
Citation: Hettiarachchi, E.D.S.I.;

Sarkar, N.I.; Gutierrez, J. Impact of

Southbound Expansion on Clustered

OpenFlow Software-Defined Network

Controller Synchronisation Using

ODL and ONOS. Information 2024, 15,

440. https://doi.org/10.3390/

info15080440

Academic Editor: Ruggero Lanotte

Received: 26 May 2024

Revised: 18 July 2024

Accepted: 19 July 2024

Published: 29 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Impact of Southbound Expansion on Clustered OpenFlow
Software-Defined Network Controller Synchronisation Using
ODL and ONOS
Egodahettiarachchige Don Sarada Indumini Hettiarachchi , Nurul I. Sarkar * and Jairo Gutierrez

Computer Science and Software Engineering, Auckland University of Technology, Auckland 1010, New Zealand;
spy5359@autuni.ac.nz (E.D.S.I.H.); jairo.gutierrez@aut.ac.nz (J.G.)
* Correspondence: nurul.sarkar@aut.ac.nz; Tel.: +64-211-758390

Abstract: The clustering methods of Software-Defined Networking (SDN) have gained popularity
due to their ability to offer improved scalability, consistency, dependability, and load balancing
within overlay networks and SDN partitions. This paper delved into the effects of increasing the
number of OpenFlow-enabled southbound devices on the establishment and coordination of SDN-
controller clusters. Specifically, we examined the volume of east–west cluster packet communications
concerning the number of southbound devices within the topology. Many research studies have
focused on bandwidth and the number of bytes in east–west communication. While bandwidth
refers to the maximum rate at which data can be transferred, and the number of bytes reflects the
volume of data being transmitted, the number of packet communications directly influences the
efficiency and responsiveness of network operations. Our investigation encompassed the impact
of SDN controller-to-controller communication within the cluster concerning the rising number of
OpenFlow switches connected to various topologies, including tree (star-bus network), linear, and
torus configurations. This study provided data on communication patterns within Open Network
Operating Systems (ONOS) and OpenDaylight (ODL) clusters, revealing differing levels of controller
communication with southbound network expansions. We evaluated the scalability of ODL and
ONOS controllers by scrutinising the effect of increasing the number of southbound devices on
the control communication volume. Our analysis revealed varied communication patterns within
ONOS and ODL clusters, resulting in different volumes of control communication with southbound
expansions. The findings indicated that in small-to-medium-sized SDNs, ODL outperformed ONOS,
notably with faster cluster discovery. Conversely, ONOS demonstrated greater efficiency in larger
networks owing to its centralised communication architecture. Finally, we provide recommendations
for selecting the most suitable controllers based on the size of southbound networks, aiming to
provide practical guidelines for optimal network performance.

Keywords: software-defined networking; southbound interface; controller clustering; east–west
communication; leader-based models; ODL clustering; ONOS clustering

1. Introduction

The key concept of Software-Defined Networking (SDN) involves the separation of the
control and data planes within a data network. This decoupling enables next-generation
networks to gain enhanced flexibility, programmability, and ease of management [1].

In contrast to conventional network infrastructure and methodologies involving
switches and routers, the SDN concept advocates for a centrally administered software
program to oversee the network’s control plane. The OpenFlow protocol serves as a means
of communication between the SDN controller and network devices for the management
of configurations [2]. The OpenFlow protocol enables switch communication in SDN,
relays device flow statistics to the controller, and handles unknown flow identification
requests. The southbound interface is essential for SDN’s effective network management

Information 2024, 15, 440. https://doi.org/10.3390/info15080440 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15080440
https://doi.org/10.3390/info15080440
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0009-0008-0011-4581
https://orcid.org/0000-0003-2770-8319
https://orcid.org/0000-0002-2103-8636
https://doi.org/10.3390/info15080440
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15080440?type=check_update&version=1

Information 2024, 15, 440 2 of 18

and control [3]. In the context of SDN, the OpenFlow protocol serves as the widely adopted
southbound interface or API that enables control decisions, including device detection,
topology management, and flow management [4].

In addition to the southbound interface, there are also northbound and east–west inter-
faces that play important roles in network management and connectivity. The northbound
interface enables communication between the controller and SDN applications, while the
east–west interface facilitates traffic exchange between clustered SDN controllers at the
control layer. These interfaces enhance scalability, reliability, and programmability within
an SDN architecture.

Implementing an architecture that incorporates a centralised control plane or SDN
controller operation can introduce the risk of a single point of failure within the SDN
network, particularly affecting the southbound interface. The southbound interface is
critical as it facilitates communication between the SDN controller and the network devices
(southbound devices). In a centralised architecture, the SDN controller manages the entire
network’s control logic from a single location.

To mitigate these risks, network architects often consider distributed or hybrid control
plane architectures. These approaches distribute control logic across multiple controllers,
enhancing redundancy and fault tolerance.

However, it is crucial to also consider how these controllers synchronise and commu-
nicate with each other. Effective inter-controller communication is essential for maintaining
consistency in southbound communication and facilitating seamless failover in case one
controller fails. This ensures that the failure of one controller does not incapacitate the
entire network and that network operations continue smoothly and efficiently.

Having investigated the influence of expanding numbers of OpenFlow switches in-
tegrated into various network topologies, we focused on examining the impact of this
communication on controller synchronisation and communication. Specifically, we anal-
ysed communication between SDN controllers within a cluster, termed as east–west traffic,
across tree (star-bus network), linear, and torus topologies.

ONOS and ODL, chosen for their cutting-edge technology and reputation for provid-
ing advanced capabilities in SDN controllers, were utilised in our research. Their esteemed
status and value-added features made them crucial tools for conducting comprehensive
assessments and analyses in our study.

Consequently, past research has explored using a dispersed or clustered SDN controller
architecture to manage dispersed multi-domain SDN systems in data centres, corporations,
consumer networks, and other places [5]. Table 1 shows the advantages of a multi-controller
clustered architecture in terms of modularity, consistency, and industry readiness. Fur-
thermore, the east–west-bound interface, the third interface in a multi-SDN controller or
clustered SDN system, enforces rules and protocols.

Table 1. Single-controller and multi-controller architectures.

