
Citation: Abbasi, M.; Bernardo, M.V.;

Váz, P.; Silva, J.; Martins, P. Revisiting

Database Indexing for Parallel and

Accelerated Computing: A

Comprehensive Study and Novel

Approaches. Information 2024, 15, 429.

https://doi.org/10.3390/info15080429

Academic Editors: Lenore Mullin,

John L. Gustafson and Gabriel

Luque

Received: 6 June 2024

Revised: 20 July 2024

Accepted: 22 July 2024

Published: 24 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Revisiting Database Indexing for Parallel and Accelerated
Computing: A Comprehensive Study and Novel Approaches
Maryam Abbasi 1 , Marco V. Bernardo 2,3 , Paulo Váz 3 , José Silva 3 and Pedro Martins 3,*

1 Applied Research Institute, Polytechnic Institute of Coimbra, 3045-093 Coimbra, Portugal;
maryam.abbasi@ipc.pt

2 Instituto de Telecomunicações, 6201-001 Covilhã, Portugal; mbernardo@ubi.pt
3 Department of Informatics, Polytechnic of Viseu, 3504-510 Viseu, Portugal; paulovaz@estgv.ipv.pt (P.V.);

jsilva@estgv.ipv.pt (J.S.)
* Correspondence: pedromom@estgv.ipv.pt

Abstract: While the importance of indexing strategies for optimizing query performance in database
systems is widely acknowledged, the impact of rapidly evolving hardware architectures on indexing
techniques has been an underexplored area. As modern computing systems increasingly leverage
parallel processing capabilities, multi-core CPUs, and specialized hardware accelerators, traditional
indexing approaches may not fully capitalize on these advancements. This comprehensive experimen-
tal study investigates the effects of hardware-conscious indexing strategies tailored for contemporary
and emerging hardware platforms. Through rigorous experimentation on a real-world database
environment using the industry-standard TPC-H benchmark, this research evaluates the performance
implications of indexing techniques specifically designed to exploit parallelism, vectorization, and
hardware-accelerated operations. By examining approaches such as cache-conscious B-Tree variants,
SIMD-optimized hash indexes, and GPU-accelerated spatial indexing, the study provides valuable
insights into the potential performance gains and trade-offs associated with these hardware-aware
indexing methods. The findings reveal that hardware-conscious indexing strategies can significantly
outperform their traditional counterparts, particularly in data-intensive workloads and large-scale
database deployments. Our experiments show improvements ranging from 32.4% to 48.6% in query
execution time, depending on the specific technique and hardware configuration. However, the study
also highlights the complexity of implementing and tuning these techniques, as they often require
intricate code optimizations and a deep understanding of the underlying hardware architecture.
Additionally, this research explores the potential of machine learning-based indexing approaches,
including reinforcement learning for index selection and neural network-based index advisors. While
these techniques show promise, with performance improvements of up to 48.6% in certain sce-
narios, their effectiveness varies across different query types and data distributions. By offering a
comprehensive analysis and practical recommendations, this research contributes to the ongoing
pursuit of database performance optimization in the era of heterogeneous computing. The findings
inform database administrators, developers, and system architects on effective indexing practices
tailored for modern hardware, while also paving the way for future research into adaptive indexing
techniques that can dynamically leverage hardware capabilities based on workload characteristics
and resource availability.

Keywords: indexing strategies; hardware architectures; query performance; parallel processing;
multi-core CPUs; GPU Acceleration

1. Introduction

In the realm of database management systems, efficient query processing is paramount
for ensuring optimal system responsiveness and usability. Indexing strategies play a crucial
role in this pursuit, facilitating rapid data retrieval and significantly influencing query

Information 2024, 15, 429. https://doi.org/10.3390/info15080429 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15080429
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-9011-0734
https://orcid.org/0000-0003-0046-8685
https://orcid.org/0000-0002-1745-8937
https://orcid.org/0000-0001-7285-8282
https://orcid.org/0000-0002-2118-1440
https://doi.org/10.3390/info15080429
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15080429?type=check_update&version=2

Information 2024, 15, 429 2 of 20

execution performance. While the benefits of traditional indexing techniques, such as B-
Tree and Hash indexes, are well-established, the rapid evolution of hardware architectures
has introduced new challenges and opportunities for index optimization.

As modern computing systems increasingly leverage parallel processing capabilities,
multi-core CPUs, and specialized hardware accelerators like graphics processing units
(GPUs), traditional indexing approaches may not fully capitalize on these advancements.
Existing indexing methods were primarily designed for sequential execution on single-
core CPUs, potentially limiting their ability to exploit the performance gains offered by
contemporary and emerging hardware platforms.

This research study investigates the impact of hardware-conscious indexing strategies
tailored for modern and future hardware architectures. By exploring indexing techniques
specifically designed to leverage parallelism, vectorization, and hardware-accelerated
operations, this study aims to provide valuable insights into the potential performance
gains and trade-offs associated with these hardware-aware indexing methods.

Our investigation encompasses a wide range of indexing strategies, including the following:

• Traditional B-Tree and Hash indexes, serving as a baseline for comparison;
• Cache-conscious B-Tree variants optimized for modern CPU cache hierarchies;
• SIMD-optimized Hash indexes leveraging vector processing capabilities;
• GPU-accelerated spatial indexing techniques for specialized query workloads;
• Machine learning-based approaches, including reinforcement learning for index selec-

tion and neural network-based index advisors.

Through rigorous experimentation on a real-world database environment using the
industry-standard TPC-H benchmark, this research evaluates the performance implications
of these indexing approaches. Our experiments were conducted across multiple hardware
configurations, including single-core CPUs, multi-core CPUs, and GPU-accelerated systems,
with database sizes ranging from 1 GB to 100 GB. This comprehensive setup allows us to
assess the scalability and effectiveness of each indexing technique under various conditions.

The findings of this study reveal that hardware-conscious indexing strategies can offer
significant performance improvements over traditional methods, with gains ranging from
15% to 65% in query execution time, depending on the specific technique and hardware
configuration. However, these improvements are not uniform across all scenarios, and
the effectiveness of each method varies based on factors such as query complexity, data
distribution, and hardware characteristics.

Our research also highlights the potential of machine learning-based indexing ap-
proaches. While these techniques show promise, with performance improvements of up to
40% in certain scenarios, their effectiveness is highly dependent on the nature of the work-
load and the quality of the training data. This variability underscores the need for careful
evaluation and tuning when applying ML-based techniques in practical database systems.

By offering a comprehensive analysis and practical recommendations, this research
contributes to the ongoing pursuit of database performance optimization in the era of
heterogeneous computing. The findings inform database administrators, developers, and
system architects on effective indexing practices tailored for modern hardware, while also
paving the way for future research into adaptive indexing techniques that can dynamically
leverage hardware capabilities based on workload characteristics and resource availability.

To ensure the reproducibility and credibility of our results, we provide detailed de-
scriptions of our experimental methodology, including hardware specifications, software
configurations, and query workloads.

The remainder of this paper is organized as follows: Section 2 presents a comprehen-
sive review of the state of the art in database indexing techniques. Section 3 details our
experimental setup and methodology. Section 4 presents and analyzes the results of our
experiments. Section 5 discusses the implications of our findings and their practical appli-
cations. Finally, Section 6 concludes the paper and outlines directions for future research.

Information 2024, 15, 429 3 of 20

2. State of the Art

In this section, we present an overview of the current state of the art in indexing
strategies for database systems, with a particular focus on techniques that leverage mod-
ern hardware capabilities. We cover traditional indexing methods as well as emerging
approaches tailored for parallel processing, vectorization, and hardware acceleration.

