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Abstract: In the power grid, inspection robots enhance operational efficiency and safety by inspecting
power lines for information sharing and interaction. Edge computing improves computational
efficiency by positioning resources close to the data source, supporting real-time fault detection
and line monitoring. However, large data volumes and high latency pose challenges. Existing
offloading strategies often neglect task divisibility and priority, resulting in low efficiency and
poor system performance. This paper constructs a power grid inspection offloading scenario using
Python 3.11.2 to study and improve various offloading strategies. Implementing a game-theory-
based distributed computation offloading strategy, simulation analysis reveals issues with high
latency and low resource utilization. To address these, an improved game-theory-based strategy is
proposed, optimizing task allocation and priority settings. By integrating local and edge computing
resources, resource utilization is enhanced, and latency is significantly reduced. Simulations show
that the improved strategy lowers communication latency, enhances system performance, and
increases resource utilization in the power grid inspection context, offering valuable insights for
related research.

Keywords: power line inspection; inspection robots; edge computing; distributed offloading strategy;
game theory

1. Introduction

In recent years, the convergence of Artificial Intelligence (AI) and Mobile Edge Com-
puting (MEC) has catalyzed transformative advancements across various domains, includ-
ing power grid management [1,2]. A particularly promising application of this convergence
lies in the optimization of power grid inspection processes through the deployment of
power line inspection robots. These robots, endowed with sophisticated sensors and AI
algorithms, possess the capacity to autonomously traverse power grid infrastructures,
identifying anomalies and executing routine maintenance tasks [3].

Conventional approaches to the deployment of power line inspection robots typically
entail the utilization of on-board processing units responsible for executing computationally
intensive tasks such as image processing, data analysis, and decision-making. However,
this paradigm confronts inherent limitations pertaining to processing capacity, energy
consumption, and real-time responsiveness [4]. To surmount these challenges, the concept
of MEC emerges as a pivotal paradigm [5].

MEC represents a distributed computing architecture that extends cloud computing
capabilities closer to the network edge, thereby enabling computation to be performed
closer to the data source. In the context of power grids, MEC servers are strategically
deployed at base stations, forming an edge computing infrastructure within the grid. This
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infrastructure offers proximity to the physical assets and operational data of the power grid,
facilitating low-latency data processing, real-time analytics, and rapid decision-making [6].

By leveraging the computational prowess and proximity of MEC servers, power
line inspection robots can effectively offload demanding computational tasks, thereby
augmenting their performance, mitigating latency, and conserving energy [7]. Furthermore,
MEC facilitates seamless integration with existing communication networks, enabling
efficient data exchange and coordination between inspection robots, base stations, and
central control centers [8].

The primary contributions of this paper are as follows:

• Proposing an Improved Game-Theory-Based Distributed Computation Offloading
Strategy: This paper improves upon existing game-theory-based distributed computa-
tion offloading strategies by optimizing task allocation and prioritization, enhancing
resource utilization, and significantly reducing latency.

• Constructing a Power Grid Inspection Offloading Scenario: Utilizing Python, this
paper constructs a power grid inspection offloading scenario to study and enhance
various offloading strategies, revealing issues with high latency and low resource
utilization in existing strategies through simulation analysis.

• Integrating Local and Edge Computing Resources: In this paper, we introduce a
method for integrating local and edge computing resources, proposing an optimized
task allocation strategy that enhances resource utilization and significantly reduces
communication latency.

• Validating Through Simulation Results: Simulation results demonstrate that the pro-
posed improved strategy effectively lowers communication latency, enhances system
performance, and increases resource utilization in the power grid inspection context,
providing valuable insights for related research.

The subsequent sections of this paper are structured as follows: Section 2 provides
a brief overview of related studies. Section 3 delineates the proposed system Model
for integrating power line inspection robots with MEC. Subsequently, Section 4 presents
the statement of the problem, while Section 5 demonstrates the solution to this problem.
Subsequently, Section 6 presents the simulation results and discussion. Finally, a summary
of the paper is provided in Section 7.