Criteria Single Controller Multi-Controllers

POX Ryu ODL ONOS

First Release in 2011 2012 2013 2014
Architecture Centralised Centralised Distributed Distributed
East–West NA NA Available Available
Language Python Python Java Java
Modularity Poor Medium Very Good Very Good
Consistency No Yes Yes Yes
Updates Poor Medium Very Good Very Good
Industry Proven No No Yes Yes

The terms ’distributed’ and ’clustered’ are used interchangeably to provide simpler
explanations in this research [6].

Information 2024, 15, 440 3 of 18

1.1. Research Challenges

In this study, we address the following three key research questions or challenges:

1. What effect does the selection of controller clustering techniques have on the control
communication volume among controllers across various network topologies?
To address this research question, we investigate the effect of controller clustering
techniques, particularly ODL cluster and ONOS, on the volume of control communi-
cations in three network topologies (torus, linear, and tree). The variation in control
communication volume between these two types of controllers for a given network
topology is also investigated.

2. What are the key factors that influence the decrease in control communication volume
in an ODL cluster leaderless compared to an ONOS leader-based controller cluster?
We address this research question by examining the factors that contribute to lower
control communication volume per second in the ODL cluster compared to the ONOS
controller cluster. This investigation helps identify the reasons behind the observed
differences and determine what contributes to them.

3. What challenges did the ODL method face with an increase in the number of south-
bound devices compared to the ONOS method?
This question focuses on the challenges specific to ODL cluster communication when
scaling up the number of southbound devices. It aims to understand the reasons
behind the exponential increase in the cluster communication volume observed in
ODL compared to the more gradual increase in ONOS.

1.2. Research Contribution

The main contributions of this paper can be summarised as follows:

1. We provide a comprehensive analysis of the communication patterns observed in
ODL and ONOS clusters. In doing so, we offer insights into the behaviors of different
cluster coordination operations in torus, linear, and tree network topologies.

2. We evaluate the system performance, focusing on the scalability of ODL and ONOS
controllers. In doing so, we provide guidelines for selecting the appropriate controller
based on the size of the southbound network.

3. We conduct a detailed comparison of the coordination patterns among controller
clusters, including the time intervals between each cluster. The differences observed
in large-scale network environments and the challenges faced by each controller
cluster provide a better understanding of the strengths and limitations of ODL and
ONOS SDN clusters.

1.3. Structure of the Article

The remainder of this paper is organised as follows: Section 2 presents related work on
SDN controller clustering. The distribution and coordination factors of clustered controllers
are discussed in Section 3. The impact of southbound expansion on cluster performance
is analysed in Section 4. Section 5 focuses on the southbound implementation in leader-
based and leaderless controller clusters. Simulation results are presented in Section 6, and
practical system implications are discussed in this section. Finally, the paper is concluded
in Section 7.

2. Related Work

The SDN controller clustering approach increases network operations’ agility, extensi-
bility, and flexibility [6]. Moreover, SDN simplifies configuration and device manageability
with vendor-neutral configuration approaches.

The research conducted between 2015 and 2019 has laid significant groundwork for
understanding and improving Software-Defined Network (SDN) architectures. Müge
Erel et al. [7] utilised a Mininet-based SDN simulation to demonstrate the scalability of
OpenDaylight, offering insights into flow admission with a limited number of topologies.

Information 2024, 15, 440 4 of 18

Kim et al. [8] investigated the effectiveness of distributed data stores in OpenDaylight
controller clusters, providing valuable findings on load balancing and system performance
in large-scale networks. Chaipet and Putthividhya [9] examined scalability issues in single-
controller designs, contributing to our understanding of load balancing under various
traffic conditions. Abubakar Siddique et al. [10] focused on the scalability and reliability
of ONOS clusters, monitoring data transfer rates and volumes, though the study lacked
information on detailed topology arrangements. Suh et al. [11] aimed to enhance SDN
availability and scalability for service providers, addressing downtime minimisation during
reconfigurations. Despite being several years old, these studies have had a lasting impact
on the field by highlighting critical aspects of SDN scalability, reliability, and performance,
which continue to inform and inspire current research efforts.

Building on these foundational studies, recent research has further advanced our
understanding of SDN architectures and their practical applications.

Dharmik et al. [12] identify network bandwidth and connectivity as key constraints
affecting performance, focusing on throughput and latency. Their study shows that Open-
Daylight’s latency is impacted by the number of hosts, while ONOS achieves higher
average throughput and lower jitter. However, the evaluation is limited to scenarios using
OpenFlow switches within a tree topology.

S. Deepak et al. [13] assert that large-scale SDN networks necessitate the deployment of
multiple controllers, which must collaborate effectively to ensure scalability, fault tolerance,
and reduced latency. The study identifies propagation delay, dynamic traffic load, and
the connection of switches to controllers in a multi-controller environment as critical
factors impacting network performance. However, the study would benefit from a focused
analysis of the Multi-Domain Partition (MDP) technique, particularly concerning its impact
on inter-controller communication.

Shirvar et al. [14] have identified that network throughput, measured as the number
of packets per second an SDN controller can handle, significantly impacts the performance
of SDN controllers. Throughput can be assessed based on bits per second (bps) or as the
number of network packets or flows (e.g., packet-in and packet-out) per second, specifically
in the context of SDN. However, the study would be more comprehensive if it included
additional scenarios and topologies, such as star and tree topologies.

Niu et al. [15] investigated the scalability and reliability of SDN multi-controller
systems. The study revealed that nodes broadcast data through east–west interfaces and
collaborate in decision-making processes in both ONOS and ODL. Additionally, the research
identified six states in the initial distributed controller communication process. However,
the study did not include data pertaining to initial packet communication as an output.

Xu et al. [16] propose a multi-controller deployment strategy for Software-Defined
Networking (SDN) using an enhanced clustering algorithm aimed at enhancing network
quality within SDN architectures. The study evaluates the clustering algorithm based on
factors such as the number of nodes, number of links, controller processing rate, switch
request rate, and link propagation rate. However, a more comprehensive analysis could
include consideration of the impact of inter-controller communication patterns and packet
rates on the clustering algorithm, providing additional insights into its effectiveness.