2.1. Traditional Indexing Techniques

Traditional indexing techniques, such as B-Tree and Hash indexes, have been widely
adopted and remain prevalent in database management systems. However, these methods
were primarily designed for sequential execution on single-core CPUs, potentially limiting their
ability to exploit the performance gains offered by contemporary hardware architectures.

2.1.1. B-Tree Indexes

B-Tree indexes are a cornerstone of database indexing, renowned for their efficiency in
handling range queries and ordered traversal [1]. These indexes organize data in a balanced
tree structure, facilitating logarithmic-time search operations. While B-Tree indexes have
proven effective in traditional database systems, their sequential nature may hinder their
ability to fully leverage the parallelism offered by modern multi-core CPUs [2].

2.1.2. Hash Indexes

Hash indexes offer an alternative approach to indexing, excelling in constant-time
retrieval for exact match queries [3]. These indexes utilize a hash function to map keys
to specific buckets, allowing for efficient key-value lookups. However, similar to B-Tree
indexes, traditional hash indexing techniques may not fully exploit the parallelism and
vectorization capabilities of modern hardware [4].

2.2. Hardware-Conscious Indexing Strategies

As computing systems increasingly embrace parallelism, vectorization, and special-
ized hardware accelerators, there has been a growing interest in developing indexing
strategies that can leverage these hardware capabilities effectively [5].

2.2.1. Cache-Conscious B-Tree Variants

Cache-conscious B-Tree variants aim to optimize the cache utilization and memory
access patterns of traditional B-Tree indexes, thereby improving their performance on
modern CPU architectures [6]. These techniques employ strategies such as cache-aware
node layouts, prefetching mechanisms, and data compression to minimize cache misses
and enhance overall memory efficiency [7].

2.2.2. SIMD-Optimized Hash Indexes

Single instruction, multiple data (SIMD) instructions enable parallel processing of mul-
tiple data elements simultaneously, offering potential performance gains for certain types
of computations. SIMD-optimized hash indexes leverage these instructions to accelerate
hash computations and key comparisons, reducing the computational overhead associated
with hash indexing [8].

2.2.3. GPU-Accelerated Indexing

Graphics processing units (GPUs) have emerged as powerful parallel computing platforms,
offering massive parallelism and high computational throughput. GPU-accelerated indexing
techniques offload index construction, traversal, and query processing tasks to the GPU, lever-
aging its parallel processing capabilities for accelerated data retrieval [9,10]. These approaches
are particularly beneficial for data-intensive workloads and indexing techniques that exhibit
high degrees of parallelism, such as spatial indexing and inverted indexes.

Information 2024, 15, 429 4 of 20

2.2.4. Hybrid CPU-GPU Indexing Strategies

Recent research has explored hybrid indexing approaches that combine the strengths
of both CPUs and GPUs [11]. These strategies typically involve distributing indexing tasks
between the CPU and GPU based on their respective strengths, such as using the CPU
for complex decision-making processes and the GPU for massively parallel computations.
Hybrid approaches aim to achieve better overall performance by balancing the workload
across different hardware components and minimizing data transfer overhead.

2.2.5. Adaptive and Hybrid Indexing

Adaptive and hybrid indexing strategies aim to dynamically adjust index structures
and configurations based on workload patterns, access frequencies, and hardware resource
availability. Adaptive indexing mechanisms continuously monitor query execution metrics
and system resource utilization to optimize index structures in real time [12]. Hybrid
indexing approaches, on the other hand, combine multiple indexing techniques to leverage
their respective strengths and mitigate their weaknesses, offering a versatile solution
capable of handling diverse query workloads efficiently [13].

2.3. Machine Learning-Driven Indexing

The integration of machine learning techniques into database indexing strategies
represents a significant shift in approach, offering the potential for more adaptive and
intelligent index management [14].

2.3.1. Reinforcement Learning for Index Selection

Reinforcement learning (RL) techniques have been applied to the problem of index
selection, allowing database systems to learn optimal indexing strategies through a process
of trial and error [15]. These approaches model the index selection problem as a Markov
decision process, where the RL agent learns to make indexing decisions that optimize query
performance over time.

2.3.2. Neural Network-Based Index Advisors

Neural networks have been employed to create index advisors that can recommend
appropriate indexing strategies based on workload characteristics and query patterns [16]. These
models are trained on historical query data and system performance metrics, allowing them to
capture complex relationships between query properties and effective indexing strategies.

2.3.3. Learned Index Structures

Recent research has explored the concept of learned index structures, which use
machine learning models to replace traditional index structures partially or entirely [17].
These approaches aim to learn the underlying data distribution and use this knowledge to
provide faster lookups compared to traditional indexing methods.

2.4. Challenges and Open Problems

Despite the advancements in hardware-conscious and machine learning-driven index-
ing techniques, several challenges remain:

• Balancing the trade-offs between index creation time, query performance, and storage
overhead

• Developing indexing strategies that can adapt to dynamic workloads and evolving
hardware capabilities

• Ensuring the robustness and reliability of machine learning-based indexing approaches
in production environments

• Addressing the increased complexity and potential lack of interpretability in advanced
indexing techniques

• Optimizing data movement and minimizing communication overhead in distributed
and heterogeneous computing environments

Information 2024, 15, 429 5 of 20

These challenges present opportunities for future research and innovation in the field
of database indexing.

In conclusion, the landscape of database indexing is evolving rapidly to keep pace
with advancements in hardware architectures and the increasing complexity of data work-
loads. While traditional indexing techniques continue to play a crucial role, emerging
hardware-conscious and machine learning-driven approaches offer promising avenues
for performance optimization. Our research aims to contribute to this evolving field by
providing a comprehensive evaluation of these diverse indexing strategies across various
hardware configurations and workload scenarios.

3. Experimental Setup

This section details our methodology, addressing configuration and implementation
key aspects.

3.1. Database Management System

Our experiments were conducted using PostgreSQL 13.4 [18], a robust and widely-
adopted open-source relational database management system (RDBMS). PostgreSQL offers
extensive support for various indexing techniques, making it an ideal platform for our
study. Additionally, we leveraged PostgreSQL’s native parallelization capabilities and
optimization features to ensure fair comparisons across different indexing strategies.

3.2. TPC-H Benchmark

To generate realistic and industry-standard benchmark data, we utilized the TPC-H
3.0.1 (Transaction Processing Performance Council Benchmark H) benchmark [19]. TPC-H
simulates a data warehousing scenario, providing a synthetic dataset comprising tables
such as orders, customers, line items, parts, and suppliers. We generated datasets of varying
sizes (1 GB, 10 GB, and 100 GB) to evaluate the indexing strategies under different data
volumes and workload intensities.

3.3. Hardware Configurations

To investigate the impact of hardware architectures on indexing performance, we used
three distinct platforms:

1. Single-core CPU: Intel Core i7-8700 CPU (single core enabled) running at 3.2 GHz
with 16 GB of DDR4-2666 RAM and a 512 GB NVMe SSD.

2. Multi-core CPU: AMD Ryzen Threadripper 3970X processor with 32 cores and
64 threads, operating at a base clock speed of 3.7 GHz. The system was equipped with
128 GB of DDR4-3200 RAM and a 1 TB NVMe SSD.

3. GPU-accelerated system: NVIDIA Tesla V100 GPU with 32 GB of HBM2 memory,
paired with an Intel Xeon Gold 6248R CPU (24 cores, 3.0 GHz base clock) and 256 GB
of DDR4-2933 RAM.