2. Related Works

Inspection robots for power transmission lines have been the focus of extensive re-
search due to their potential to improve the efficiency and safety of power grid maintenance.
LinBot, detailed in [9], is an innovative robot designed for high-voltage transmission lines,
capable of overcoming various ground wire obstacles such as warning balls and tower
tips, thanks to its active and passive mechanisms. Its stability and feasibility were val-
idated through simulations and field experiments. Similarly, the single-arm inspection
robot system discussed in [10] addresses conventional robots’ limitations by employing
a large-load UAV for cooperative operations, enhancing live line inspections’ precision
and control. The dynamics of this robot were analyzed using the Lagrangian method and
simulated in ADAMS software, confirming its practicality. In the context of smart grids, an
autonomous high-voltage transmission inspection robot was introduced in [11], featuring a
hierarchical control structure for remote management and autonomous decision-making
using image recognition and laser sensors. The application of 5G mobile edge computing
(MEC) in power robotic inspections, as proposed in [3], enhances efficiency by addressing
multi-dimensional entity heterogeneity and environment dynamics. This framework uses
an AI-enabled optimization algorithm for route planning and task offloading, significantly
reducing latency. Another study [12] focuses on the mechanism design and kinematics
of a robot equipped with sensors and cameras, controlled by a Raspberry Pi for real-time
visualization and data transmission, ensuring continuous inspection and maintenance.
Inspired by gibbons, a two-arm swinging inspection robot described in [13] uses a bionic
design to swing and cross obstacles, with kinematic analysis and simulations verifying its
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stability. Addressing slow obstacle crossing, a robot using asymmetrical driving wheels was
developed in [14], enabling quick and efficient movement over spacers and counterweights,
verified by simulations and prototype experiments. These advancements in robotics, edge
computing, and innovative design principles significantly enhance inspection robots’ ca-
pabilities for power transmission lines, providing a foundation for more efficient, reliable,
and autonomous power grid maintenance solutions.

According to an overview of relevant research, it can be observed that previous studies
on power line inspection robots have not yet considered the computation offloading scheme
in practical smart grid scenarios. Furthermore, the problem of efficiently offloading com-
putations through the comprehensive distributed utilization of computational resources
remains unresolved for inspection robots.

Our work “Optimizing Task Offloading for Power Line Inspection in Smart Grid
Networks with Edge Computing: A Game Theory Approach” introduces a game-theory-
based dynamic optimization approach that ensures fair resource allocation among multiple
agents while minimizing task offloading costs. Table 1 provides a comparative overview of
key indicators and methodologies of our work against the aforementioned studies.

Table 1. Comparison of Key Indicators and Methodologies.

Indicator/Method
Our Paper: Optimizing Task
Offloading for Power
Line Inspection

PPO-Based Computation
Offloading and Resource
Allocation [3]

5G MEC-Based Intelligent
Computation Offloading in
Power Robotic Inspection [6]

Objective Minimize task offloading cost
and improve system utility

Minimize energy consumption
and delay

Optimize task offloading and
route planning to reduce delay

Approach
Multi-agent dynamic
optimization based
on game theory

Proximal Policy Optimization
(PPO) algorithm

AI-enabled multi-dimensional
collaborative optimization
algorithm

Methodological Novelty

• Combines game theory
and edge computing for
dynamic task offloading

• Considers multi-agent
competition to ensure
fair resource allocation

• Optimizes system utility
through intelligent

game models

• Uses PPO to avoid
dimensionality curse

• Provides long-term opti-
mization strategies

• Optimizes task
offloading and
route planning using
AI and MEC

• Enhances low-latency
task processing
performance

This comparative analysis highlights the novel contributions of our work in ensuring
fair resource allocation among multiple agents and dynamically optimizing task offloading
strategies to enhance overall system utility.

3. System Model

This paper presents a scenario of distributed computation offloading involving multi-
ple power line inspection robots and MEC servers within power grid infrastructure. In this
scenario, the power line inspection robots are tasked with offloading computational tasks
to servers stationed at base stations, a process known as computation offloading. Each
base station is equipped with a dedicated MEC server. The scenario of multiple power
line inspection robots and multiple MEC servers for computation offloading is depicted in
Figure 1.
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Figure 1. Power grid power line inspection scenario.

Within this context, computation offloading entails addressing the following issues:

• Computation resource allocation: When multiple power line inspection robots concur-
rently submit computation tasks to MEC servers, the allocation of resources becomes
crucial. Inspection robots must consider factors such as latency, energy consumption,
as well as the load and availability of each MEC server to determine the most suitable
server for task offloading.