Our research delves into the effect of expanding southbound communication to en-
compass multi-SDN controller communication in a data centre environment. The focus is
specifically on separate ONOS and ODL cluster environments, examining their impact and
implications. Each cluster consists of three SDN controllers. OpenFlow 1.3 [17] was used
as the southbound protocol in the experiment. The system impact and analysis of each
southbound topology were carried out in Mininet emulation software 2.3.0 [18], utilising
up to 255 OpenFlow-enabled virtual switches. Additional hardware resources were used
to conduct seven torus topology scenarios to collect different outputs. Captured data
communication was plotted onto graphs using the Wireshark protocol analyser [19]. The
distribution and coordination factors of clustered controllers are discussed next.

Information 2024, 15, 440 5 of 18

3. Distribution and Coordination Factors of Clustered Controllers

There are two significant qualitative variables in a clustered-controller environment.
They are distributed designs and coordination strategies. These two qualitative elements
are further split into two kinds of distributed designs (logically centralised and logically
distributed) and two types of coordination strategies (leader-based and leaderless) [20].

3.1. Distributed Architectures

The architectural differences or variations in qualitative components of industrial-use
SDN controllers are often overlooked in the existing literature when formulating findings
on controller east–west operations. Therefore, taking architectural changes into account
in distributed controller contexts will lead to more significant arguments and findings for
future research.

The initial SDN concept has evolved from a single central controller method to dual or
multi-SDN controller designs widely used in enterprise-level networks. Due to scalability,
performance, reliability, and other considerations, contemporary technological trends focus
on distributed controller architectures [21].

3.1.1. Logically Centralised Architecture

The single SDN controller provides the centralised interface for connecting all SDN-
capable southbound devices. SDN’s initial premise was logical centralisation. However,
scalability issues arise when a single controller manages many flows. Some studies [22,23]
have developed literature to find a solution by restricting route requests. In addition to
scalability issues, a single controller creates a single point of failure for SDN communication.
The controller’s failure prevents subsequent southbound flows from being processed.

3.1.2. Logically Distributed Architecture

Multiple controllers work together in a distributed design to overcome the limitations
of a single-controller architecture. This method makes it easier for dispersed controller
programs to share network burdens.

The ability to share information among dispersed SDN controllers is vital. In re-
cent controller applications, there are two basic coordination strategies available for this
purpose [21].

3.2. Coordination Strategies

There are two major coordination strategies, one where a controller (root/master)
gathers all network updates (leader) and then distributes them to each controller (non-
root/slave), and the other in which a peer-to-peer strategy (flat model) is used to maintain
a global topology view of the complete network in each controller [24].

3.2.1. Leader-Based Strategy

In this leader-based controller communication, there will be a leader, root, or master
controller who maintains the global network topology perspective. This controller has
read/write access to the global topology and can update it.

The non-leader, non-root, or slave controllers will always communicate with the
master controller to update the southbound details of the network, as shown in Figure 1.

Information 2024, 15, 440 6 of 18

Figure 1. Leader manages the cluster coordination.

3.2.2. Leaderless Strategy

A leaderless or flat approach will connect each controller and share the topology
information regularly with each other.

Figure 2 shows that each controller maintains a global network view in local data
structures. Subsequently, this information communicates via the east–west interface to
another cluster member.

Figure 2. Controller federation manages the cluster coordination.

4. Impact of Southbound Expansion for Cluster Performance Influences

In complex network environments like those found in Software-Defined Networking
(SDN), the quest for scalability is met with the need to ensure consistency throughout
the system. As networks grow larger and more intricate, it becomes necessary to deploy
multiple controllers or clustering mechanisms to efficiently manage increased demands.
However, this expansion brings about challenges in maintaining uniformity and coherence
across the network.

The main challenge lies in finding the right balance between scalability—ensuring
the network can handle growing traffic, devices, and services—and consistency, which
requires synchronised operations and coherent policies across all controllers or clustered
units. Scalability is crucial for adapting to changing network needs and accommodat-
ing expanding workloads, while consistency prevents issues like data discrepancies and
operational inefficiencies.

Information 2024, 15, 440 7 of 18

Figure 3 illustrates the various challenges and considerations related to scaling south-
bound operations in a multi-controller or clustered SDN environment. This visual repre-
sentation aids in understanding the complex interactions and dependencies involved in
managing scalability while maintaining consistency and addressing related concerns such
as dependability and load balancing.

Figure 3. Southbound scalability matters for consistency, reliability, load balance, and security.

The task of managing the enlarged network topology falls to cluster controllers as the
network expands southward. Consistency in network topology makes it easier to achieve
assured host communication.

The unbalanced distribution of southbound devices across the number of clustered
controllers in distributed SDN setups creates load-balancing difficulties.

Furthermore, link failures and security events, such as DDoS attacks in the southbound
direction, can cause failures in all mentioned areas, including the reliability of southbound
links [25].

The scalability of southbound operations takes several forms, including increasing
the number of southbound devices, adding additional functions to the southbound in-
terface, expanding geographic coverage, accommodating increased traffic volume, and
incorporating more peer hardware.

When considering southbound scalability in SDN, academic studies often focus on
addressing two fundamental research problems: clustered-controller consistency and
southbound operational scalability. These challenges are critical for ensuring the stability,
efficiency, and effectiveness of SDN deployments, particularly in large-scale or complex
network environments.

Clustered-controller consistency refers to ensuring consistency and synchronisation
among multiple controllers in a clustered SDN architecture. This is crucial for maintaining
network stability and coherence.

Southbound operational scalability focuses on the scalability of the southbound inter-
face, which connects the SDN controllers to the forwarding elements (e.g., switches and
routers) in the network. Ensuring that this interface can handle the increasing demands of
a growing network while maintaining performance and efficiency is essential for overall
network scalability.

Encountering an increase in the number of access-level network hardware or SDN-
capable southbound network devices connected to a clustered controller leads to several
system performance challenges. These challenges include heightened network utilisation,
complexities in load balancing, increased latency, bandwidth limitations, and elevated
traffic volumes. Additionally, managing the scalability of SDN networks becomes especially
challenging when the southbound network spans multiple geographic locations or network

Information 2024, 15, 440 8 of 18

partitions. Furthermore, future scalability and growth of the southbound network will
impact various system features and capabilities. Therefore, it is crucial to carefully consider
and design operational consistency in the southbound direction [26].