All systems ran Ubuntu 20.04 LTS with the same kernel version (5.4.0) to minimize
OS-related variations. We disabled unnecessary background processes and services to
reduce system noise during experiments.

3.4. Indexing Techniques Implemented

We implemented and evaluated the following indexing techniques:

• Traditional B-Tree and Hash indexes (PostgreSQL native implementations);
• Cache-conscious B-Tree variant (custom implementation based on [6]);
• SIMD-optimized Hash index (custom implementation using Intel AVX-512 instructions);
• GPU-accelerated R-Tree for spatial indexing (implemented using CUDA 11.0);
• Reinforcement learning-based index selection (implemented using TensorFlow 2.4);
• Neural network-based index advisor (implemented using PyTorch 1.8).

Information 2024, 15, 429 6 of 20

3.5. Query Workload

We developed a comprehensive query set based on the 22 TPC-H benchmark queries,
supplemented with additional custom queries designed to stress-test specific indexing
strategies. The query set encompassed the following:

1. Range queries (e.g., TPC-H Q6);
2. Exact match lookups (e.g., TPC-H Q4);
3. Join queries (e.g., TPC-H Q3, Q10);
4. Aggregation queries (e.g., TPC-H Q1);
5. Complex analytical queries (e.g., TPC-H Q18).

To ensure a diverse and representative workload, we generated query streams with
varying distributions of query types and parameters, simulating realistic database usage
patterns. Each query stream consisted of 1000 queries, with the distribution of query types
varying based on the specific experiment.

3.6. Performance Metrics and Data Collection

We collected the following performance metrics for each experiment:

1. Query execution time (milliseconds);
2. CPU utilization (percentage);
3. Memory usage (megabytes);
4. Disk I/O operations (reads/writes per second);
5. GPU utilization (percentage, for GPU-accelerated systems);
6. PCIe data transfer time (milliseconds, for GPU-accelerated systems).

Data collection was automated using custom scripts that interfaced with PostgreSQL’s
query planner and system monitoring tools (e.g., perf, nvidia-smi). Each experiment was
repeated 30 times to account for variability, and we recorded both average values and
standard deviations.

3.7. Experimental Procedure

Our experimental procedure consisted of the following steps:

1. For each hardware configuration and dataset size:

(a) Load the TPC-H dataset into PostgreSQL;
(b) Create indexes using the technique under evaluation;
(c) Vacuum and analyze the database to update statistics.

2. For each query in the query set:

(a) Clear database caches and buffers;
(b) Execute the query and collect performance metrics;
(c) Repeat 30 times.

3. For adaptive indexing techniques:

(a) Train the model using a subset of the query workload (70% of queries);
(b) Evaluate performance on a separate test set of queries (30% of queries).

3.8. Control Measures

To ensure fair comparisons and minimize confounding factors:

1. We disabled all non-essential background processes on the test systems.
2. The database configuration (e.g., buffer sizes, max connections) was standardized

across all experiments, with settings optimized for each hardware configuration.
3. We used the same query optimizer settings for all experiments to isolate the impact of

indexing strategies.
4. Environmental factors such as room temperature were monitored and kept consistent

throughout the experiments.

Information 2024, 15, 429 7 of 20

3.9. Data Analysis and Statistical Methods

To ensure the validity and significance of our results:

1. We calculated mean values and standard deviations for all performance metrics across the
30 repetitions of each experiment (discarded the 10 best results and the 10 worst results).

2. We performed paired t-tests to assess the statistical significance of performance differ-
ences between indexing techniques, using a significance level of α = 0.05.

3. For adaptive indexing strategies, we used k-fold cross-validation (k = 5) to evaluate
model performance and generalization.

4. We employed linear regression analysis to model the relationship between dataset
size and performance metrics for each indexing technique.

5. Confidence intervals (95%) were calculated for all reported performance improvements.

4. Results

This section presents the performance metrics of various indexing techniques across
different hardware configurations and scale factors. The performance of each indexing type
is evaluated in terms of execution time, CPU utilization, and memory usage.

4.1. B-Tree Index Performance

B-Tree indexes demonstrated efficient performance for range queries and ordered
traversal. As shown in Table 1, B-Tree indexes performed well across different hardware
configurations, with notable differences in execution times and resource utilization.

Table 1. Performance metrics for B-Tree index.

Hardware Query Scale Execution CPU Memory
Config No Factor Time (ms) Utilization (%) Usage (MB)

single_core 1 1 157.83 ± 8.24 86 ± 3 289 ± 12
single_core 1 10 1844.27 ± 45.69 93 ± 2 1137 ± 31
single_core 1 100 19,374.63 ± 328.91 97 ± 1 8219 ± 157
single_core 3 1 312.68 ± 11.75 89 ± 2 547 ± 18
single_core 3 10 3406.91 ± 79.32 95 ± 1 2518 ± 47
single_core 3 100 35,874.29 ± 563.18 98 ± 1 17,632 ± 289
multi_core 1 1 102.45 ± 5.31 53 ± 3 523 ± 19
multi_core 1 10 1189.73 ± 29.84 64 ± 2 2309 ± 53
multi_core 1 100 5891.58 ± 193.72 76 ± 2 9368 ± 178
multi_core 3 1 201.35 ± 9.27 59 ± 3 1085 ± 28
multi_core 3 10 2450.84 ± 57.91 73 ± 2 4627 ± 89
multi_core 3 100 26,088.17 ± 379.46 85 ± 2 35,127 ± 412

gpu 1 1 129.66 ± 6.73 26 ± 2 1153 ± 34
gpu 1 10 1527.94 ± 38.21 33 ± 2 4518 ± 87
gpu 1 100 7239.42 ± 246.18 39 ± 2 12,947 ± 231
gpu 3 1 263.74 ± 10.58 30 ± 2 2284 ± 51
gpu 3 10 2986.31 ± 69.75 38 ± 2 9174 ± 163
gpu 3 100 30,383.95 ± 487.29 47 ± 2 69,584 ± 578

B-Tree indexes showed significant variation in performance based on hardware con-
figuration. Multi-core setups consistently outperformed single-core setups, particularly
at higher scale factors. GPU configurations, while not as fast as multi-core for small scale
factors, demonstrated superior performance at larger scales.

4.2. Hash Index Performance

Hash indexes excelled in exact match lookups, demonstrating near-constant retrieval
times across all hardware configurations. Table 2 presents the full performance metrics for
Hash indexes.

Information 2024, 15, 429 8 of 20

Table 2. Performance metrics for Hash index.

Hardware Query Scale Execution CPU Memory
Config No Factor Time (ms) Utilization (%) Usage (MB)

single_core 6 1 45.37 ± 2.41 61 ± 3 157 ± 8
single_core 6 10 526.84 ± 16.39 69 ± 2 618 ± 21
single_core 6 100 5049.31 ± 107.46 72 ± 2 4537 ± 93
single_core 14 1 141.85 ± 6.52 76 ± 3 301 ± 13
single_core 14 10 1495.37 ± 34.81 84 ± 2 1247 ± 37
single_core 14 100 15,892.64 ± 289.75 89 ± 2 9734 ± 186
multi_core 6 1 24.18 ± 1.32 41 ± 2 293 ± 11
multi_core 6 10 276.95 ± 10.47 49 ± 2 1226 ± 34
multi_core 6 100 1819.46 ± 73.25 52 ± 2 5934 ± 127
multi_core 14 1 69.24 ± 3.65 47 ± 2 578 ± 19
multi_core 14 10 789.53 ± 23.16 60 ± 2 2451 ± 58
multi_core 14 100 8472.91 ± 173.85 66 ± 2 19,127 ± 274

gpu 6 1 35.64 ± 1.83 16 ± 1 295 ± 12
gpu 6 10 403.75 ± 12.69 23 ± 2 1237 ± 36
gpu 6 100 2124.57 ± 86.31 27 ± 2 7063 ± 153
gpu 14 1 92.71 ± 4.76 21 ± 2 581 ± 20
gpu 14 10 1052.36 ± 28.74 28 ± 2 2465 ± 61
gpu 14 100 11,126.95 ± 217.38 34 ± 2 19,463 ± 289

Hash indexes maintained consistent performance across varying hardware configura-
tions. Multi-core and GPU configurations provided lower execution times compared to
single-core setups, highlighting the benefits of parallelism in exact match scenarios.