• Task partitioning: Each power line inspection robot’s computational task can be
partitioned into distinct segments, which are then assigned for processing either locally
or offloaded to MEC servers. In this study, the tasks of each power line inspection
robot are divided into 100 sub-tasks, and decisions are made regarding the allocation
of these sub-tasks to optimize processing efficiency. This approach aims to maximize
the utilization of local computational resources while alleviating the computational
burden on power line inspection robots, thereby enhancing offloading efficiency.

• Task prioritization: In the power grid context, tasks exhibit varying degrees of urgency
and priority. For example, tasks related to emergency fault detection take precedence
over routine inspection tasks. Therefore, assigning priorities to tasks and considering
them during task allocation are essential in determining the optimal task scheduling
strategy within the power line inspection robots and MEC integration scenario.

In the scenario of multiple power line inspection robots and multiple MEC servers, the
primary challenge in computation offloading lies in selecting the most appropriate MEC
nodes to achieve optimal coordination between power line inspection robots and MEC
servers. Addressing this challenge involves identifying an optimal solution that balances
system resource allocation and task computation overhead, constituting a multi-player
dynamic game. Subsequent sections will delve into modeling this problem.

This scenario encompasses two primary components: power line inspection robots
and base stations. The set of power line inspection robots is denoted as {Robot1, Robot2, . . . ,
RobotN}, while the set of MEC servers is denoted as {MEC1, MEC2, . . . , MECM}. At an
initial time point, power line inspection robots are assumed to be distributed uniformly
and randomly within the power grid area, while MEC servers are strategically placed at
base stations. For simplification purposes, it is assumed that power line inspection robots
move at a constant speed within the power grid. Based on the coordinates of power line
inspection robots and MEC servers, the distance between them can be calculated. At any
given moment, each power line inspection robot selects the optimal MEC server for task
offloading and computation processing, necessitating distributed decision-making.

Each power line inspection robot has a unique task represented by a triplet
Taskn = (αn, βn, Pn), where αn denotes the data volume of the task, βn represents the
required CPU cycle count, and Pn signifies the task’s priority. The task offloading decision
for each power line inspection robot is represented by the vector dn = (n, dM

n ), where
dM

n ∈ M = {1, 2, . . . , M} indicates the base station to which the task is offloaded. Addition-
ally, the task allocation decision for each power line inspection robot is represented by the
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vector fn ∈ {1, 2, . . . , 100}, indicating the number of sub-tasks offloaded to the MEC server
for processing.

3.1. Communication Model

Each power line inspection robot needs to make a distributed decision on whether to
offload its computation tasks to the corresponding MEC server and how many tasks to keep
for local processing. For robot n, it needs to make an offloading decision dn, i.e., choosing
which MEC server to offload tasks to. When all robots complete their distributed decisions,
the overall offloading vector d can be determined, and the data transmission rate Rm

n (d)
between robot n and the mth base station can be computed. This can be calculated using
the Shannon formula, which demonstrates that the maximum information transmission
rate C in the channel, subject to Gaussian white noise, is given by:

C = W log2(1 + SINR) (1)

Here, W represents the channel bandwidth (in Hz), and SINR stands for Signal-to-
Interference-plus-Noise Ratio, which is the ratio of the average signal power to the noise
power in the channel. In the context of power line inspection in power grids, the SINR for
robot n is the ratio of its data transmission power to the Gaussian white noise power and
can be expressed as:

SINR =
gn pn

σ2 (2)

Here, gn denotes the channel gain for robot n, σ2 is the power of Gaussian white noise,
and pn is the transmission power of robot n, i.e., the transmit power of the robot device.
The channel gain gn is given by gn = D−rξn, where ξn represents the small-scale fading
of the channel, and D−r accounts for the path loss between the robot and the base station,
with r being the path loss exponent.

Using Equations (1) and (2), we can compute the data transmission rate as:

Rm
n (d) = B log2(1 +

gn pn

σ2 ) (3)

Here, B represents the bandwidth of the uplink channel between the robot and the
MEC server.

