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Abstract: This study builds on our previous systematic literature review (SLR) that assessed the appli-
cations and performance of zk-SNARK, zk-STARK, and Bulletproof non-interactive zero-knowledge
proof (NIZKP) protocols. To address the identified research gaps, we designed and implemented a
benchmark comparing these three protocols using a dynamic minimized multiplicative complexity
(MiMC) hash application. We evaluated performance across four general-purpose programming
libraries and two programming languages. Our results show that zk-SNARK produced the smallest
proofs, while zk-STARK generated the largest. In terms of proof generation and verification times,
zk-STARK was the fastest, and Bulletproof was the slowest. Interestingly, zk-SNARK proofs verified
marginally faster than zk-STARK, contrary to other findings. These insights enhance our understand-
ing of the functionality, security, and performance of NIZKP protocols, providing valuable guidance
for selecting the most suitable protocol for specific applications.

Keywords: non-interactive zero-knowledge proof; zk-SNARK; zk-STARK; Bulletproof; privacy-
preserving; authentication performance

1. Introduction

In everyday life, individuals often need to prove statements to others. The sim-
plest method is by plainly stating, explaining, or showing evidence that can be verified.
For instance, when purchasing age-restricted goods, a customer might show an iden-
tity document to prove their age to a cashier. However, this process can expose more
information than necessary, such as the customer’s exact birth date and other personal
details. In digital environments, the risk is even higher as servers can store copies of
sensitive information. Zero-knowledge proofs (ZKPs), first introduced in a work by Gold-
wasser et al. [1], are a recent technology that could solve these problems. ZKPs allow a
prover to prove a given statement, the proof of which a verifier can subsequently verify
without being able to obtain any knowledge apart from the facts induced by the cor-
rectness of the statement itself. However, traditional ZKPs are interactive, meaning that
they require multiple interactions between the prover and verifier before the verifier can
trust or reject the statement. Additionally, other parties cannot verify the same proof
afterward since this would require additional interactions. This limits the practicality of
standard ZKPs. To this end, Blum et al. proposed non-interactive zero-knowledge proofs
(NIZKPs) [2]. NIZKPs enable a verifier to verify a claim in a single interaction while
also allowing other verifiers to verify the truth of the proven statement at another point
in time.

Notably, ZKPs, especially the non-interactive variants, have gained prominence in
cryptocurrencies like Zcash [3] and Ethereum [4]. In these contexts, they facilitate trans-
action verification without disclosing sensitive transaction details, thereby preserving
privacy. Although cryptocurrencies have been the main source of interest in ZKPs due
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to their surge in popularity next to other blockchain technologies, the utility of ZKPs
extends far beyond this domain. In our previous systematic literature review (SLR) [5],
a summary of which we detail later, we collected applications of the three main NIZKP
protocols relating to privacy-preserving authentication. Notably, we investigated appli-
cations and the performance of the zk-SNARK (zero-knowledge succinct non-interactive
argument of knowledge) [6,7], zk-STARK (zero-knowledge succinct transparent argument
of knowledge) [8], and Bulletproof [9] protocols. In the SLR, we examined a total of
41 works that applied NIZKP protocols in a diverse set of applications. However, we
found high variability in protocol performance metrics between the several applications,
which we believed to be attributable in large part to the difference in applications and
benchmarking procedures. This result indicated that a research gap exists for a compari-
son of the three main NIZKP protocols benchmarked in an equal, real-world applicable,
use case.

Our aim in this work is to satisfy the observed research gap by performing a benchmark
of the three main NIZKP protocols implemented in an equal, real-world privacy-preserving
related, application. The relevance of this lies mostly with researchers and application
designers obtaining a meaningful overview of the main NIZKP protocols, the situations in
which they excel, and their implied performance characteristics. Insights from this work
can furthermore guide researchers to the main aspects of concern when applying NIZKP
protocols to real-world applications. This, in turn, can incite research into mathemati-
cal improvements and newly designed NIZKP protocols that reduce the deficiencies of
existing protocols.

To define our aims and objectives for this research, we first outline the key research
questions that we intend to address as a result of this research work. These questions
serve to guide the main direction of this research investigating the differences between the
zk-SNARK, zk-STARK, and Bulletproof protocols:

1. What are the performance differences between the three included NIZKP protocols,
as observed from a real-world implementation of each protocol in an application that
is as equal as possible, expressed in efficiency and security level?

2. What use case contexts are the most beneficial for each NIZKP protocol, given the
unique combination of its features and performance metrics?