5. Southbound Implementation in Leader-Based/Leaderless Controller Clusters

In OpenFlow-enabled SDN controller clusters, the Open Network Operating Sys-
tem (ONOS) [27] and OpenDaylight (ODL) [28] have achieved the highest ’Technology
Readiness Level’ (TRL) [29]. Both ODL and ONOS are at the ’Proven system’ level.

The ONOS controller is a service provider-focused effort that aims for high availability,
high performance, high scalability, and highly resilient application deployment. To handle
all functionalities, ONOS runs in Java and the OSGi runtime bundle with Apache Karaf.
ONOS assists service provider networks through various features, with the most essential
being an easy-to-use GUI for controlling OpenFlow devices. ONOS also offers real-time
network setup and switch management, allowing network application developers to install
applications that govern the data plane and southbound traffic.

The leader-based ONOS cluster architecture strongly links member controllers to
establish an east–west interface. One controller serves as the ‘master’, while the other two
serve as ‘slave controllers’. The ONOS master controller in the cluster is selected using
periodic polling technology and is responsible for connecting member controllers. Slave
controllers maintain all network status information; if the master fails, the slave controllers
will select another master.

The Atomix distributed systems architecture is used for the experimental cluster, in
which all controllers exchange cluster characteristics and save modularised information
in distinct memory regions. All Atomix nodes broadcast their statuses to other known
members during the ONOS propagation to establish the cluster [30].

The operational structure of the leaderless ODL cluster architecture consists of three
layers: a network device layer, a coordination and control layer, and an application layer.

The network device layer manages southbound activities, such as plugins and proto-
cols. The coordination and control layer is responsible for service abstraction and network
services. The application layer handles all northbound APIs and apps. Many programmable
network functions, such as topology management and forwarding plane operation, are
supported by the ODL cluster. It employs the YANG data modelling language to maintain
the network services structure.

The Model Driven-Service Abstraction Layer (MD-SAL) procedure in ODL forms a
clustered controller with similar services provided by all member controllers. Further-
more, MD-SAL includes a distributed datastore feature for storing network states. Cluster
controllers, in particular, maintain data partitions and duplicate each other due to the
distributed datastore.

ODL uses the Raft protocol to replicate information in each partition, providing strong
consistency at the cost of inferior read/write performance. Additionally, the ODL cluster
enables the establishment of redundant connections, allowing for load sharing among
controllers. The ODL and ONOS cluster controllers exchange heartbeat signals regularly to
monitor each cluster’s stability [31]. Therefore, ONOS and ODL SDN cluster applications
are implemented to observe changes in the Mininet environment.

5.1. Evaluation Environment Settings

For the system evaluation, we utilised a QuantaPlex T41S-2U Node server environment
comprising three separate physical servers. Each server was designated to host specific
virtual machines (VMs) for the installation of ONOS 2.6.0 (with three VMs), OpenDaylight
15.0 (also with three VMs), and Mininet 2.3.0 (with one VM).

These physical servers were equipped with Intel Xeon E5-2603 V3 6-Core 1.60 GHz
processors, each containing 4 × 16 GB DDR4 2400 MHz RAM modules, and 16.4 TB of SATA
storage. Additionally, they were outfitted with four 10 Gbps SFP network interface cards.

Information 2024, 15, 440 9 of 18

The virtual machines were created using VMware ESXi 6.5.0 hypervisor. Each instance
of ONOS and OpenDaylight VMs was allocated 8 GB of RAM, 100 GB of storage, and
2 CPUs. The Mininet VM occupied an entire physical server’s resources.

In this evaluation setup (Figure 4), the VMs ran Ubuntu 20.04 LTS server OS, and
were provisioned with ONOS 2.6.0, OpenDaylight 15.0.0, and Mininet 2.3.0 for conducting
the assessments.

Figure 4. SDN topology in data centre environment.

In the ONOS torus topology configuration, where we employed high-performance
cluster hardware with 64 GB RAM, we allocated one physical server for each ONOS
instance. Peak level cluster communication used the ONOS torus topology with 64 GB
RAM) with a separate physical server for Mininet. This ensured optimal performance and
resource utilisation for the ONOS controllers within the evaluation setup.

In addition, each blade server was connected to a clustered switch environment using
Cisco Nexus 9300-EX switches, facilitating 10 Gbps fibre channel connections. This setup
ensured robust and high-speed communication between the servers, essential for efficient
data exchange and coordination within the SDN environment.

5.2. Experimental Topology

We use Mininet to deploy the southbound OpenFlow-Switch topology in each experi-
mental scenario in the simulated environment. Devices in scenarios were incremented with
Mininet capabilities [32]. There were eight scenarios tested in the linear and tree types of
topology with ONOS and Opendaylight controllers. We only tested seven scenarios for the
torus topology due to hardware limitations.

The experimental ODL and ONOS clusters were deployed on Apache Karaf environ-
ments, utilising identical hardware and software platforms. The key distinction between
the clusters lies in their architectural approaches, with the ODL cluster operating under a
leaderless architecture and the ONOS cluster adopting a leader-based architecture.

6. Results and Discussion

We carried out test-bed measurements using the VMware ESXi (6.5) Enterprise plat-
form in a high-end data centre environment. Both leader-based (ONOS) and leaderless
(ODL) controller clusters (three controllers per cluster) were tested for three different topolo-

Information 2024, 15, 440 10 of 18

gies. For the system performance analysis, we consider packet-level communication and
look at various packets to analyse the output data.

6.1. Cluster Initialisation

In the leader-based cluster initialisation process, the ONOS controller cluster exhibited
a notable surge in initial communication. As illustrated in Figure 5, the packet transfer
rate peaked at over 1200 packets per second during this phase. Notably, during the ini-
tial 60 s, the ONOS leader and its members engaged in communication averaging less
than 30 packets. The establishment of the first leader–member connection occurred within
the time interval of 61–121 s, followed by the formation of the second leader-member
connection between 121 and 181 s. This sequential process of member initialisation was
consistently observed, with each member initialising one after another. After the initialisa-
tion process, the keep-alive communication happened by communicating 200 packets per
second communication.