The size of the input data for tasks and the data transmission rate determine the
communication time. The uplink transmission rate Rm

n (d) of the robot can be used to
calculate the task transmission delay for the robot, which is expressed as:

Ttran
n (d) =

aoff
n

Rm
n (d)

(4)

Here, aoff
n denotes the amount of data offloaded to the MEC server for computation,

satisfying the following relation:
aoff

n + aloc
n = αn (5)

Based on the robot’s upload power pn, we can obtain the task transmission energy
consumption Etran

n (d) of the robot device:

Etran
n (d) =

gn pn

Rm
n (d)

(6)

3.2. Computing Model

The utility function represents the quantitative relationship between the utility ob-
tained and the combined resources consumed in the offloading system, reflecting robot
satisfaction in the offloading system. Currently, offloading decision schemes often use
delay cost and system utility as offloading indicators. Offloading decisions need to consider
task processing delays because offloading decisions must ensure execution when grid line
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inspection robots are within the communication range, ensuring that robots remain within
the specified coverage area throughout the offloading process. Additionally, reducing
device energy consumption is also an important issue, as excessive energy consumption
can lead to rapid depletion of robot battery power and reduced operational capabilities.
Therefore, formulating a reasonable offloading strategy requires a comprehensive consid-
eration of both delay and energy consumption factors. This paper will weight and sum
the delay and energy consumption factors to obtain the utility function for each smart grid
robot, and decision-making aims to minimize the value of the weighted sum to achieve a
balance between delay and energy consumption.

Tasks can be partially or fully computed locally or offloaded for computation, and the
costs of delay and energy consumption will differ depending on the computation mode.
The following analysis discusses these two computation modes.

(1) Local Computation

When power line inspection robots perform local computation, they need to bear
the delay of their own tasks and the energy consumption of robot equipment, which are
task processing costs, denoted by Tloc

n (d) and Eloc
n (d), respectively. Assuming that in this

communication scenario, the computational capability of each robot device is the same,
denoted by cloc, and the number of CPU cycles required for local task computation is βloc

n ,
then the delay and energy consumption incurred during local computation are given by:

Tloc
n (d) =

βloc
n

cloc
(7)

Eloc
n (d) = ϵnβloc

n (8)

Here, ϵn represents the energy consumption coefficient of the robot equipment during
local computation. Let aoff

n represent the number of CPU cycles required for data offloaded
to the central server for computation, satisfying:

βoff
n + βloc

n = βn (9)

Then, the total cost for power line inspection robot n to perform local computation is:

Cloc
n (d) = wt

nTloc
n (d) + we

nEloc
n (d) (10)

subject to:
wt

n, we
n ∈ [0, 1] (11)

wt
n + we

n = 1 (12)

Here, wt
n and we

n are weighting coefficients, corresponding to the weights of delay
and energy consumption in the total cost of task execution. Robots have different levels
of concern for delay and energy consumption, which can be dynamically adjusted by
changing the values of these two parameters. Additionally, it is necessary to satisfy the
constraints in Equations (11) and (12). In the scenario set in this paper, there are three
types of power line inspection robots, categorized based on their task priorities: high
delay-sensitive, medium delay-sensitive, and low delay-sensitive robots. The weighting
coefficients for delay and energy consumption differ for these three types of robots.

(2) Central Server Computation Offloading

When robots offload computation to the central server, they need to transfer task data
to the server, incurring transmission delay and transmission energy consumption, and the
computational delay of tasks is determined by the computational capability of the central
server. Assuming that each central server has the same computational capability, denoted
by coff, and central servers can simultaneously provide computing and storage services to
multiple robots, but the computational resources allocated to each robot offloading tasks
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are limited. All power line inspection robots compete fairly for server computing resources,
i.e., server computing resources are evenly distributed among each task offloaded to this
node. Then, for task n, the computing capability obtained from the central server is:

coff
n (d) =

coff

∑i∈N,dM
i =dM

n
1

(13)

Here, ∑i∈N,dM
i =dM

n
1 represents the total number of robots offloading to the same

central server. The CPU cycle required for task n is βn, and the delay incurred during
task offloading consists of two parts: transmission delay and processing delay. Task
transmission energy consumption is calculated using Equation (6). Thus, the delay and
device energy consumption incurred during task n offloading are:

Toff
n (d) = Ttran

n (d) + Tproc
n (d) =

aoff
n

Rm
n (d)

+
βoff

n
cm

n (d)
(14)