In our previous SLR [5], the applications described in the included research works
were each implemented with a single protocol. This meant that the research works were
hard to compare on common grounds because of the dissimilar applications, benchmark
procedures, and results. Therefore, the objective of this research is to implement a single
application for the three protocols in a manner that is as similar as possible, with the direct
purpose of making comparisons between the three protocols more straightforward. As a
result, the comparison outcomes should be more informative. This objective is deeply
embedded in the previously stated research questions, meaning that these questions will
guide us toward a deep exploration of the three NIZKP protocols in a manner that aims to
expose and clarify their associated differences.

We now reflect on the objectives we set for our overall research, specifying those we
were unable to fully meet as outlined in the SLR. These objectives included filling the
research gap by comparing the three most used NIZKP protocols and providing recom-
mendations on the settings in which each protocol is most advantageous. The goals we
aim to achieve in this research are as follows:

1. To implement and evaluate the protocols in a practical setting, using a common
benchmark for a real-world use case.

2. To compare the efficiency and security of these three protocols, including their trade-
offs between efficiency and security.

3. To provide recommendations for the use of these protocols in different applications,
based on their strengths and weaknesses.
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While we made advances on these objectives in our previous SLR, we intend to further
progress in the development of understanding related to these aims. Therefore, this specific
research work aims to more comprehensively achieve the stated objectives to determine
conclusive answers to the research questions from the previous section. To conclude, our
aims and objectives for this research are to further detail the performance characteristics
of the three most prevalent NIZKP protocols. We aim to do so by more comprehensively
comparing those protocols in a benchmark, where we implemented each protocol in an
application that is as equal as possible between the three implementations. We can then
thoroughly answer which aspects of each NIZKP protocol should be considered when
choosing a protocol to be applied in a particular environment.

The scope of our research is twofold. First, we briefly describe the mathematical and
cryptographic primitives underlying each of the three main NIZKP protocols, the intention
of which is to provide a concise understanding of the fundamental techniques that differ-
entiate them. We do not, however, aim to accomplish a comprehensive mathematical and
cryptographic manual that can be used as the basis for implementing the protocol itself
in code or to create a new protocol from scratch. Furthermore, we describe the security
model of each protocol, next to some vulnerabilities that have surfaced in at least some
of the NIZKPs included in this work. The intention is, again, not to be comprehensive;
instead, the information should serve as a general overview of security aspects and security
vulnerabilities to consider when choosing a NIZKP protocol. Second, this work designs
and performs a benchmark comparing the three NIZKP protocols zk-SNARK, zk-STARK,
and Bulletproofs on their performance and security level. In the benchmark, each protocol
is implemented in a privacy-preserving, authentication-related application using general-
purpose programming libraries designed for each protocol. There are several limitations
to this part of our scope. First, we intend to implement each protocol in an application to
enable straightforwardly comparing their performance. For this, the application should be
as equal as possible. The application, however, does not need to consider and implement
every aspect that a production-ready real-world application would, as long as the bench-
mark results are representative. Secondly, we implement each protocol within a single
application. We do not create multiple application benchmarks, nor will we implement
the benchmark application across an exhaustive selection of programming languages and
NIZKP protocol libraries. Provided that our benchmark implements the application using
at least each of the NIZKP protocols, we have achieved this scope. Finally, while we aspire
to benchmark the security level of each protocol, we will not allocate time for an in-depth
attempt to breach the security of each protocol. We leave this to other researchers, as it
is more meaningful to perform such tests in the context of an actual production-ready
application rather than in our representative benchmark application.

As mentioned before, the relevance of this work lies mostly in providing other re-
searchers and application designers with a meaningful overview of the three most prevalent
NIZKP protocols and the situations in which they excel. The description of their mathemat-
ical and cryptographic primitives, as well as their security aspects and trade-offs, should
provide researchers with a concise reference for understanding each protocol. Next, the
benchmark results should provide researchers and application designers with a novel com-
parison of the three NIZKP protocols in an equal setting. This, in turn, should help them
make informed decisions about which protocols to apply in which real-world applications,
given the performance characteristics we detailed. While our previous SLR was a first step
in achieving this, this research takes it a step further, helping researchers and application
designers to choose the best-fitting NIZKP protocol for their requirements.

Therefore, we believe that our work benefits multiple entities. First, it serves as
additional work for researchers just entering the field of NIZKPs next to our previous
SLR [5]. Second, it should help individuals and organizations interested in applying NIZKP
protocols to real-world applications by providing them with insights into each protocol’s
performance and suitability in privacy-preserving related applications. Ultimately, we
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believe that our work will benefit academia, industry, and society as a whole by advancing
the understanding and application of NIZKP protocols.