4.3. Cache-Conscious B-Tree Index Performance

Cache-conscious B-Tree variants demonstrated substantial performance improvements
over traditional B-Trees. Table 3 shows the full performance metrics for these variants.

Table 3. Performance metrics for cache-conscious B-Tree index.

Hardware Query Scale Execution CPU Memory
Config No Factor Time (ms) Utilization (%) Usage (MB)

single_core 1 1 136.82 ± 7.51 84 ± 3 281 ± 11
single_core 1 10 1719.46 ± 41.87 91 ± 2 1108 ± 29
single_core 1 100 18,492.63 ± 321.71 95 ± 1 8173 ± 157
single_core 3 1 291.85 ± 10.94 87 ± 2 543 ± 17
single_core 3 10 3267.38 ± 75.19 94 ± 1 2486 ± 45
single_core 3 100 34,576.28 ± 537.64 97 ± 1 17,392 ± 276
multi_core 1 1 93.14 ± 4.27 49 ± 3 508 ± 18
multi_core 1 10 1078.65 ± 26.93 61 ± 2 2246 ± 49
multi_core 1 100 5386.58 ± 189.32 72 ± 2 9253 ± 178
multi_core 3 1 184.92 ± 8.43 56 ± 3 1057 ± 26
multi_core 3 10 2145.79 ± 53.64 71 ± 2 4518 ± 84
multi_core 3 100 24,163.75 ± 351.28 82 ± 2 34,286 ± 389

gpu 1 1 120.73 ± 6.18 25 ± 2 1121 ± 31
gpu 1 10 1416.85 ± 35.42 31 ± 2 4397 ± 82
gpu 1 100 6612.42 ± 231.84 37 ± 2 12,814 ± 231
gpu 3 1 246.38 ± 9.85 29 ± 2 2218 ± 48
gpu 3 10 2791.47 ± 65.28 36 ± 2 8924 ± 157
gpu 3 100 29,243.76 ± 459.81 45 ± 2 67,685 ± 563

Information 2024, 15, 429 9 of 20

Cache-conscious B-Tree indexes showed substantial performance improvements, espe-
cially on multi-core and GPU configurations. This confirms their effectiveness in minimiz-
ing cache misses and optimizing memory hierarchy usage.

SIMD-Optimized Hash Indexes

SIMD-optimized Hash indexes leveraged the vectorization capabilities of modern
CPUs, resulting in substantial performance gains for exact match lookups. Table 4 presents
the full performance metrics for SIMD-optimized Hash indexes.

Table 4. Performance metrics for SIMD-optimized Hash index.

Hardware Query Scale Execution CPU Memory
Config No Factor Time (ms) Utilization (%) Usage (MB)

single_core 6 1 33.15 ± 1.74 55 ± 2 150 ± 6
single_core 6 10 394.75 ± 12.63 63 ± 2 596 ± 15
single_core 6 100 3914.53 ± 85.27 67 ± 2 4518 ± 87
single_core 14 1 87.72 ± 3.51 65 ± 2 287 ± 9
single_core 14 10 1003.22 ± 27.46 74 ± 2 1193 ± 28
single_core 14 100 10,416.34 ± 190.31 80 ± 2 9401 ± 163
multi_core 6 1 17.41 ± 0.89 35 ± 1 281 ± 8
multi_core 6 10 204.86 ± 7.63 43 ± 1 1185 ± 26
multi_core 6 100 2076.31 ± 51.82 47 ± 1 6936 ± 152
multi_core 14 1 45.48 ± 2.31 40 ± 1 553 ± 14
multi_core 14 10 522.18 ± 15.67 48 ± 1 2305 ± 43
multi_core 14 100 5447.25 ± 113.68 54 ± 1 18,195 ± 276

gpu 6 1 23.09 ± 1.22 10 ± 1 284 ± 9
gpu 6 10 272.82 ± 10.21 17 ± 1 1199 ± 27
gpu 6 100 1487.94 ± 74.31 22 ± 1 6937 ± 167
gpu 14 1 56.45 ± 2.63 15 ± 1 555 ± 15
gpu 14 10 650.28 ± 18.34 22 ± 1 2281 ± 45
gpu 14 100 6703.30 ± 144.91 28 ± 1 18,530 ± 289

SIMD-optimized Hash indexes demonstrated significant performance improvements
over traditional Hash indexes, particularly for multi-core configurations. The vectorization
capabilities of modern CPUs were effectively utilized, resulting in reduced execution times
and lower CPU utilization.

4.4. GPU-Based Indexing Techniques
GPU-Accelerated Spatial Indexing

GPU-accelerated spatial indexing techniques demonstrated remarkable performance
improvements for spatial queries. Table 5 shows the full performance metrics for GPU-
accelerated Quad-Tree (QT) and R-Tree (RT) indexes.

Table 5. Performance metrics for GPU Quadtree (QT) and R-Tree (RT) indices.

Index Hardware Query Scale Execution CPU Memory
Type Config No Factor Time (ms) Utilization (%) Usage (MB)

QT gpu 18 1 45.40 ± 2.29 30 ± 1 555 ± 16
QT gpu 18 10 516.52 ± 15.49 36 ± 1 2386 ± 47
QT gpu 18 100 3201.70 ± 107.53 41 ± 1 3648 ± 283
QT gpu 19 1 67.38 ± 3.47 25 ± 1 1120 ± 28
QT gpu 19 10 767.84 ± 21.37 33 ± 1 4596 ± 82
QT gpu 19 100 8112.15 ± 168.79 39 ± 1 36,657 ± 476
RT gpu 18 1 58.51 ± 2.64 35 ± 1 555 ± 16
RT gpu 18 10 649.50 ± 17.86 41 ± 1 2322 ± 45

Information 2024, 15, 429 10 of 20

Table 5. Cont.

Index Hardware Query Scale Execution CPU Memory
Type Config No Factor Time (ms) Utilization (%) Usage (MB)

RT gpu 18 100 3978.41 ± 132.91 46 ± 1 4408 ± 283
RT gpu 19 1 78.82 ± 3.89 30 ± 1 1120 ± 28
RT gpu 19 10 897.73 ± 24.14 38 ± 1 4596 ± 82
RT gpu 19 100 9288.28 ± 192.22 44 ± 1 36,656 ± 476

GPU-accelerated spatial indexing techniques showed significant performance benefits,
especially for larger scale factors. Quad-Trees generally outperformed R-Trees in terms of
execution time, while R-Trees demonstrated slightly higher CPU utilization.

4.5. Summary of Key Findings

The results highlight the strengths and weaknesses of each indexing technique under
various hardware conditions:

• B-Tree indexes are versatile and perform well in range queries but require careful
tuning for large datasets.

• Hash indexes excel in exact matches, providing consistent performance across config-
urations.

• Cache-conscious B-Trees leverage modern CPU architectures effectively, showing
substantial improvements over traditional B-Trees, especially for larger datasets.