Eoff
n (d) = Etran

n (d) =
aoff

n pn

Rm
n (d)

(15)

Here, Ttran
n (d) and Tproc

n (d) represent the transmission delay and processing delay
incurred during task n offloading, respectively. In this offloading scenario, the total energy
consumption caused by power line inspection robot computation offloading includes both
transmission energy consumption and computation energy consumption, as distributed
offloading only considers the transmission energy consumption of smart grid robots.
Additionally, because the amount of data for calculation results is much smaller than the
input data for tasks, the energy required for robot equipment to receive task computation
results can be neglected. Given the offloading decision vector d for a certain moment, the
total cost, i.e., utility function, for task n, for MEC computation offloading, is expressed as:

Coff
n (d) = wt

nToff
n (d) + we

nEoff
n (d) (16)

In summary, the total cost of task processing for smart grid robot n is the sum of the
local computation cost and the MEC computation offloading cost, i.e.,:

Call
n (d) = Cloc

n (d) + Coff
n (d) (17)

This concludes the computational model section, detailing the local computation
and MEC computation offloading strategies for smart grid robots in the context of utility
function optimization considering delay and energy consumption factors.

4. Problem Formulation

Using game-theory-related theories and techniques, we can construct a complete
information, dynamic, non-cooperative game model to optimize the computational offload-
ing process in the smart grid multi-access edge computing (MEC) network architecture.
This game model is represented as G = {V, D, F, C(d)}, where players sequentially make
computational offloading decisions. Before making decisions, players are aware of other
players’ actions and can make optimal offloading decisions based on this information to
maximize their own benefits. Solving the Nash equilibrium of this game model optimizes
the computational offloading decisions in the smart grid MEC network architecture. In G,
V represents the finite set of players in the game, D represents the set of robot offloading
decisions, F represents the set of robot task allocation decisions, and C(d) represents each
player’s cost function, which in this game model denotes the computational offloading cost.
Each player will choose an optimal computational offloading decision dn ∈ D to minimize
their own cost function C(dn, fn, d−n, f−n), where d−n = (d1, d2, . . . , dn−1, dn+1, . . . , dN)
denotes the offloading decisions of other robots, and f−n = ( f1, f2, . . . , fn−1, fn+1, . . . , fN)
denotes the task allocation decisions of other robots. In this scenario, the cost function
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C(dn, fn, d−n, f−n) represents each player’s task processing delay and energy consumption
cost, mathematically expressed as:

min
dn∈D

Call
n (dn, fn, d−n, f−n), ∀n ∈ N (18)

where Cn(dn, fn, d−n, f−n) is the utility function of the inspection robot, representing the
total task processing delay and energy consumption cost for local computation and MEC
computational offloading in this scenario.

According to the Nash equilibrium theorem, if the strategy set of players in a dynamic
game is finite, then the number of action steps in this game is also finite. Additionally,
if this dynamic game is a complete information game, there must be a pure strategy
Nash equilibrium. Therefore, the established computational offloading game model has
a Nash equilibrium solution and can be obtained within a finite number of steps. Thus,
an appropriate algorithm can be designed to obtain the optimal computational offloading
strategy combination.

5. Proposed Algorithm

This section implements a game-theoretic distributed computational offloading strat-
egy improvement algorithm, which allows each participant to select the optimal computa-
tional offloading strategy based on the current environment and reach the Nash equilibrium
after a finite number of iterations. The algorithm consists of two phases: offloading envi-
ronment perception and offloading decision and task allocation decision update phases.

5.1. Offloading Environment Perception Phase

In this phase, power line inspection robots first calculate the distance to each MEC
node and select servers within the MEC coverage area for offloading. Then, the task
processing delay Tn(d) is calculated. Since local computation and computational offloading
occur simultaneously, the task processing delay is the minimum of the two, i.e.,

Tn(d) = min{Tloc
n (d), Toff

n (d)} (19)

Next, the data transmission rate for the current task offloading is calculated. The data
transmission rate for offloading to each MEC node within range is computed according
to Equation (3). Based on this, the delay and energy consumption for offloading tasks
to different MEC nodes are determined, which serves as the basis for robots to choose
offloading strategies and task allocation strategies.