We organized this work as follows. First, we summarize our previous SLR, detail-
ing its findings and the rationale for this follow-up research. Second, we describe our
methodology for performing a benchmark comparison of NIZKP protocols, including the
design and approach used for analyzing our results. Third, we provide a brief overview
of the mathematical and cryptographic primitives for each of the three NIZKP protocols.
Fourth, we detail the setup used for the benchmark, including the software, hardware,
and specifics of our implementation. Fifth, we present the results from our benchmark
and analyze them. Sixth, we discuss our results by answering our research questions and
detailing the strengths and limitations of this research. Finally, we conclude this research
with the main findings and recommendations, as well as a description of potential future
research directions.

2. Related Work

In our previous SLR, we analyzed a broad spectrum of research works that described
diverse use cases related to authentication. All included works were related because of our
requirement that the use case applied at least one of the three NIZKP protocols, zk-SNARK,
zk-STARK, or Bulletproofs, for privacy-preserving use within the application context.
Ultimately, we examined 41 research works that surfaced from our collection and filtering
criteria, discussing their implementation of the NIZKP protocol, and comparing these
implementations on their use case. Furthermore, we discussed the performance and security
of the NIZKP in the application when a work included benchmarked figures for these.
For anyone interested in a more detailed description of our SLR intentions, collection and
filtering process, results, and discussion, amongst other things, we recommend consulting
the full research document [5]. We limit the remainder of this section to highlight the key
findings from the SLR.

To start, 31 of the 41 works included in our SLR employed the zk-SNARK protocol in
their described application, whereas the other 10 works utilized the Bulletproof protocol.
This indeed means that our work did not end up including any works that based their
application on the zk-STARK protocol. While this prevented us from drawing definitive
conclusions on the proportionate use of the zk-STARK protocol compared to the other pro-
tocol, we did remark that this finding signifies the zk-STARK protocol was not commonly
deployed in privacy-preserving authentication-related applications. More specifically, ap-
plications adhering to the search and filtering criteria from the SLR do not seem to utilize
the zk-STARK protocol. We exert confidence in the notion that the reason for this will be
more evident by the end of this work.

We also want to recite the observation that all but two works did not mention the
quantum resistance of their implementation. We find this interesting especially since
none of the 41 included works applied the only quantum-resistant protocol, zk-STARK.
This clearly emphasizes a lack of consideration regarding this security aspect, despite
quantum computing and quantum-resistant cryptographic protocols having been ongoing
important topics for the past few years [10].

Of the 41 works included in the SLR, 30 works included some form of performance
analysis of the implementation. Among those, 22 employed the zk-SNARK protocol, with
the remaining 8 works utilizing Bulletproofs. In the SLR, we discussed the performance
results in several categories, although here we will only review the overall performance
differences between all works. We observed highly varying measures in multiple categories
of performance metrics, including proof size, proof generation time, and proof verification
times. These variations were significant, with several orders of magnitude performance
differences between the same protocol applied in different works. Considering this extreme
variance in observed metrics, we concluded that it was impossible to draw any definitive
conclusions from comparing the performance between applications. The research works
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would have to specifically perform their benchmarks in a related way to another research
work for us to draw any revealing conclusions from the comparison.

We had to draw a similar conclusion to that of the performance comparison for the
security comparison, which proved to be even more complex to perform and accomplish
a reasonable comparison. The main reason for this difficulty involved the diverse ways
researchers used to describe the security of each implementation. Some works described the
security by proving mathematical theorems in either natural language or as mathematical
statements, whereas others described the security requirements of their application and
mentioned either how they were achieved or how attacks were mitigated through imple-
mented security measures, just to name a few of the encountered possibilities. Altogether,
our SLR had a particularly challenging time inferring any reliable security comparison
outcomes from the 31 works that included some form of security analysis.

2.1. Research Gaps

To remediate the current impossibilities of comparing different applications and their
applied protocols on their performance and security, as described in Section 2, we suggested
future research into a benchmarking standard. More concretely, we stated that the following
actionable question arose from our SLR: “How can future security analyses of non-interactive
zero-knowledge proof application implementations be standardized to facilitate better comparison?”
If every research work utilizing NIZKP protocols would follow such a standard, this would
facilitate a more uniform benchmarking procedure that enables an equitable and in-depth
performance comparison between works. Yet, as our SLR found multiple research gaps
stemming from limitations in current research works, this is not the research direction that
we took for this work.