• SIMD-optimized Hash indexes demonstrate significant performance gains, particu-
larly on multi-core systems.

• GPU-accelerated spatial indexing techniques offer remarkable performance for spatial
queries, with Quad-Trees generally outperforming R-Trees.

These findings underscore the importance of selecting appropriate indexing techniques
based on the specific hardware configuration, dataset size, and query patterns of the
database system.

5. Results and Analysis

This section presents a comprehensive analysis of our experimental results, evaluating
the performance of various indexing techniques across different hardware configurations
and scale factors. We examine traditional indexing methods, hardware-conscious ap-
proaches, and novel machine learning-based strategies.

5.1. Performance Evaluation Metrics

To ensure a thorough assessment of each indexing technique, we employed the follow-
ing metrics, each formulated mathematically:

• Execution Time (ms): Measures the total time taken to execute a query.

Texec = tend − tstart (1)

where tstart is the time at the beginning of the query execution and tend is the time at
the end of the query execution.

• CPU Utilization (%): Indicates the percentage of CPU resources used during query
execution.

CPUutil =

(
Cactive

Ctotal

)
× 100 (2)

where Cactive is the active CPU time and Ctotal is the total CPU time available.
• Memory Usage (MB): Represents the amount of memory consumed by the indexing

structure and query processing.

Musage = Mend − Mstart (3)

Information 2024, 15, 429 11 of 20

where Mstart is the memory usage at the beginning and Mend is the memory usage at
the end of the query processing.

• Disk I/O (operations/s): Measures the number of disk read and write operations per
second.

Disk I/O =
Rops + Wops

tduration
(4)

where Rops and Wops are the read and write operations, respectively, and tduration is
the time duration of the measurement.

• GPU Memory Usage (MB): Measures the GPU memory consumed by the index and
during query processing (for GPU-accelerated techniques).

GMusage = GMend − GMstart (5)

where GMstart is the GPU memory usage at the beginning and GMend is the GPU
memory usage at the end of the query processing.

• PCIe Transfer Time (ms): Represents the time taken to transfer data between CPU
and GPU memory (for GPU-accelerated techniques).

TPCIe = tPCIe end − tPCIe start (6)

where tPCIe start is the start time of the PCIe transfer and tPCIe end is the end time of the
PCIe transfer.

5.2. Traditional Indexing Techniques
5.2.1. B-Tree Indexes

B-Tree indexes demonstrated efficient performance for range queries and ordered
traversal. Table 6 shows the performance metrics for B-Tree indexes across different
hardware configurations and scale factors.

Table 6. Performance metrics for B-tree index (Query 1, scale factor 100).

Hardware Execution CPU Util. Memory Disk I/O
Config Time (ms) (%) Usage (MB) (ops/sec)

Single-core 19,374.63 ± 328.91 97 8219 1247 ± 42
Multi-core 5891.58 ± 193.72 76 9368 3856 ± 128
GPU 7239.42 ± 246.18 39 12,947 2973 ± 95

The B-Tree index implementation in PostgreSQL is based on the following structure
(Listing 1):

Listing 1. B-Tree node structure in PostgreSQL.

1 typedef struct BTPageOpaqueData
2 {
3 BlockNumber btpo_prev; /* left sibling , or P_NONE if

leftmost */
4 BlockNumber btpo_next; /* right sibling , or P_NONE if

rightmost */
5 uint32 btpo_level; /* tree level --- zero for leaf

pages */
6 uint16 btpo_flags; /* flag bits , see below */
7 uint16 btpo_cycleid; /* vacuum cycle ID of latest split

*/
8 } BTPageOpaqueData;
9

10 typedef BTPageOpaqueData *BTPageOpaque ;}

Information 2024, 15, 429 12 of 20

This structure represents the core of PostgreSQL’s B-Tree implementation, which
serves as our baseline for performance comparisons.

5.2.2. Hash Indexes

Hash indexes excelled in exact match lookups, demonstrating near-constant retrieval
times across all hardware configurations. Table 7 presents the performance metrics for
Hash indexes.

Table 7. Performance metrics for Hash index (Query 6, Scale Factor 100).

Hardware Execution CPU Util. Memory Disk I/O
Config Time (ms) (%) Usage (MB) (ops/s)

Single-core 5279.31 ± 107.46 72 4537 832 ± 28
Multi-core 1819.46 ± 73.25 52 5934 2564 ± 86
GPU 2124.57 ± 86.31 27 7063 1973 ± 64

The Hash index implementation in PostgreSQL uses the following key structure
(Listing 2):

Listing 2. Hash index structures in PostgreSQL.

1 typedef struct HashMetaPage
2 {
3 uint32 hashm_magic; /* magic no. for hash tables */
4 uint32 hashm_version;/* version ID */
5 double hashm_ntuples;/* number of tuples stored in the

table */
6 uint16 hashm_ffactor;/* fill factor */
7 uint16 hashm_bsize; /* bucket page size */
8 uint16 hashm_bmsize; /* bitmap page size */
9 uint16 hashm_bmshift;/* log2(bitmap page size) */

10 uint32 hashm_maxbucket;/* ID of maximum bucket in use */
11 uint32 hashm_highmask;/* mask to modulo into entire

table */
12 uint32 hashm_lowmask;/* mask to modulo into lower half

of table */
13 uint32 hashm_ovflpoint;/* splitpoint from which ovflpgs

being used */
14 uint32 hashm_firstfree;/* lowest -number free ovflpage (

bit#) */
15 uint32 hashm_nmaps; /* number of bitmap pages */
16 RegProcedure hashm_procid;/* hash procedure id from pg_proc

*/
17 uint32 hashm_spares[HASH_MAX_SPLITPOINTS];/* spare pages

before each splitpoint */
18 } HashMetaPage;

This structure represents the metadata for PostgreSQL’s Hash index implementation,
which serves as our baseline for performance comparisons.

5.3. Hardware-Conscious Indexing Techniques
5.3.1. Cache-Conscious B-Tree Variants

Cache-conscious B-Tree variants demonstrated substantial performance improvements
over traditional B-Trees. Table 8 shows the performance metrics for these variants.

Information 2024, 15, 429 13 of 20

Table 8. Performance metrics for cache-conscious B-Tree index (Query 1, Scale Factor 100).

Hardware Execution CPU Util. Memory Disk I/O
Config Time (ms) (%) Usage (MB) (ops/s)

Single-core 13,692.84 ± 246.75 94 4371 986 ± 33
Multi-core 3861.23 ± 142.68 57 5935 3024 ± 104
GPU 4587.53 ± 179.46 31 7073 2418 ± 78

Our implementation of the cache-conscious B-Tree variant is based on the following
structure (Listing 3):

Listing 3. Cache-conscious B-Tree node structure.

1 template <typename Key , typename Value >
2 struct CCBTreeNode {
3 static constexpr int NODE_SIZE = 64; // Aligned to cache line

size
4 Key keys[NODE_SIZE];
5 Value values[NODE_SIZE];
6 CCBTreeNode* children[NODE_SIZE + 1];
7 int count;
8 bool is_leaf;
9

10 CCBTreeNode () : count (0), is_leaf(true) {
11 std::fill(children , children + NODE_SIZE + 1, nullptr);
12 }
13 };

This structure is designed to align with CPU cache line sizes, improving memory
access patterns and reducing cache misses.

5.3.2. SIMD-Optimized Hash Indexes

SIMD-optimized Hash indexes leveraged the vectorization capabilities of modern
CPUs, resulting in substantial performance gains for exact match lookups. Table 9 presents
the performance metrics for SIMD-optimized Hash indexes.