5.2. Offloading Decision and Task Allocation Decision Update Phase

In this phase, as the game is sequential, all robots update their strategies in order,
with only one power line inspection robot able to update its offloading decision and task
allocation decision in each time slot. Based on the computed computational offloading costs
for all offloading strategies from the previous phase, robot n comprehensively considers
offloading and task allocation decisions, choosing the optimal combination of offloading
strategy and task allocation decision:

d∗n(t) = arg min
dn(t)∈D

Cn(dn(t), fn(t), d−n(t), f−n(t)) (20)

f ∗n (t) = arg min
fn(t)∈F

Cn(dn(t), fn(t), d−n(t), f−n(t)) (21)

d∗n(t) and f ∗n (t) are the optimal offloading strategy and task allocation strategy for
inspection robot n at time slot t. If d∗n(t) ̸= d∗n(t − 1) and f ∗n (t) ̸= f ∗n (t − 1), meaning
the obtained optimal strategy combination differs from the current offloading strategy
combination, robot n will update their strategy combination in the next time slot, while
other robots’ strategy combinations remain unchanged. Upon reaching Nash equilibrium,
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all robots’ utility functions are minimized, and the weighted sum of delay and energy
consumption is minimized. The computational offloading decision vector d and task
allocation decision vector f remain unchanged.

The pseudocode of this improved algorithm is shown in Algorithm 1.

Algorithm 1: Game-Theoretic Distributed Computational Offloading Strategy
Improvement Algorithm

Initialization: Game model G = {V, D, C(d)}, with all robots’ initial offloading
strategies dn = (n, 0) and task allocation strategies fn = (n, 0, 0), and the priority
of each task Pj.

Output: Optimal offloading strategy combination and optimal task allocation.
1: while d∗(t) ̸= d∗(t − 1) and f ∗(t) ̸= f ∗(t − 1) do
2: for each decision time slot t and each robot n do
3: Calculate the distance to each MEC node within range.
4: Compute the data upload rate Rm

n (d).
5: Calculate the transmission delay Tm

n (d) and exclude MEC nodes that are
out of range.

6: Compute the optimal computational offloading strategy d∗n(t) and the
optimal task allocation strategy f ∗n (t).

7: if d∗n(t) ̸= d∗n(t − 1) then
8: Update the robot’s offloading strategy d∗n(t + 1) = d∗n(t).
9: end if
10: if f ∗n (t) ̸= f ∗n (t − 1) then
11: Update the task allocation strategy f ∗n (t + 1) = f ∗n (t).
12: end if
13: end for
14: end while

6. Simulation Results and Discussions
6.1. Simulation Experiment Settings

This experiment is conducted in a simulation environment built with Python 3.11.2
The inspection area is a 5 km segment of power lines. Power line inspection robots are
initially distributed randomly along the segment. The robots move at a constant speed
along the power lines. Base stations are deployed at regular intervals along the power lines.
Table 2 shows the specific parameter settings.

Table 2. System parameters.

Parameter Value Description

M 5, 6, 7, . . . , 10 Number of base stations
N 10, 15, 20, . . . , 50 Number of inspection robots
V 1 or 2 m/s Robot speed
R 3000 m Base station coverage radius

wt
h 0.7 High-latency-sensitive

robot weight

wt
m 0.5 Medium-latency-sensitive

robot weight

wt
l 0.3 Low-latency-sensitive

robot weight
αn [5, 30] MB Task data size
βn [500, 3000] Megacycles CPU cycles required by task
B 5 MHz Channel bandwidth
σ2 −125 dBm Gaussian white noise power
pn 100 mW robot device transmission power

co f f 10 GHz MEC server
computational capacity

cloc 10 GHz Local computational capacity
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To compare the effectiveness of the game-theoretic distributed computational offload-
ing strategy improvement algorithm with other schemes, this paper conducts comparative
experiments. Specifically, the effectiveness of the proposed algorithm is compared with
other schemes, and their performances are evaluated.

(1) Fully Local Computing

In this offloading scheme, power line inspection robots process their computational
tasks on their local devices without offloading tasks. The computation cost includes the
local computation delay and the energy consumption for CPU task execution.

(2) Binary Offloading Computation

In this offloading scheme, power line inspection robots can choose only between
local computation and computational offloading. Computational tasks are either fully
processed locally or fully offloaded, with no task allocation decisions made. The com-
putation cost for robots involves two computation modes: local computation or MEC
computational offloading.