The research gap that we intend to address in this work involves the lack of availability,
to the best of our knowledge, of a comprehensive applied performance comparison on
the three main NIZKP protocols. Such benchmarks should utilize each of the zk-SNARK,
zk-STARK, and Bulletproof protocols in an identical application to allow anyone to extract
meaningful metrics from the benchmark. In the next section, we explain how we will
approach addressing this research gap.

2.2. Addressing Research Gaps

This work intends to perform the benchmark described in Section 2.1 to fill the pre-
viously stated research gap. This means that we will describe, in detail, the design and
implementation of a benchmark application that we implemented as equally as possible
for each of the three NIZKP protocols. To achieve such implementation, we select at least
one programming library for each of the zk-SNARK, zk-STARK, and Bulletproof protocols,
and use these libraries to implement an identical application design. We can then conduct
the benchmarking procedure, which we meticulously define in this document and, thereby,
obtain metrics on the performance of each protocol implementation. We then use the data
to compare the protocols based on their performance facets. This analysis helps us to draw
conclusions and provide recommendations on which situations warrant the usage of each
protocol, given their features, performance, and security characteristics.

The design of our benchmark will inherently incur some limitations on the results that
we obtain, in turn, limiting the indications we can provide from a comparison using these
metrics. We, however, express our conviction that the benchmark results will be beneficial
for improving scientific knowledge of the NIZKP protocols regardless of the limitations
and that the comparison will furthermore help many researchers obtain knowledge of the
performance and security aspects embedded in each protocol.

Overall, we considered the stated knowledge gap to be important to fill given the rise
in popularity of NIZKPs, which we previously observed in our SLR from the increasing
number of published research works by year utilizing NIZKP protocols (see Figure 5 in
our SLR [5]). Being well-informed on the performance and security characteristics of each
protocol is an important first aspect in selecting the right protocol for a given application.
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A comparison between the three main NIZKP protocols implemented in an identical
application, as proposed by this work, could strengthen the current corpus of scientific
knowledge on this topic.

3. Methodology

In this section, we detail the methodology that we applied to obtain an answer to
the research questions. We define an approach in which we describe how we aimed to
achieve the defined objective in Section 3.1. Then, in Section 3.2, we describe in a detailed
manner the design of our benchmark, as well as the application on which we benchmark
the three NIZKP protocols. Finally, we outline the results that we intend to obtain from the
benchmark and the analyses that we will conduct on the acquired data in Section 3.3 and
provide a schematic overview of our work in Section 3.4.

3.1. Approach

As we previously stated, the main approach of this research was to design a benchmark
that implements the same application, or one as close as possible, for each of the NIZKP
protocols. For this, we used general-purpose programming libraries that implemented the
three types of NIZKPs of interest: zk-SNARK, zk-STARK, and Bulletproofs. This gave us the
ability to directly compare the metrics collected from the benchmark between the protocols,
or at minimum, the metrics available for all three. The benchmark should preferably
use a full-featured, stable programming library to implement the NIZKP application, as
this provided us with the most options, stable performance, and a hopefully somewhat
optimized codebase. Additionally, we prefer to use the same programming language for
all three protocol libraries, as this eliminates the variable of differing performance and
options associated with various programming languages. We also express a preference
for low-level compiled languages over higher-level interpreted languages to minimize
runtime overhead and reduce performance variability. We required the NIZKP libraries
to be intended for general-purpose use, meaning that they were usable for all kinds of
proofs in various application settings. While it would have technically been possible to
implement a custom NIZKP protocol implementation for one specific application, enabling
optimizations for that specific application, we wanted our benchmark to be representative
of all kinds of different applications. Furthermore, while we only implemented a single
application in our benchmark, by using general-purpose NIZKP libraries for each protocol,
the performance differences between the protocols can be generalized for many other
applications. We implemented the benchmark in code using the same programming
language that the NIZKP libraries were written in, which enabled us to perform benchmarks
directly on individual parts of the code. This was a requirement for us because we needed to
benchmark the separate phases of the protocol, namely the setup, proving, and verification
phases. Implementing the benchmark in this manner furthermore allowed us to access
the size and security level metrics provided by the programming languages and NIZKP
libraries. Both metrics would have been harder to benchmark accurately when running a
benchmark using just compiled binaries as input.