Figure 5. ODL leaderless vs. ONOS leader-based initial cluster communication.

Figure 6 illustrates that during the leaderless open daylight SDN cluster initialisation
phase, communication peaks at nearly 170 packets per second, encompassing the initial-
isation of all three controllers. However, subsequent to the initialisation, ODL members
maintain a communication rate of less than 200 packets per second. Moreover, the member
initialisation process for all three controllers concludes within the 1–61 s time frame, with
a maximum communication rate of 300 packets, significantly lower than that observed
in ONOS. Beyond the initial minute, the ODL cluster engages in keep-alive message ex-
changes, with communication rates remaining below 200 packets. During both ONOS
and ODL initialisation, communication between servers utilises a maximum of 5 Mbps
data transmission capacity, despite the physical network supporting throughput of up to
10 Gbps. Furthermore, the average packet size for each communication event is less than
200 bytes in both cluster scenarios.

Both the ONOS and ODL clusters were implemented under identical environments
and technologies, ensuring a consistent basis for comparison between leaderless and leader-
based architectures in SDN controller clusters. The deployment environments for both
clusters utilised similar setups, including Apache Karaf frameworks and standardised
hardware and software platforms. The distinction between the clusters lay in their architec-
tural approaches: ONOS adopted a leader-based architecture where a designated leader
node coordinated communication and initialisation among cluster members, whereas
ODL implemented a leaderless architecture where all nodes participated in synchronising
the network state with minimal overhead. This setup allowed for a direct evaluation of

Information 2024, 15, 440 11 of 18

how architectural differences impact cluster initialisation and communication patterns in
leaderless and leader-based SDN environments.

Figure 6. CPU usage of ONOS and ODL cluster initialisation.

Based on these readings, it is evident that there was higher CPU utilisation during
periods of high-volume packet communication in both ONOS and ODL environments.
Notably, the ODL environment exhibited a maximum CPU utilisation of 22 percent, while
the peak CPU utilisation observed in the ONOS environment was higher at 31 percent.
This suggests that ONOS may have experienced more intensive processing or resource
demands during certain stages of cluster initialisation compared to ODL, potentially due
to differences in internal packet processing mechanisms or workload distribution.

6.2. Impact of Southbound Expansion in Tree Topology

Eight scenarios were tested using a tree topology to test the expandability of a single
OpenFlow switch to 255. Table 2 shows details of the host count and network links
simulated in each experiment.

Table 2. Total number of devices and connections in simulated environment (tree topology scenarios).

Scenario OpenFlow Switch Count Host Count Link Count

01 01 02 02
02 03 04 06
03 07 08 14
04 15 16 30
05 31 32 62
06 63 64 126
07 127 128 254
08 255 256 510

In Mininet, the tree topology is a preset topology option that offers a hierarchical
structure resembling a binary tree. This topology distinguishes itself from other topologies
by its method of generation, which relies on configuring depth and fan-out values within
the Mininet setup. Depth in Mininet refers to the number of hierarchical stages, akin to the
levels in a binary tree, while fan-out denotes the number of connections or branches at each
stage. Mininet provides users with the flexibility to choose from five different depth and
fan-out combinations. In our experiment, we expanded our investigation to include eight
distinct depth levels to gather comprehensive results.

ONOS and ODL graphs (Figures 7 and 8) indicate that beyond the fifth scenario, there
are significant deviations highlighting one of the limitations of Mininet.

Information 2024, 15, 440 12 of 18

Figure 7. Peak-level cluster communication in ONOS tree topology.

Figure 8. Peak-level cluster communication in ODL tree topology.

However, leader-based ONOS cluster communication has more than five times higher
packet communication in southbound node expansion for a tree topology. It implies
increased resource utilisation and potential delays in cluster coordination and processing
power required to efficiently manage the additional data flow. Moreover, if this heightened
packet communication persists as the network expands, it may present scalability challenges
for leader-based ONOS clusters, necessitating adjustments or optimisations to support
larger deployments.

6.3. Impact of Southbound Expansion on Linear Topology

A single host will connect to a single switch in a linear topology, and Mininet has
just one connection between OpenFlow switches. As shown in Table 3, there are eight
scenarios that we have tested to identify the cluster synchronisation behaviours in ONOS
and ODL clusters.

Figure 9 shows the leader-based ONOS cluster produced more than 2000 packet
communications in the first three scenarios where the number of OpenFlow switches
was minimal. However, Figure 10 shows the leaderless ODL cluster recorded less than
2000 packet counts even in the last few scenarios. Furthermore, the leaderless scenarios
indicate a gradual increment of maximum packet communication, while the leader-based
approach has significant stability of the increment after the seventh scenario.

Information 2024, 15, 440 13 of 18

Table 3. Total number of devices and connections in simulated environment (linear topology scenarios).

Scenario OpenFlow Switch Count Host Count Link Count

01 02 02 03
02 04 04 07
03 08 08 15
04 16 16 31
05 32 32 63
06 64 64 127
07 128 128 255
08 256 256 511

Figure 9. Peak-level cluster communication in ONOS linear topology.

Figure 10. Peak-level cluster communication in ODL linear topology.

The steady escalation of packet communications in the leaderless technique is ac-
cessible in all three controllers in the ODL cluster. However, the ONOS cluster creates a
high packet rate between the master and first slave controller. The second slave controller
receives a 50 per cent lesser packet rate than the master and first slave connection. The
hardware resource utilisation in the leaderless cluster approach is lower than in the leader-
based approach. It is significant compared to other southbound topology scenarios. The
notable discrepancy in packet count increments between ODL and ONOS is significant,
particularly when ONOS reaches a count of 8000 packets compared to ODL’s 1000 packets.
This disparity suggests a substantial difference in the rate of network traffic handling and
processing efficiency between the two controller types. The significantly higher packet

Information 2024, 15, 440 14 of 18

count reached by ONOS implies a potentially heavier workload or more extensive data pro-
cessing tasks, whereas the lower count in ODL indicates a comparatively lighter workload
or more streamlined operations.