6.2. Simulation Results

(1) Task Allocation Strategy

Figure 2 illustrates the average task offloading ratio of power line inspection robots
under different robot population scenarios using the improved algorithm. This ratio
represents the proportion of task data offloaded compared to the total task data. The
scenarios of full local computation and binary offloading are not discussed here since they
only consider a single offloading mode, while the improved algorithm considers partial
offloading. The figure shows that the average offloading ratio remains constant initially
but then decreases as the number of robots increases. When the number of inspection
robots is less than 20, the offloading ratio is 100%, meaning every robot opts to offload
all computational tasks. This is due to the ample computational resources available,
allowing each robot to fully offload its tasks. However, when the number of inspection
robots exceeds 20, the offloading ratio gradually decreases. This is primarily because
computational resources become limited, base stations get busier, and robots start to
increase the proportion of local computation.

Figure 2. The proportion of tasks unloaded by robots on average under different numbers of robots.

(2) Task Computation Total Cost

Figure 3a presents the performance comparison of the all-local computation, binary
offloading, and improved algorithm offloading schemes under different numbers of inspec-
tion robots. The figure shows that the improved algorithm has the lowest task computation
cost, reducing it by 57.93% and 27.24% compared to the all-local computation and binary
offloading schemes, respectively. This reduction is due to the improved algorithm’s con-
sideration of partial offloading, unlike the all-local and binary offloading schemes that
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only consider a single offloading mode. The all-local computation scheme only uses local
offloading, while the binary offloading scheme chooses between local computation and
offloading, both of which fail to balance computational efficiency and energy efficiency.
As the number of inspection robots increases, the total computation cost also increases.
When the number of robots is small (less than 35), the total computation costs of the binary
offloading and improved algorithm schemes are similar. This similarity is because the
computational resources provided by the base stations are sufficient for both schemes.
However, when the number of robots is large (greater than 35), the difference in total
computation cost between the binary offloading and improved algorithm schemes becomes
significant. The improved algorithm exhibits a lower rate of cost increase, demonstrating
better performance. This is because the base stations become busier and computational
resources more scarce, giving the partial offloading approach of the improved algorithm a
greater advantage.

(a) (b) (c)

Figure 3. Comparison of the total computation cost of the system under different numbers of robots
(a); different amounts of task data for robots (b); different numbers of base stations (c).

Figure 3b compares the total computational cost of different offloading schemes under
varying task data sizes for all-local computation, binary offloading, and the improved
algorithm. The task data size ranges from 6 MB to 30 MB. As shown in the figure, the total
computational cost increases with the task data size. The all-local computation scheme
incurs the highest total cost, while the improved algorithm incurs the lowest. Specifically,
the total cost of the improved algorithm is 51.11% lower than the all-local computation
scheme and 26.78% lower than the binary offloading scheme. Notably, the cost curves for
all three schemes exhibit linear growth due to the linear relationship between task data size
and both delay and energy consumption, thus their weighted sum also increases linearly.

Figure 3c shows the comparison of total task computation cost for all-local compu-
tation, binary offloading, and the improved algorithm under different numbers of base
stations. The number of base stations is increased from 5 to 10, and the total task computa-
tion cost is analyzed. Results indicate that the total cost for all-local computation remains
relatively constant, whereas the costs for binary offloading and the improved algorithm
decrease as the number of base stations increases. This is because the additional base
stations provide more computational resources, serving more inspection robots. With a con-
stant number of robots, more base stations mean more allocated computational resources
per robot, resulting in lower total computation costs. Additionally, when the number of
base stations is less than 7, the improved algorithm has a lower total computation cost
compared to binary offloading, due to its consideration of task allocation, which enhances
cost reduction performance. Compared to all-local computation and binary offloading, the
improved algorithm reduces total computation cost by 54.59% and 13.52%, respectively.