3.2. Design

As outlined in our approach, our goal was to design an application, preferably related
to privacy-preserving authentication, which could be equally implemented across three
NIZKP protocols. This allowed us to benchmark their performance differences effectively.
Initially inspired by Cloudflare’s concept of using hardware security keys (HSKs) for the
attestation of personhood [11], further elaborated by Whalen et al. [12], our design aimed to
replace CAPTCHAs with HSK-based signature validation. This concept evolved into ZKAt-
test by Faz-Hernández et al. [13], using sigma-protocol ZKPs to attest to personhood while
preserving HSK certificate privacy. Due to implementation constraints and time limitations,
we simplified our benchmark application to a hash function across all protocols, reflect-
ing foundational performance insights despite not directly targeting privacy-preserving
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authentication scenarios. This approach allowed scalable benchmarking, offering crucial
insights into protocol performance across varying computational loads.

3.3. Results Analysis

Now that we have defined our approach for the benchmark, we conclude the method-
ology by outlining the metrics we aimed to collect and the analyses we intended to conduct
on those metrics.

Regarding the metrics, it is important to note that they varied between the protocols.
For instance, the zk-SNARK protocol necessitates a trusted setup, unlike zk-STARK and
Bulletproofs. Therefore, for zk-STARK, we focused on the size of the CRS, a metric not
applicable to the other protocols. Common metrics across all three protocols included proof
size, proof generation time, proof verification time, and the theoretical security levels of
the proofs, although achieving uniform data across all protocols proved challenging, as
clarified in Section 5.3.

Additionally, certain metrics were contingent on how each library implemented the
ZKP protocol, such as additional compilation requirements or the inclusion of commitments
in the proof. Our aim was to provide comprehensive metrics relevant to each protocol,
enabling a robust comparison of data transfer, storage size, and computation times.

In terms of analysis, we evaluated several key aspects across the protocols:

• Setup requirements and time: What are the trusted setup requirements for each
protocol? How long does setup take, and what is the data size involved?

• Proof generation: How long does it take to generate a proof? What is the resulting
data size necessary for proof verification?

• Verification: What is the verification time for the proofs?
• Security aspects: How do the security levels differ between protocols? How does

altering security levels impact other metrics?

Furthermore, we provided qualitative insights into aspects of the protocols and their
library implementations that transcend exact metrics. Specifically, we discussed practical con-
siderations where certain implementations may excel or falter based on situational demands.

3.4. Overview

To conclude this section, we provide a schematic overview of the entire process for
our research work, including the previously performed SLR, in Figure 1.

SLR

Analysis

Identified 
problem

Topic

Research 
questions

Methodology

Observed 
research gap

Proposed 
solution

Solution 
implementation

Benchmark Results

Discussion Conclusion

Context

Figure 1. Schematic overview of the research work.
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4. Protocol Comparison

To start this section, we emphasize the inclusion of this comparison to understand the
origins of performance and security differences among the various protocols. The mathe-
matical and cryptographic primitives underlying a NIZKP protocol not only enable the
functionality of proving statements succinctly and with privacy but also define their core
features, strengths, and limitations. These foundational elements significantly influence
the performance and security characteristics of each protocol. Therefore, comprehend-
ing these underlying differences is crucial for gaining a comprehensive understanding of
this study, including the benchmarks performed and the subsequent conclusions drawn.
In addition to the performance primitives, this section also briefly touches upon the se-
curity models and assumptions inherent to each protocol. Understanding these models
and assumptions is essential for anyone integrating NIZKPs into their applications. De-
viations from these models can compromise the expected security levels, posing risks in
critical scenarios such as medical data protection or financial transaction integrity. Hence,
familiarity with these aspects is vital for informed protocol selection and implementa-
tion. Furthermore, we underscore the importance of understanding the historical im-
plementation pitfalls of NIZKP protocols. By outlining past vulnerabilities—describing
their nature, affected protocols, and remedial measures—we aim to prevent recurrent
errors and enhance overall implementation security. This highlights the necessity for
implementers to possess a foundational understanding of the mathematical and crypto-
graphic underpinnings of NIZKPs. Such knowledge mitigates the risks associated with
flawed implementations and contributes to the robustness of applications leveraging zero-
knowledge proofs. Given these considerations, we argue that a grasp of NIZKP protocol
primitives is advantageous, especially for readers less versed in the field. To aid com-
prehension, this section includes a concise overview of these primitives, facilitating a
clearer understanding of subsequent discussions and analyses. We summarize the defining
characteristics of the zk-SNARK, zk-STARK, and Bulletproof protocols. Table 1 shows
this comparison. Additionally, we briefly describe how we obtained the values listed in
that table.