6.4. Impact of Southbound Expansion on Torus Topology

The torus topology is a mesh-type topology that can be created in the Mininet emulator
environment. This topology requires more hardware resources to operate appropriately in
a cluster environment. In the Mininet environment, we need more than nine OpenFlow
switches to initiate the southbound topology connections. Table 4 lists the scenarios with
12 to 768 OpenFlow switches.

Table 4. Total number of devices and connections in simulated environment (torus topology scenarios).

Scenario OpenFlow Switch Count Host Count Link Count

01 12 12 36
02 24 24 72
03 48 48 144
04 96 96 288
05 192 192 576
06 384 384 1152
07 768 768 2304

All VMs have 8GB of RAM and three logical CPU cores in our initial data centre
environment. Up to the fifth scenario, where 192 switches and 192 virtual hosts were
connected in a torus topology with 576 virtual links, the maximum CPU utilisation reached
up to 65 percent. However, in Scenario 6, when the experiment linked 384 OpenFlow
switches, the ONOS cluster used more than 95 per cent of its RAM capacity (Figure 11). The
seventh scenario (Figure 11) indicates an erroneous output due to the high utilisation of
CPU and RAM in Mininet and ONOS VMs. Therefore, the same scenarios were re-initiated
in another high-performance environment with 64GB RAM plus six logical cores.

Figure 11. Peak-level cluster communication in ONOS torus topology with 8 GB RAM.

Figure 12 shows the maximum packet communication in the ONOS cluster after
increasing hardware resources. The southbound expansions in each experiment scenario
(Table 2) produced significant deviation in scenarios 6 and 7 as compared to those shown
in Figure 11. Additionally, 4000 packets were communicated between controllers to fulfil
synchronisation. Furthermore, the same pattern was identified after scenario 6, similar
to scenarios with the linear and tree topologies. However, the slave cluster member-2
achieved a lower packet communication, close to 25 percent.

Information 2024, 15, 440 15 of 18

Figure 12. Peak-level cluster communication in ONOS torus topology with 64 GB RAM.

The leaderless ODL cluster exhibited nearly 3500 packet synchronisations in scenarios
involving 768 OpenFlow switches using the torus southbound topology. In addition
to the observations regarding packet synchronisations, the CPU usage of the leaderless
ODL cluster remained below 50 percent even in the scenario with the highest number of
OpenFlow switches connected to the environment. Conversely, the ONOS cluster required
approximately 16,000 packets for synchronisation. This notable difference underscored
efficiency levels in managing network communication and coordination between the two
clusters. Despite observing a gradual increment in packet communication between cluster
members as the southbound expanded, ODL demonstrated a more streamlined approach
compared to ONOS, suggesting potentially superior performance and resource utilisation
in certain scenarios (Figure 13).

Figure 13. Peak-level cluster communication in ODL torus topology.

7. Conclusions and Future Directions

The impact of increasing the number of southbound devices on system performance
was investigated. The leader-based clusters offered higher control communication between
the leader and slave members than the leaderless cluster coordination. However, the leader-
based architecture is more stable than the leaderless architecture. We observed that the
leaderless clusters produced high communication fluctuations even after initialising with
zero southbound devices. The results obtained have shown that the different southbound
topologies resulted in deviations between the leader-based and leaderless cluster controller
environments. We measured the system performance by considering 35 scenarios across
three different southbound topologies. We found that both leader-based and leaderless
clusters exhibited a consistent increase in cluster communication. The leader-based cluster

Information 2024, 15, 440 16 of 18

scenarios produced more cluster communication TCP packets than the leaderless ones.
For a small-to-medium SDN environment, the leaderless cluster (ODL) offered superior
performance with less topology discovery and flow installation time than the leader-based
(ONOS). The ONOS has a granular communication architecture between the leader and
follower that allows it to govern all synchronisation from a central location. This produces
stable and consistent cluster coordination in large-scale, wide-area networks

For a tree topology, the leaderless cluster communication consistently increased with
the number of southbound OpenFlow switches. The leader-based clusters produced
6000 TCP packets even with a single OpenFlow switch topology. However, there was no
continuous increment of cluster communication even though we scaled the southbound
up to 255 switches. Therefore, leader-based ONOS clusters exhibit excellent stability in
wide-area networks.

For a linear topology, there were eight scenarios in each cluster architecture. The ONOS
cluster communication showed constant communication rates after reaching 128 OpenFlow
switches in the southbound direction. ODL exhibited low TCP cluster control communi-
cations in small-scale topologies; however, gradual increment is indicated in large-scale
networks. Furthermore, the leader-based architecture produced a significantly lower rate of
cluster communication between the second slave member and the master controller in the
cluster after the seventh scenario. We found that the higher southbound volume produces
consistent communication in the ONOS cluster. In the ONOS leader-based design, it was
shown that the second follower has a substantially lower rate of communication than the
first follower.

While we focus on utilising readily available resources in Mininet, ONOS, and ODL
controller versions, we aim to carry out system evaluation by incorporating diverse and
representative network topologies and cluster algorithm communication patterns. This
will help us to develop a deeper understanding of SDN technologies and their practical
applications in various settings.

ONOS and ODL employ distinct architectural approaches in their implementations of
Software-Defined Networking (SDN). ONOS implements a distributed clustering mecha-
nism where the cluster service interface manages roles and nodes across the network. In
contrast, ODL adopts a centralised clustering model, treating the cluster as a single logical
entity with members represented through the cluster member interface. This architectural
difference extends to packet processing, where ONOS utilises distributed packet processing
across multiple instances, facilitated by the packet processor interface. ODL, on the other
hand, employs a flat model SDN approach for distributed controller operations.

Furthermore, ONOS manages workload distribution through the LeadershipService,
which ensures balanced leadership and distributed processing among controllers. In con-
trast, ODL employs a flat model approach managed by the WorkloadManager. These
architectural distinctions significantly impact CPU utilisation and cluster communication
patterns within each system. While these differences provide insights into SDN controller
performance, further research involving other controller architectures is essential to com-
prehensively understand their impact in varying network environments.