(3) Task Average Processing Delay

Figure 4a shows the task average processing delay under different task data sizes for
the three computation offloading schemes: all-local computation, binary offloading, and the
improved algorithm. The results indicate that the improved algorithm has the shortest task
processing delay. However, the task processing delay for all-local computation is similar
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to that of binary offloading, with binary offloading having the highest delay. In both the
binary offloading and improved algorithm schemes, tasks can be offloaded to base stations
for processing, with the delay comprising both computation and transmission components.
In contrast, local computation only involves computation delay. In this scenario, the CPU
resources are fully utilized for local tasks, while base stations must serve multiple robots,
leading to resource competition. As the number of offloading robots increases, processing
efficiency decreases. With increasing task data size, transmission delay also increases,
and this increase rate surpasses that of computation delay. Therefore, although MEC
servers have higher computational capacity than local devices, the average processing
delay for all-local computation is lower than for binary offloading. The improved algorithm
significantly reduces processing delay by adopting task allocation, where local computation
and computation offloading occur simultaneously, resulting in the processing delay being
the maximum of the two delays.

(a) (b)
Figure 4. Comparison of the average processing delay of the system under different amounts of task
data for robots (a); different numbers of base stations (b).

Figure 4b compares the average task processing delay for the three computation
offloading schemes under different numbers of base stations. When the number of base
stations is less than 7, the average processing delay for both binary offloading and the
improved algorithm decreases with the increase in base stations. When the number of
base stations exceeds 7, the average processing delay stabilizes. In the simulation setup
with 10 inspection robots, the MEC servers are sufficient to meet low-delay offloading
demands when the number of base stations ranges from 6 to 10, maintaining the lowest
delay. Overall, the average delay for binary offloading is higher than for both all-local
computation and the improved algorithm, indicating that transmission time cost is higher
than computation cost. The improved algorithm reduces the average task delay by 52.15%
and 38.56% compared to all-local computation and binary offloading, respectively.

(4) Task Average Processing Energy Consumption

Figure 5a shows the task average processing energy consumption for different task
data sizes across the three computation offloading schemes: all-local computation, binary
offloading, and the improved algorithm. The energy consumption cost for local compu-
tation is significantly higher than for computation offloading. When tasks are executed
entirely on the robot’s equipment, the energy consumption cost is determined by the data
size and energy consumption coefficient. When tasks are offloaded to base station servers,
the only energy consumption is during the transmission process, with negligible energy
consumption while waiting for the base station to return the results. Numerically, the
improved algorithm reduces the task average processing energy consumption by 75.63%
and 15.18% compared to all-local computation and binary offloading, respectively. The
improved algorithm optimizes the offloading strategy, saving energy consumption.



Information 2024, 15, 441 13 of 14

(a) (b)
Figure 5. Comparison of the average processing energy consumption under different amounts of
task data for robots (a); different numbers of base stations (b).

Figure 5b compares the task average processing energy consumption of the three com-
putation offloading schemes—all-local computation, binary offloading, and the improved
algorithm—under different numbers of base stations. Since the energy consumed while
waiting for the base station to return the results is negligible, the task average processing
energy consumption decreases with an increasing number of base stations in both binary
offloading and the improved algorithm, as the average distance between inspection robots
and base stations decreases. In contrast, the energy consumption for local computation
remains constant as it only depends on the task data size. Specifically, compared to all-local
computation and binary offloading, the improved algorithm reduces the task average
processing energy consumption by 81.70% and 31.81%, respectively.

7. Discussion

The primary contribution of this paper lies in proposing an improved distributed com-
putation offloading strategy based on game theory for power line inspection robots. This
strategy enhances performance through task allocation and task prioritization, integrating
local computing resources with edge computing resources. This integration effectively
reduces latency and improves resource utilization, ultimately achieving Nash equilibrium
and obtaining optimal offloading and task allocation strategies. The proposed algorithm
demonstrates strong performance in edge computing scenarios for power grid inspection,
providing significant theoretical reference and practical guidance for research on offloading
strategies in such contexts. However, the algorithm presented in this paper still has some
limitations and requires further exploration and improvement to meet the demands of
more diverse scenarios.

We foresee several exciting directions for future research. First, exploring advanced
optimization techniques such as deep reinforcement learning could further enhance task
offloading efficiency and resource allocation in smart grids. Second, integrating more
sophisticated AI algorithms can improve real-time decision-making capabilities, enabling
more responsive and adaptive power grid management. Third, investigating the scalability
of our proposed methods in larger and more complex smart grid environments will be
crucial for practical implementation. These future directions will help to build upon the
foundations laid by our current work and drive further advancements in the field of smart
grid technology.
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