Table 1. Comparison of zk-SNARK, zk-STARK, and Bulletproof protocols.

zk-SNARK [6,7] zk-STARK [8] Bulletproofs [9]

Proof size Constant Polylogarithmic Logarithmic

Proof generation Linear Quasilinear Linear

Proof verification Linear Polylogarithmic Linear

Trusted setup Yes No No

Quantum secure No Assumed No

Assumptions (EC)DLP, (B)DHP Cryptographic hashes (EC)DLP

First, for zk-SNARK, the values for “Proof size”, “Proof generation”, and “Proof verifi-
cation” were obtained from the introduction section of the Pinocchio paper by Parno et al. [6]
and the Groth16 SNARK paper by Groth et al. [7]. They emphasize that the proof size is
constant and the generation and verification times are linear, relative to the computation
size. Second, for zk-STARK, Ben-Sasson et al. [8] provided details on the complexities
of “Proof generation” and “Proof verification” in their paper. The proof size complex-
ity, stated to be polylogarithmic, was confirmed through references and documentation
from StarkWare [14]. Third, for Bulletproofs, the proof size complexity was obtained from
Bünz et al. [9], where it is stated to be logarithmic in the number of multiplication gates.
The linear complexities for proof generation and verification were confirmed through their
detailed explanations in the Bulletproof paper. The values for “Trusted setup”, “Quantum
secure”, and “Assumptions” were collected based on the comprehensive overview of the
mathematical foundation and security assumptions of the three protocols. It is important
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to note that the complexities of proof size, generation, and verification may vary slightly
due to the specific implementations and details of each protocol. For precise details, we
recommend consulting the cited works directly.

5. Proposed Solution

In this section, we describe the proposed solution according to the methodology as
described in Section 3. First, in Section 5.1, we restate our implementation for the proposed
solution and link this to the research gap observed in our SLR. In Section 5.2, we then
describe in detail the software and hardware that were used to perform the benchmark,
while in Section 5.3 we comprehensively describe the implementation of the benchmark
design as outlined in Section 3.2. After that, we detail the benchmark procedure that
we followed to obtain the actual results from our implementation in Section 5.4. Finally,
we justify our proposed solution where we briefly state how our proposed solution will
address our research questions in this work in Section 5.5 and present a schematic overview
of our proposed solution in Section 5.6.

5.1. Solution

In Section 2.1, we previously stated which of the research gaps observed in our pre-
vious SLR we intend to address in this work. To summarize in a single sentence, we
intend to address the lack of a comprehensive applied performance comparison on the
three main NIZKP protocols in existing research works. We described our methodol-
ogy and how we intend to resolve our chosen research gap, in Section 3. Specifically,
in Section 3.2, we implement a hash function application using each of the three proto-
cols. Using these equivalent application implementations utilizing several NIZKP proto-
cols, we can benchmark the performance and subsequently compare the resulting met-
rics between the protocols. To link our implementation back to the observed research
gap, by implementing each of the three protocols of interest we provide the compar-
ison between the zk-SNARK, zk-STARK, and Bulletproof protocols that are absent in
the current literature. We additionally go one step further by implementing these pro-
tocols in an equivalent application, which means that we remove the difficulty of com-
paring the performance between different protocol use cases, which was a significant
limitation to the protocol comparison in our SLR. By benchmarking each protocol uti-
lized in an identical application, we provide the closest possible comparison between the
NIZKP protocols.

5.2. Software and Hardware

This section describes our use of software and hardware in implementing and per-
forming the benchmark. Knowing the exact version of each piece of software that we
used is important, because different software, and even different software versions of the
same software, can induce vastly different implementations which exhibit vastly different
performance characteristics. By providing the exact version of each used piece of software,
we strive to make our benchmark repeatable by other researchers. Likewise, knowing
the hardware used in a benchmark is important because using different hardware can
manifest in vastly differing benchmark results. While we would expect different hard-
ware to produce metrics that are proportionate to the speed of the hardware, where the
metrics for each protocol change according to the performance of the hardware, this is
undoubtedly not guaranteed. Such expectations may particularly not hold when using
different processor designs, including different implemented instruction sets (e.g., AVX,
AVX2) or an entirely different processor architecture (e.g., ARM instead of x86–64). For this
reason, we list the hardware that we used to perform the benchmark, intending to make the
benchmark repeatable for other researchers. Alternatively, the list of hardware allows other
researchers to explain observed performance differences in the reproduced benchmarks
when they use different hardware.
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5.2.1. Software

For the software, the most important components in the benchmark are, of course, the
ZKP libraries used to implement the three protocols. For this reason, these libraries were
the first software that we decided on.