Author Contributions: Conceptualisation, E.D.S.I.H.; methodology, E.D.S.I.H. and N.I.S.; software,
E.D.S.I.H. and N.I.S.; validation, E.D.S.I.H. and N.I.S.; formal analysis, E.D.S.I.H. and N.I.S.; in-
vestigation, E.D.S.I.H. and N.I.S.; resources, N.I.S. and J.G.; data curation, E.D.S.I.H. and N.I.S.;
writing—original draft preparation, E.D.S.I.H.; writing—review and editing, N.I.S. and J.G.; visuali-
sation, E.D.S.I.H. and N.I.S.; supervision, N.I.S. and J.G.; project administration, N.I.S. and J.G. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Information 2024, 15, 440 17 of 18

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Anerousis, N.; Chemouil, P.; Lazar, A.A.; Mihai, N.; Weinstein, S.B. The Origin and Evolution of Open Programmable Networks

and SDN. IEEE Commun. Surv. Tutor. 2021, 23, 1956–1971. [CrossRef]
2. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J. OpenFlow: Enabling

Innovation in Campus Networks. SIGCOMM Comput. Commun. Rev. 2008, 38, 69–74. [CrossRef]
3. Kreutz, D.; Ramos, F.M.V.; Veríssimo, P.E.; Rothenberg, C.E.; Azodolmolky, S.; Uhlig, S. Software-Defined Networking: A

Comprehensive Survey. Proc. IEEE 2015, 103, 14–76. [CrossRef]
4. Abu Abd-Allah, A.G.; Aya Sedky Adly, A.Z.G. Scalability between Flow Tables & Multiple Controllers in Software Defined

Networking. J. Comput. Sci. IJCSIS 2019, 17, 23–44.
5. Phemius, K.; Bouet, M.; Leguay, J. DISCO: Distributed multi-domain SDN controllers. In Proceedings of the 2014 IEEE Network

Operations and Management Symposium (NOMS), Krakow, Poland, 5–9 May 2014; pp. 1–4. [CrossRef]
6. Cox, J.H.; Chung, J.; Donovan, S.; Ivey, J.; Clark, R.J.; Riley, G.; Owen, H.L. Advancing Software-Defined Networks: A Survey.

IEEE Access 2017, 5, 25487–25526. [CrossRef]
7. Erel, M.; Teoman, E.; Özçevik, Y.; Seçinti, G.; Canberk, B. Scalability analysis and flow admission control in mininet-based SDN

environment. In Proceedings of the 2015 IEEE Conference on Network Function Virtualization and Software Defined Network
(NFV-SDN), San Francisco, CA, USA, 18–21 November 2015; pp. 18–19. [CrossRef]

8. Kim, T.; Choi, S.G.; Myung, J.; Lim, C.G. Load balancing on distributed datastore in opendaylight SDN controller cluster. In
Proceedings of the 2017 IEEE Conference on Network Softwarization (NetSoft), Bologna, Italy, 3–7 July 2017; pp. 1–3. [CrossRef]

9. Chaipet, S.; Putthividhya, W. On Studying of Scalability in Single-Controller Software-Defined Networks. In Proceedings of
the 2019 11th International Conference on Knowledge and Smart Technology (KST), Phuket, Thailand, 23–26 January 2019;
pp. 158–163. [CrossRef]

10. Muqaddas, A.S.; Giaccone, P.; Bianco, A.; Maier, G. Inter-Controller Traffic to Support Consistency in ONOS Clusters. IEEE Trans.
Netw. Serv. Manag. 2017, 14, 1018–1031. [CrossRef]

11. Suh, D.; Jang, S.; Han, S.; Pack, S.; Kim, M.S.; Kim, T.; Lim, C.G. Toward Highly Available and Scalable Software Defined
Networks for Service Providers. IEEE Commun. Mag. 2017, 55, 100–107. [CrossRef]

12. Lunagariya, D.; Goswami, B. A Comparative Performance Analysis of Stellar SDN Controllers using Emulators. In Proceedings
of the 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies
(ICAECT), Bhilai, India, 19–20 February 2021; pp. 1–9. [CrossRef]

13. Sri Deepak Phaneendra, Y.; Prabu, U.; Yasmine, S. A Study on Multi-Controller Placement Problem (MCPP) in Software-Defined
Networks. In Proceedings of the 2023 International Conference on Sustainable Computing and Data Communication Systems
(ICSCDS), Erode, India, 23–25 March 2023; pp. 1454–1458. [CrossRef]

14. Shirvar, A.; Goswami, B. Performance Comparison of Software-Defined Network Controllers. In Proceedings of the 2021
International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai,
India, 19–20 February 2021; pp. 1–13. [CrossRef]

15. Niu, X.; Guan, J.; Gao, X.; Jiang, S. Scalable and Reliable SDN Multi-Controller System Based on Trusted Multi-Chain. In
Proceedings of the 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), Virtually, 12–15 September 2022; pp. 758–763. [CrossRef]

16. Xu, H.; Li, Q. SDN Multi Controller Deployment Strategy Based on Improved Spectral Clustering Algorithm. In Proceedings
of the 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP), Virtually, 15–17 April 2022;
pp. 117–120. [CrossRef]

17. Hu, F.; Hao, Q.; Bao, K. A Survey on Software-Defined Network and OpenFlow: From Concept to Implementation. IEEE
Commun. Surv. Tutor. 2014, 16, 2181–2206. [CrossRef]

18. de Oliveira, R.L.S.; Schweitzer, C.M.; Shinoda, A.A.; Prete, L.R. Using Mininet for emulation and prototyping Software-Defined
Networks. In Proceedings of the 2014 IEEE Colombian Conference on Communications and Computing (COLCOM), Bogota,
Colombia, 4–6 June 2014; pp. 1–6. [CrossRef]

19. Goyal, P.; Goyal, A. Comparative study of two most popular packet sniffing tools-Tcpdump and Wireshark. In Proceedings of
the 2017 9th International Conference on Computational Intelligence and Communication Networks (CICN), Cyprus, Turkey,
16–17 September 2017; pp. 77–81. [CrossRef]

20. Espinel Sarmiento, D.; Lebre, A.; Nussbaum, L.; Chari, A. Decentralized SDN Control Plane for a Distributed Cloud-Edge
Infrastructure: A Survey. IEEE Commun. Surv. Tutor. 2021, 23, 256–281. [CrossRef]

21. Bannour, F.; Souihi, S.; Mellouk, A. Distributed SDN Control: Survey, Taxonomy, and Challenges. IEEE Commun. Surv. Tutor.
2018, 20, 333–354. [CrossRef]