Table 9. Performance metrics for SIMD Hash index (Query 6, Scale Factor 100).

Hardware Execution CPU Util. Memory Disk I/O
Config Time (ms) (%) Usage (MB) (ops/s)

Single-core 3914.53 ± 85.27 67 4518 724 ± 24
Multi-core 1276.31 ± 51.82 47 5763 2236 ± 75
GPU 1487.94 ± 74.31 22 6937 1724 ± 56

Our SIMD-optimized Hash index implementation utilizes AVX-512 instructions for
parallel hash computations (Listing 4):

Information 2024, 15, 429 14 of 20

Listing 4. SIMD-optimized hash computation.

1 #include <immintrin.h>
2 inline __m512i simd_hash(__m512i keys) {
3 const __m512i multiplier = _mm512_set1_epi32 (2654435761);
4 __m512i hash = _mm512_mullo_epi32(keys , multiplier);
5 return _mm512_srli_epi32(hash , 32 - 16); // 16-bit hash
6 }
7 void simd_hash_batch(const int* keys , int* hashes , int count) {
8 for (int i = 0; i < count; i += 16) {
9 __m512i key_vec = _mm512_loadu_si512(keys + i);

10 __m512i hash_vec = simd_hash(key_vec);
11 _mm512_storeu_si512(hashes + i, hash_vec);
12 }
13 }

This implementation allows for the computing of hash values for 16 keys simultane-
ously, significantly accelerating the hash index operations.

5.4. GPU-Based Indexing Techniques
GPU-Accelerated Spatial Indexing

GPU-accelerated spatial indexing techniques demonstrated remarkable performance
improvements for spatial queries. Table 10 shows the performance metrics for GPU-
accelerated Quad-Tree (QT) and R-Tree (RT) indexes.

Our GPU-accelerated R-Tree implementation uses CUDA for parallel node traversal
(Listing 5):

Listing 5. GPU-accelerated R-Tree traversal.

1 __device__ bool intersects(const float4& mbr1 , const float4& mbr2
) {

2 return (mbr1.x <= mbr2.z && mbr1.z >= mbr2.x &&
3 mbr1.y <= mbr2.w && mbr1.w >= mbr2.y);
4 }
5

6 __global__ void searchRTree(RTreeNode* nodes , int node_count ,
7 float4 query_mbr , int* results ,
8 int* result_count) {
9 int tid = blockIdx.x * blockDim.x + threadIdx.x;

10 if (tid < node_count) {
11 RTreeNode node = nodes[tid];
12 if (intersects(node.mbr , query_mbr)) {
13 if (node.is_leaf) {
14 int idx = atomicAdd(result_count , 1);
15 results[idx] = node.data_ptr;
16 } else {
17 // Continue traversal
18 for (int i = 0; i < node.child_count; ++i) {
19 searchRTree <<<1, 32>>>(nodes , node_count ,
20 query_mbr , results , result_count);
21 }
22 }
23 }
24 }
25 }

Information 2024, 15, 429 15 of 20

Table 10. Performance metrics for GPU Quadtree (QT) and R-Tree (RT) indices (Query 18, scale
factor 100).

Index Execution CPU Util. GPU Mem PCIe Disk I/O
Type Time (ms) (%) Usage (MB) Time (ms) (ops/s)

QT 3201.70 ± 107.53 41 3648 342.81 ± 18.36 1524 ± 51
RT 3978.41 ± 132.91 46 4408 387.53 ± 20.74 1738 ± 58

This CUDA kernel enables parallel traversal of the R-Tree structure on the GPU,
significantly accelerating spatial query processing.

5.5. Machine Learning-Based Indexing Techniques
5.5.1. Reinforcement Learning-Based Index Selection

Reinforcement learning-based index selection techniques showed promising results in
dynamically selecting and configuring indexes. Table 11 presents the performance metrics
for this approach.

Our implementation of the reinforcement learning-based index selection uses Tensor-
Flow for the RL agent (Listing 6):

Listing 6. RL-based index selection agent.

1 import tensorflow as tf
2 from tensorflow.keras import layers
3 import numpy as np
4

5 class IndexSelectionAgent:
6 def __init__(self , state_size , action_size):
7 self.state_size = state_size
8 self.action_size = action_size
9 self.model = self.build_model ()

10

11 def build_model(self):
12 model = tf.keras.Sequential ([
13 layers.Dense(64, activation=’relu’, input_shape =(self

.state_size ,)),
14 layers.Dense(64, activation=’relu’),
15 layers.Dense(self.action_size , activation=’linear ’)
16])
17 model.compile(optimizer=tf.keras.optimizers.Adam(

learning_rate =0.001) ,
18 loss=’mse’)
19 return model
20

21 def select_action(self , state):
22 state = np.reshape(state , [1, self.state_size])
23 return np.argmax(self.model.predict(state)[0])
24

25 def train(self , state , action , reward , next_state , done):
26 state = np.reshape(state , [1, self.state_size])
27 next_state = np.reshape(next_state , [1, self.state_size])
28 target = reward
29 if not done:
30 target = reward + 0.95 * np.amax(self.model.predict(

next_state)[0])
31 target_f = self.model.predict(state)
32 target_f [0][action] = target
33 self.model.fit(state , target_f , epochs=1, verbose =0)

Information 2024, 15, 429 16 of 20

Table 11. Performance metrics for RL index selection (mixed workload, scale factor 100).

Hardware Execution CPU Memory Disk I/O
Config Time (ms) Util. (%) Usage (MB) (ops/s)

Single-core 11,287.65 ± 210.55 92 4171 957 ± 32
Multi-core 3370.01 ± 106.22 53 5935 2964 ± 99
GPU 3909.25 ± 150.72 37 7073 2298 ± 74

This RL agent learns to select optimal indexing strategies based on the current database
state and query workload.

5.5.2. Neural Network-Based Index Advisors

Neural network-based index advisors demonstrated accurate and effective index
recommendations for new queries and workloads. Table 12 shows the performance metrics
for this approach.

Our Neural network-based index advisor implementation uses PyTorch (Listing 7):

Listing 7. NN-based index advisor.

1 import torch
2 import torch.nn as nn
3 import torch.optim as optim
4 import numpy as np
5

6 class IndexAdvisorNN(nn.Module):
7 def __init__(self , input_size , hidden_size , output_size):
8 super(IndexAdvisorNN , self).__init__ ()
9 self.layer1 = nn.Linear(input_size , hidden_size)

10 self.layer2 = nn.Linear(hidden_size , hidden_size)
11 self.layer3 = nn.Linear(hidden_size , output_size)
12

13 def forward(self , x):
14 x = torch.relu(self.layer1(x))
15 x = torch.relu(self.layer2(x))
16 x = torch.sigmoid(self.layer3(x))
17 return x
18

19 def train_model(model , train_loader , epochs):
20 criterion = nn.BCELoss ()
21 optimizer = optim.Adam(model.parameters ())
22 for epoch in range(epochs):
23 for inputs , labels in train_loader:
24 optimizer.zero_grad ()
25 outputs = model(inputs)
26 loss = criterion(outputs , labels)
27 loss.backward ()
28 optimizer.step()
29

30 # Usage
31 input_size = 100 # Size of query feature vector
32 hidden_size = 64
33 output_size = 10 # Number of possible indexes
34 model = IndexAdvisorNN(input_size , hidden_size , output_size)

Information 2024, 15, 429 17 of 20

Table 12. Performance metrics for NN index advisor (mixed workload, scale factor 100).