Initially, we started looking at ZKP libraries implemented in the Go language since
this was the language with which we were most familiar. It also satisfied our requirement
of being a compiled and performant language. However, we found that only a full-featured
zk-SNARK library named gnark [15] was available in Go. Because of the requirements
we set in Section 3.1, we should preferably choose a library for each protocol in the same
programming language, this would not work. However, we noticed that the gnark package
was well documented and had implemented more primitive building blocks than other
libraries we found for the three protocols. For this reason, we found this package interesting
to use for initial proof of concept implementations for ideas we thought of. Additionally,
we expected that it would be useful to implement our benchmark application in the gnark
package as well, next to the zk-SNARK implementation in the language of the other two
protocol libraries. This SNARK implementation in Go could then indicate, when compared
to the other SNARK implementation, what potential performance differences a library
implementation in a different programming language can make.

This led us to perform a more general cursory search for ZKP libraries, through which
we found that Rust had a well-implemented Bulletproof library [16]. We also found and
examined several JavaScript libraries, but these did not fulfill our requirement of being
written in a compiled and high-performance language. For example, the Bulletproof-
js library [17] includes a benchmark comparison to other Bulletproof libraries in their
documentation, including a comparison to the aforementioned Rust Bulletproof library.
This comparison demonstrated that the performance of the Bulletproof-js library is several
orders of magnitude lower than that of the comparable Rust Bulletproof library, which
indicated to us that Rust might be a suitable candidate language to find an implementation
for the other ZKP protocols. We also noticed that—by not finding any STARK libraries
written in either Go or JavaScript—a full-featured zk-STARK library would be the most
difficult to find. Therefore, we focused our attention on finding a good STARK library first.
We found a library called libSTARK [18], which is a STARK implementation in C++ by the
authors of the original STARK paper. However, our initial impression was that it seemed
that this library uses a special notation to design circuits and that we would not be able
to freely implement it with the main programming language. Furthermore, we found the
Rust Winterfell crate [19], which seemed well-implemented, provided documentation, and
was in active development. There were some limitations to this library though, including
that it does not implement perfect zero-knowledge and focuses on succinctly proving
computations instead of knowledge. We will describe these limitations in more detail
in Section 5.3. However, even with these limitations in mind, it was the best option we
found. We already identified the Rust Bulletproof crate earlier, which meant that we only
had to find a SNARK library to discover a library for each protocol in the Rust language.
We found this in the Rust Bellman crate [20]. With us unearthing a full-featured library
implementation for all three protocols written in Rust, we implemented our benchmark
in Rust. Apart from having a library implementing each protocol, the libraries were each
well-implemented, at least somewhat documented, and well-known. In summary, we
found that implementing the ZKP application in Rust using the Bellman, Bulletproof, and
Winterfell crates was the best option for our benchmark.

To summarize, we ended up using four ZKP libraries written in two different program-
ming languages. Since our benchmark implementation depended on these ZKP protocol
libraries, we included those as our main dependencies. We additionally depended on
several cryptographic libraries required for using the mentioned NIZKP libraries. We detail
the full list of (direct) dependencies by language in Table 2.
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Table 2. Programming dependencies used to implement the benchmark.

Language Dependency Name Dependency Version

Go github.com/consensys/gnark v0.9.1
Go github.com/consensys/gnark-crypto v0.12.2-0.20231013160410-1f65e75b6dfb
Rust Bellman 0.14.0
Rust bls12_381 0.8.0
Rust Bulletproof 4.0.0 (with ‘features = [“yoloproofs”]’)
Rust curve25519-dalek-ng 4.1.1
Rust ff 0.13.0
Rust Merlin 3.0.0
Rust Rand 0.8.5
Rust Winterfell 0.8.1
Rust Blake3 1.5.1 (with ‘default-features = false’)
Rust Criterion 0.5.1 (with ‘features = [“html_reports”]’)

Because of our chosen ZKP libraries, we required the usage of the two programming
languages Go and Rust, as well as the Rust package manager Cargo. The software versions
used are listed in Table 3.

Table 3. Software used to implement the benchmark.

Name Version

Go 1.22.0
Rust 1.76.0
Cargo 1.76.0

5.2.2. Hardware

As for the used hardware, we performed the benchmarks on a desktop computer with
the following specifications:

• AMD Ryzen 9 5900x processor.
• 32 GB DDR4 3600 MHz memory (2 × 16 GB in dual channel).

