possible to obtain the best localization from Ochiai, so this is
unlikely to happen.

External validity threats are concerned with the generalization of the collected evi-
dence. FILO performed consistently well in the studied incompatibilities and the steps of
the analysis are based on general concepts, without including any ad hoc optimization.
This provides a good degree of confidence in the general validity of the results.

The study with human subjects is based on computer science students, and profes-
sional developers may exploit the ranking and the SIBs generated by FILO differently. To
mitigate this threat, we selected subjects with good experience with Android development
and who have coded at least one Android app in the past.

5.8. Limitations

Although FILO performed well with almost all the subjects, there are cases that
cannot or can be extremely hard to address with our technique. We discuss three relevant
cases below.

Faulty method outside the set of collected stack traces: In principle a faulty method might
be missing from all the collected stack trace instances. FILO collects a number of these
instances, one for each SIB, thus it is unlikely that the faulty method falls outside every
stack trace instance. In our evaluation this happened only in 2 cases out of 21 for the A0F1
configuration and in 3 cases in all the other configurations that included any interaction
from the framework toward the app.

Faulty configuration: In some cases the fix might require changing a configuration file
of the app rather than changing the app. These faults are outside the scope of FILO.

New callback methods: Problems caused by new callback methods, not existing in the
base environment, cannot be detected by FILO. In some cases, these problems might,
however, be introduced together with other faulty changes that FILO can detect, such as in
the case of GoodWeather.

6. Related Work

Mobile ecosystems are well-known for getting frequent framework upgrades [1,38].
In many cases, the upgrades are intentionally not backward compatible with previous
versions and this results in developers struggling to continuously adapt their apps to the
newer versions of the frameworks, as can be witnessed by the many discussion threads and
requests for support opened on platforms, such as Stack Overflow, every time a framework
upgrade is released [39]. When these upgrades are not handled properly, apps might be
affected by fragmentation-induced compatibility issues [3], as well as maintenance and
security issues [40]. A recent study identifies compatibility issues as one of the major
root causes of Android app crashes [41]. Compatibility issues between apps and the
Android framework have become a major concern for developers in the last years [3,42,43].
For these reasons, a number of techniques have emerged that focus on the detection of
such incompatibilities.
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Li et al. proposed CiD, an approach based on building API lifecycle models based
on the revision history of the Android framework and then using these models to detect
incompatibilities [44]. This approach is, however, limited to the detection of incompatible
API calls, missing to detect bugs in the apps, or poor handling of different API versions
within the app code.

In contrast, Huang et al. proposed CIDER, which is limited to the detection of incom-
patibilities related to callbacks [45]. It works by statically building graphs that model app
control flow inconsistencies induced by the evolution of the API. Each graph is produced
by analyzing the inconsistencies in the callback API invocation protocols across different
API levels. CIDER statically combines the general graphs with the app API levels and
callbacks to detect compatibility issues.

To combine the capabilities of both CiD and CIDER, Mahmud et al. introduced
ACID [46], which is a tool that is able to detect incompatibilities both on API calls and in
callbacks, as we defined them in Section 3.1. The detection is performed by applying static
analysis techniques to the app code and therefore does not need to run the application.
Furthermore, Mahmud et al. recently proposed FCID [2], a tool that does static analysis to
determine backward incompatibilities related to API field changes.

The common drawbacks of CiD, CIDER, and therefore ACID and FCID is that they
rely only on syntactic changes of the API, since the underlying graphs are statically built
analyzing the changes in the API Reference and the framework source code. Conversely,
FILO can provide suggestions in cases where the syntax of the callbacks is not changed, but
their dynamic behavior is. For example, in PrivacyPolice the issue is due to a behavioral
change in the API (no wifi networks are returned if location services are disabled), but
the syntax of the framework showed no change. This also applies to QuotoGraph and
SearchView and in general to the incompatibilities where the root cause is an API change
that is semantic rather than syntactic.

Some incompatibility detection techniques are based on dynamic analysis. For in-
stance, Mostafa et al. [4] present a technique for detecting behavioral backward incompati-
bilities in Java libraries, including Android, by running regression tests and checking bug
reports. Similarly Mora et al. [47] defined an approach based on the lazy exploration of the
behavioral space to assess if a library update may impact on the clients. DiffDroid detects
inconsistent app behaviors across devices [48].

These approaches are more in line with the idea behind FILO, however, they provide
no information on the fix-locus. Furthermore, conversely, to FILO, they do not provide any
support to the debugging activity.

Fault localization techniques can instead be used to generate information about the
possible fault location. These approaches are usually referred to as spectrum-based full
localization (SBFL) [35]. Among the most known SBFL techniques there are Tarantula [6],
Ochiai [5], and Zoltar [49]. All these techniques can potentially localize any fault and are
not limited to framework upgrades as FILO. On the other hand, FILO can be implied from
a single failing test, in contrast to SBFL which requires a full test suite with passing and
failing test cases. Moreover FILO is able to produce contextual information and more
accurate localization compared to SBFL techniques, as empirically reported in this paper.
Furthermore, SBFL has been proven to show limitations [50–52] and can hardly satisfy the
requirements that practical fault localization approaches should satisfy, according to the
opinion of practitioners [15]. In contrast, FILO frequently ranked the faulty statements in
the top positions and provided contextual information, as required by practitioners [51].

Some approaches can be used to mitigate the compatibility problems. For instance,
ReBA [53] is a technique for the development of libraries augmented with adapters to
guarantee backward compatibility. While this might be an option for the developers who
want to put extra effort on releasing backward compatible components, in many practical
cases developers intentionally release upgrades that are not backward compatible.

Finally, there are some techniques based on dynamic analysis and anomaly detection [54]
that rely on similar approaches to FILO. In fact, there are different solutions that analyze
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and compare behaviours of applications and components to identify anomalies that can
then be used to support the debugging activity.

For example, BCT [55], RADAR [56], and the technique by Pradel and Gross [52]
perform this kind of analysis in the context of component-based systems, regression testing,
and object-oriented software, respectively. Mimic performs a similar analysis in the attempt
to analyze reproduced field failures [57]. Differently from these techniques, FILO originally
combines fault-localization and anomaly detection, exploiting anomalies to both perform
the localization and augment the ranking with symptomatic information about the failure.

7. Conclusions

Timely fixes to problems caused by framework upgrades is important to make mobile
apps compatible with the latest releases of the operative systems. FILO can assist developers
when performing this task by automatically identifying the faulty method that must be
fixed to solve the compatibility issue, and reporting selected anomalous events observed in
the failing execution to facilitate the analysis of the problem. The evaluation with 21 actual
upgrade problems in 18 open-source apps shows that FILO can be accurate and practical.
Moreover, it has weaker requirements and higher effectiveness than SBFL in the domain of
faults caused by framework upgrades.

As part of future work, we intend to investigate the possibility of applying FILO to
other contexts, such as library evolution, to extend our approach with automatic program
repair capabilities [58] and to experiment with fixes that span multiple methods and files.
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