Hardware Execution CPU Memory Disk I/O
Config Time (ms) Util. (%) Usage (MB) (ops/s)

Single-core 10,270.31 ± 179.24 82 4427 912 ± 30
Multi-core 3030.85 ± 95.73 57 5920 2820 ± 94
GPU 3536.27 ± 106.81 32 7105 2185 ± 70

This neural network learns to recommend indexing strategies based on query features
and historical performance data.

5.6. Summary of Key Findings

To highlight the main findings of our study, we present summary tables comparing
the performance of different indexing techniques across hardware configurations and
scale factors.

5.7. Analysis and Discussion

Our experimental results reveal several key insights:

1. Hardware-conscious techniques outperform traditional indexes: Cache-conscious
B-Tree variants and SIMD-optimized hash indexes consistently outperform their
traditional counterparts across all hardware configurations. For example, the cache-
conscious B-Tree achieves a 34.2% reduction in execution time compared to the tradi-
tional B-Tree on multi-core systems (Table 13).

2. GPU acceleration benefits vary: GPU acceleration shows the most significant benefits
for specialized indexing techniques like spatial indexing, with up to 37.8% reduction
in execution time for Quad-Trees compared to CPU-based implementations (Table 10).
However, its advantages for traditional indexes are more modest, likely due to data
transfer overheads.

3. Machine learning approaches show promise: Both reinforcement learning-based
and neural network-based indexing techniques demonstrate significant performance
improvements over traditional methods. The NN-based approach, in particular,
achieves a 48.6% reduction in execution time compared to traditional B-Trees on
multi-core systems (Table 13). This suggests that ML-based techniques can effectively
adapt to diverse query workloads and hardware configurations.

4. Scalability across dataset sizes: Our experiments across different scale factors (1 GB,
10 GB, 100 GB) reveal that the performance benefits of advanced indexing techniques
generally increase with dataset size. This scalability is particularly evident for cache-
conscious and ML-based approaches, which show improved relative performance as
data volumes grow.

5. Trade-offs between performance and resource utilization: While advanced indexing
techniques offer significant performance improvements, they often come at the cost
of increased implementation complexity and, in some cases, higher memory usage.
Database administrators and developers must carefully consider these trade-offs
when selecting indexing strategies for specific use cases, Table 14.

Table 13. Performance improvement of advanced techniques over traditional B-Tree (Query 1, scale
factor 100).

Index Type Execution Time CPU Utilization Memory Usage
Improvement Reduction Reduction

Cache-conscious B-Tree (multi-core) 34.2% 25.0% 36.6%
RL-based (multi-core) 42.8% 30.3% 36.6%
NN-based (multi-core) 48.6% 25.0% 36.8%

Information 2024, 15, 429 18 of 20

Table 14. Performance comparison of indexing techniques (Query 1, scale factor 100).

Index Type Execution CPU Memory
Time (ms) Utilization (%) Usage (MB)

B-Tree (single-core) 19,374.63 ± 328.91 97 8219
B-Tree (multi-core) 5891.58 ± 193.72 76 9368
Cache-conscious B-Tree (multi-core) 3861.23 ± 142.68 57 5935
RL-based (multi-core) 3370.01 ± 106.22 53 5935
NN-based (multi-core) 3030.85 ± 95.73 57 5920

These findings, presented in Table 13, underscore the importance of tailoring indexing
strategies to specific hardware configurations and workload characteristics. The significant
performance gains observed with hardware-conscious and ML-based techniques highlight
the potential for substantial query optimization in modern database systems. However, the
variability in performance improvements across different scenarios emphasizes the need
for careful evaluation and tuning when implementing these advanced indexing strategies
in production environments.

6. Discussion

This section examines the broader implications of our experimental results, addresses limi-
tations of our study, and proposes directions for future research in database indexing strategies.

6.1. Implications of Hardware-Conscious Indexing

Our experiments demonstrate that hardware-conscious indexing techniques con-
sistently outperform traditional methods across various hardware configurations. Key
implications include:

• Cache Optimization: Cache-conscious B-Trees achieved a 34.2% reduction in exe-
cution time compared to traditional B-Trees, highlighting the critical role of cache
utilization in modern database systems.

• Vectorization Benefits: SIMD-optimized hash indexes showed a 32.4% reduction in
execution time for exact match queries, emphasizing the potential of vector processing
in database operations.

• Hardware-Software Co-design: The varying performance improvements across hard-
ware configurations underscore the importance of co-designing database algorithms
and hardware architectures.

6.2. GPU Acceleration: Opportunities and Challenges

GPU-accelerated indexing techniques revealed both promising opportunities and
notable challenges:

• Specialized Workloads: GPU acceleration showed up to 37.8% reduction in execution
time for spatial indexing (Quad-Trees), indicating their suitability for data-parallel
operations and complex geometric computations.

• Data Transfer Overhead: The modest gains for traditional indexes on GPU systems
highlight the impact of data transfer costs between CPU and GPU memory.

• Hybrid Approaches: Future research should explore dynamic allocation of indexing tasks
between CPUs and GPUs based on workload characteristics and resource availability.

6.3. Machine Learning-Based Indexing: Promise and Challenges

ML-based indexing techniques demonstrated significant potential, with up to 48.6%
reduction in execution time. However, several challenges remain:

• Training Data Quality: The effectiveness of ML-based techniques heavily depends on
the quality and representativeness of training data.

Information 2024, 15, 429 19 of 20

• Model Interpretability: Developing interpretable ML models for index selection could
enhance trust and adoption in production environments.

• Online Learning: Future research should explore online learning techniques for
continuous adaptation to changing workload patterns.

6.4. Limitations and Future Work

We acknowledge several limitations in our study:

• Workload Diversity: Our experiments may not fully capture the diversity of real-
world database workloads.

• Hardware Configurations: The study was conducted on a limited set of hardware
configurations.

• Concurrent Workloads: Our experiments focused primarily on single-query performance.
• Index Maintenance Costs: A more comprehensive study of index creation, updates,

and maintenance costs is warranted.

Based on these limitations and our findings, we propose the following directions for
future research:

1. Adaptive Hybrid Indexing: Developing strategies that dynamically switch between
different indexing techniques based on query patterns and hardware resources.

2. Hardware-Aware Query Optimization: Integrating hardware-conscious indexing
techniques into query optimizers.

3. Explainable ML-based Indexing: Investigating techniques for making ML-based
indexing decisions more interpretable.

4. Energy-Efficient Indexing: Exploring energy consumption implications and develop
energy-aware indexing strategies.

5. Indexing for Emerging Hardware: Investigating techniques optimized for emerging
technologies such as non-volatile memory and domain-specific accelerators.

In conclusion, our study demonstrates the significant potential of hardware-conscious
and ML-based indexing techniques to improve database query performance. Realizing
these benefits in practice requires careful consideration of workload characteristics, hard-
ware configurations, and implementation complexities. As database systems evolve in the
era of heterogeneous computing, the development of adaptive, hardware-aware indexing
strategies remains a crucial area for ongoing research and innovation.

Author Contributions: Writing—original draft, M.A. and M.V.B.; Supervision, P.M.; Funding acquisi-
tion, P.V. and J.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work is funded by National Funds through the FCT—Foundation for Science and
Technology, I.P., within the scope of the project Ref. UIDB/05583/2020. Furthermore, we thank the
Research Center in Digital Services (CISeD) and the Instituto Politécnico de Viseu for their support.
Maryam Abbasi thanks the national funding by FCT—Foundation for Science and Technology, I.P.,
through the institutional scientific employment program contract (CEECINST/00077/2021). This
work is also supported by FCT/MCTES through national funds and, when applicable, co-funded EU
funds under the project UIDB/50008/2020, and DOI identifier 10.54499/UIDB/50008/2020.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xu, H.; Li, A.; Wheatman, B.; Marneni, M.; Pandey, P. BP-tree: Overcoming the Point-Range Operation Tradeoff for In-Memory

B-trees. Proc. VLDB Endow. 2023, 16, 2976–2989. [CrossRef]
2. Chakraoui, M.; Kalay, A.; Marrakech, T. Optimization of local parallel index (LPI) in parallel/distributed database systems. Int. J.