22. Yan, B.; Xu, Y.; Chao, H.J. BigMaC: Reactive Network-Wide Policy Caching for SDN Policy Enforcement. IEEE J. Sel. Areas
Commun. 2018, 36, 2675–2687. [CrossRef]

http://doi.org/10.1109/COMST.2021.3060582
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1109/JPROC.2014.2371999
http://dx.doi.org/10.1109/NOMS.2014.6838330
http://dx.doi.org/10.1109/ACCESS.2017.2762291
http://dx.doi.org/10.1109/NFV-SDN.2015.7387396
http://dx.doi.org/10.1109/NETSOFT.2017.8004238
http://dx.doi.org/10.1109/KST.2019.8687678
http://dx.doi.org/10.1109/TNSM.2017.2723477
http://dx.doi.org/10.1109/MCOM.2017.1600170
http://dx.doi.org/10.1109/ICAECT49130.2021.9392391
http://dx.doi.org/10.1109/ICSCDS56580.2023.10105023
http://dx.doi.org/10.1109/ICAECT49130.2021.9392559
http://dx.doi.org/10.1109/PIMRC54779.2022.9977820
http://dx.doi.org/10.1109/ICSP54964.2022.9778412
http://dx.doi.org/10.1109/COMST.2014.2326417
http://dx.doi.org/10.1109/ColComCon.2014.6860404
http://dx.doi.org/10.1109/CICN.2017.8319360
http://dx.doi.org/10.1109/COMST.2021.3050297
http://dx.doi.org/10.1109/COMST.2017.2782482
http://dx.doi.org/10.1109/JSAC.2018.2871296

Information 2024, 15, 440 18 of 18

23. Görkemli, B.; Tatlıcıoğlu, S.; Tekalp, A.M.; Civanlar, S.; Lokman, E. Dynamic Control Plane for SDN at Scale. IEEE J. Sel. Areas
Commun. 2018, 36, 2688–2701. [CrossRef]

24. Amiri, E.; Alizadeh, E.; Raeisi, K. An Efficient Hierarchical Distributed SDN Controller Model. In Proceedings of the 2019 5th
Conference on Knowledge Based Engineering and Innovation (KBEI), Tehran, Iran, 28 February–1 March 2019; pp. 553–557.
[CrossRef]

25. Hu, T.; Guo, Z.; Yi, P.; Baker, T.; Lan, J. Multi-controller Based Software-Defined Networking: A Survey. IEEE Access 2018,
6, 15980–15996. [CrossRef]

26. Nguyen-Ngoc, A.; Lange, S.; Zinner, T.; Seufert, M.; Tran-Gia, P.; Aerts, N.; Hock, D. Performance evaluation of selective
flow monitoring in the ONOS controller. In Proceedings of the 2017 13th International Conference on Network and Service
Management (CNSM), Tokyo, Japan, 26–30 November 2017; pp. 1–6. [CrossRef]

27. Open Networking Foundation. Open Network Operating System (ONOS®) Is the Leading Open Source SDN Controller for
Building Next-Generation SDN/NFV Solutions. October 2021. Available online: https://www.opendaylight.org/ (accessed on
18 July 2024).

28. OpenDaylight. OpenDaylight (ODL) Is a Modular Open Platform for Customizing and Automating Networks of Any Size and
Scale. October 2021. Available online: https://www.opendaylight.org/ (accessed on 18 July 2024).

29. Lord, P.; Roy, A.; Keys, C.; Ratnaparkhi, A.; Goebel, D.M.; Hart, W.; Lai, P.; Solish, B.; Snyder, S. Beyond TRL 9: Achieving the
Dream of Better, Faster, Cheaper Through Matured TRL 10 Commercial Technologies. In Proceedings of the 2019 IEEE Aerospace
Conference, Big Sky, MT, USA, 2–9 March 2019; pp. 1–17. [CrossRef]

30. Septian, K.A.; Istikmal.; Ginting, I. Analysis of ONOS Clustering Performance on Software Defined Network. In Proceedings
of the 2021 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS), Bandung, Indonesia, 23–24
November 2021; pp. 117–122. [CrossRef]

31. Suh, D.; Jang, S.; Han, S.; Pack, S.; Kim, T.; Kwak, J. On performance of OpenDaylight clustering. In Proceedings of the 2016 IEEE
NetSoft Conference and Workshops (NetSoft), Virtually, 23–24 November 2016; pp. 407–410. [CrossRef]

32. Arahunashi, A.K.; Neethu, S.; Ravish Aradhya, H.V. Performance Analysis of Various SDN Controllers in Mininet Emulator. In
Proceedings of the 2019 4th International Conference on Recent Trends on Electronics, Information, Communication Technology
(RTEICT), Khulna, Bangladesh, 20–22 December 2019; pp. 752–756. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JSAC.2018.2871308
http://dx.doi.org/10.1109/KBEI.2019.8734982
http://dx.doi.org/10.1109/ACCESS.2018.2814738
http://dx.doi.org/10.23919/CNSM.2017.8256058
https://www.opendaylight.org/
https://www.opendaylight.org/
http://dx.doi.org/10.1109/AERO.2019.8741935
http://dx.doi.org/10.1109/IoTaIS53735.2021.9628659
http://dx.doi.org/10.1109/NETSOFT.2016.7502476
http://dx.doi.org/10.1109/RTEICT46194.2019.9016693

	Introduction
	Research Challenges
	Research Contribution
	Structure of the Article

	Related Work
	Distribution and Coordination Factors of Clustered Controllers
	Distributed Architectures
	Logically Centralised Architecture
	Logically Distributed Architecture

	Coordination Strategies
	Leader-Based Strategy
	Leaderless Strategy

	Impact of Southbound Expansion for Cluster Performance Influences
	Southbound Implementation in Leader-Based/Leaderless Controller Clusters
	Evaluation Environment Settings
	Experimental Topology

	Results and Discussion
	Cluster Initialisation
	Impact of Southbound Expansion in Tree Topology
	Impact of Southbound Expansion on Linear Topology
	Impact of Southbound Expansion on Torus Topology

	Conclusions and Future Directions
	References