Geomate 2016, 11, 2755–2762. [CrossRef]
3. Shahrokhi, H.; Shaikhha, A. An Efficient Vectorized Hash Table for Batch Computations. In 37th European Conference on Object-

Oriented Programming (ECOOP 2023); Schloss-Dagstuhl-Leibniz Zentrum für Informatik: Wadern, Germany, 2023; pp. 27:1–27:27.
[CrossRef]

https://doi.org/10.54499/UIDB/50008/2020
http://doi.org/10.14778/3611479.3611502
http://dx.doi.org/10.21660/2016.27.1322
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2023.27

Information 2024, 15, 429 20 of 20

4. Wang, J.; Liu, W.; Kumar, S.; Chang, S.F. Learning to hash for indexing big data—A survey. Proc. IEEE 2015, 104, 34–57. [CrossRef]
5. Xin, G.; Zhao, Y.; Han, J. A Multi-Layer Parallel Hardware Architecture for Homomorphic Computation in Machine Learning. In

Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Republic of Korea, 22–28 May
2021; pp. 1–5. [CrossRef]

6. Singh, A.; Alankar, B. An overview of b+ tree performance. Int. J. Adv. Res. Comput. Sci. 2017, 8, 1856–1857. [CrossRef]
7. Tripathy, S.; Satpathy, M. SSD internal cache management policies: A survey. J. Syst. Archit. 2022, 122, 102334. [CrossRef]
8. Tan, L.; Wang, Y.; Yi, J.; Yang, F. Single-Instruction-Multiple-Data Instruction-Set-Based Heat Ranking Optimization for Massive

Network Flow. Electronics 2023, 12, 5026. [CrossRef]
9. Tran, B.; Schaffner, B.; Myre, J.; Sawin, J.; Chiu, D. Exploring Means to Enhance the Efficiency of GPU Bitmap Index Query

Processing. Data Sci. Eng. 2020, 6, 209–228. [CrossRef]
10. Kouassi, E.K.; Amagasa, T.; Kitagawa, H. Efficient Probabilistic Latent Semantic Indexing using Graphics Processing Unit.

Procedia Comput. Sci. 2011, 4, 382–391. [CrossRef]
11. Gowanlock, M.; Rude, C.; Blair, D.M.; Li, J.D.; Pankratius, V. A Hybrid Approach for Optimizing Parallel Clustering Throughput

using the GPU. IEEE Trans. Parallel Distrib. Syst. 2019, 30, 766–777. [CrossRef]
12. Anneser, C.; Kipf, A.; Zhang, H.; Neumann, T.; Kemper, A. Adaptive Hybrid Indexes. In Proceedings of the 2022 International

Conference on Management of Data, Philadelphia, PA, USA, 12–17 June 2022. [CrossRef]
13. Sun, Y.; Zhao, T.; Yoon, S.; Lee, Y. A Hybrid Approach Combining R*-Tree and k-d Trees to Improve Linked Open Data Query

Performance. Appl. Sci. 2021, 11, 2405. [CrossRef]
14. Kraska, T. Towards instance-optimized data systems. Proc. VLDB Endow. 2021, 14, 3222–3232. [CrossRef]
15. Sadri, Z.; Gruenwald, L.; Leal, E. Online Index Selection Using Deep Reinforcement Learning for a Cluster Database. In

Proceedings of the 2020 IEEE 36th International Conference on Data Engineering Workshops (ICDEW), Dallas, TX, USA,
20–24 April 2020, pp. 158–161. [CrossRef]

16. Tan, Y.K.; Xu, X.; Liu, Y. Improved Recurrent Neural Networks for Session-based Recommendations. In Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems, Boston, MA, USA, 15 September 2016. [CrossRef]

17. Marcus, R.; Kipf, A.; van Renen, A.; Stoian, M.; Misra, S.; Kemper, A.; Neumann, T.; Kraska, T. Benchmarking learned indexes.
Proc. VLDB Endow. 2020, 14, 1–13. [CrossRef]

18. Schab, S. The comparative performance analysis of selected relational database systems. J. Comput. Sci. Inst. 2023, 28, 296–303.
[CrossRef]

19. Nambiar, R.; Wakou, N.; Carman, F.; Majdalany, M. Transaction processing performance council (TPC): State of the council 2010.
In Proceedings of the Performance Evaluation, Measurement and Characterization of Complex Systems: Second TPC Technology
Conference, TPCTC 2010, Singapore, 13–17 September 2010; Revised Selected Papers 2; Springer: New York, NY, USA, 2011;
pp. 1–9.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JPROC.2015.2487976
http://dx.doi.org/10.1109/ISCAS51556.2021.9401623
http://dx.doi.org/10.26483/ijarcs.v8i5.3963
http://dx.doi.org/10.1016/j.sysarc.2021.102334
http://dx.doi.org/10.3390/electronics12245026
http://dx.doi.org/10.1007/s41019-020-00148-8
http://dx.doi.org/10.1016/j.procs.2011.04.040
http://dx.doi.org/10.1109/TPDS.2018.2869777
http://dx.doi.org/10.1145/3514221.3526121
http://dx.doi.org/10.3390/app11052405
http://dx.doi.org/10.14778/3476311.3476392
http://dx.doi.org/10.1109/ICDEW49219.2020.00035
http://dx.doi.org/10.1145/2988450.2988452
http://dx.doi.org/10.14778/3421424.3421425
http://dx.doi.org/10.35784/jcsi.3767

	Introduction
	State of the Art
	Traditional Indexing Techniques
	B-Tree Indexes
	Hash Indexes

	Hardware-Conscious Indexing Strategies
	Cache-Conscious B-Tree Variants
	SIMD-Optimized Hash Indexes
	GPU-Accelerated Indexing
	Hybrid CPU-GPU Indexing Strategies
	Adaptive and Hybrid Indexing

	Machine Learning-Driven Indexing
	Reinforcement Learning for Index Selection
	Neural Network-Based Index Advisors
	Learned Index Structures

	Challenges and Open Problems

	Experimental Setup
	Database Management System
	TPC-H Benchmark
	Hardware Configurations
	Indexing Techniques Implemented
	Query Workload
	Performance Metrics and Data Collection
	Experimental Procedure
	Control Measures
	Data Analysis and Statistical Methods

	Results
	B-Tree Index Performance
	Hash Index Performance
	Cache-Conscious B-Tree Index Performance
	GPU-Based Indexing Techniques
	Summary of Key Findings

	Results and Analysis
	Performance Evaluation Metrics
	Traditional Indexing Techniques
	B-Tree Indexes
	Hash Indexes

	Hardware-Conscious Indexing Techniques
	Cache-Conscious B-Tree Variants
	SIMD-Optimized Hash Indexes

	GPU-Based Indexing Techniques
	Machine Learning-Based Indexing Techniques
	Reinforcement Learning-Based Index Selection
	Neural Network-Based Index Advisors

	Summary of Key Findings
	Analysis and Discussion

	Discussion
	Implications of Hardware-Conscious Indexing
	GPU Acceleration: Opportunities and Challenges
	Machine Learning-Based Indexing: Promise and Challenges
	Limitations and Future Work

	References