The computer ran Windows 10 version 22H2 as the operating system and we config-
ured it to run in the better performance power mode. The D.O.C.P. (direct overclock profile)
setting was enabled in the motherboard settings to attain the intended speeds as specified
for the memory modules. We did not apply any further overclock or undervolt, meaning
that the processor ran at stock speeds.

5.3. Implementation

Now that we have determined which software and dependencies we want to use to
implement the benchmark, we will describe the actual implementation of the benchmark
using the chosen NIZKP libraries.

Our initial idea for the implementation, as described in Section 3.2, comprised of
a zero-knowledge proof, which proved that a given public elliptic curve digital signa-
ture algorithm (ECDSA) key verified a signature and is included on a list of trusted keys.
The intention for such proof was to prove that the user utilized a hardware security
key from a trusted manufacturer to sign a message, without leaking the manufacturer
details or batch information of the hardware security key. Our benchmark application
would have implemented such proof for each of the three NIZKP protocols, albeit with-
out communicating to a real hardware security key, generating the public keys in code
instead. Our first step in creating the implementation was to create a proof of concept
using the gnark zk-SNARK library. We implemented the proof of concept in gnark be-
cause of the great documentation, familiarity with the language, and numerous existing
cryptographic primitives that the codebase contained. We started with an implementation
using the Edwards-curve digital signature algorithm (EdDSA) to become familiar with
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the gnark library since creating a gnark circuit for proving the verification of an EdDSA
signature was explained in a tutorial [21]. We expanded this proof to additionally verify
that the used public key was included in a provided list of trusted public keys. We de-
fined the public key as a secret input to the circuit, while we set the message, signature,
and trusted key list as public inputs. The code for this implementation can be found in
the Git repository for this research [22]. With a working implementation for EdDSA, we
re-implemented the same approach in gnark for ECDSA. This process was more involved,
because we had to use more primitive cryptographic building blocks, yet eventually we
obtained the ECDSA-proof circuit working identically to the EdDSA circuit. We should
note though that, since we ended up not using this implementation, we did not fully
implement some aspects of the proof that did not impact functionality but would have
impacted security in any real use cases. The corresponding code can be found in our Git
repository [22].

Since we had a working zk-SNARK implementation using the gnark library, we
knew that the idea would technically be possible to implement. With that said, we had
to implement the same application for each of the three ZKP protocol libraries in Rust,
which is where we hit some difficulties. First, while we implemented the proof-of-concept
idea in gnark because it provided a tutorial, documentation, and many cryptographic
primitives, this was not the case for the Rust ZKP libraries. This meant that we would
have had to implement these primitives ourselves, leading to more opportunities for
security issues. More importantly, we expected that this would take more time than we had
available for the research. Even more critically, their creators geared the zk-STARK library
toward succinctly proving computations, as opposed to knowledge like the zk-SNARK
and Bulletproof libraries. This meant that the application would require a completely
different approach in the STARK implementation compared to the other two protocols.
On top of this, at the time of implementation, the STARK library did not provide perfect
zero-knowledge. This meant that there was no option for us to provide the used public
key to the circuit, as required in our proof of concept since the proof would not keep this
key private. While it sounds strange to have to keep a public key secret, we reiterate
that openly providing this key would reveal some privacy-sensitive information about
the used hardware security key. As a result, doing so would invalidate the entire reason
for utilizing a NIZKP in the application in the first place. For these reasons, we decided
to abandon this idea for our benchmark application. Instead, we opted to use a more
rudimentary application.

For the basic ZKP application idea that we could implement more equally for all three
protocols, we implemented a hash function. Our application would ensure this hash either
had a variable number of rounds or would use the hash as part of a hash chain, to enable
some way to increase the required amount of work in the proof. After some deliberation
between the MiMC [23], Poseidon [24], and rescue [25] hashes, we eventually chose the
MiMC hash function. Namely, this hash function is well-optimized for zero-knowledge
proofs [26] and has a simple algorithm that is easy to implement in proof circuits; moreover,
example implementations we could adapt and build on were available for the SNARK
and Bulletproof Rust ZKP libraries. The number of rounds used in the MiMC hash can
be varied in our benchmark, where each round requires a different round constant for
security. This enabled us to implement the hash for all three protocols, since, at least for
our intents and purposes, proving knowledge of the pre-image of a public hash is the same
as proving the computation of calculating the required hash from a pre-image provided
by the prover. However, in the latter case, applicable to the STARK implementation, the
pre-image would not necessarily remain private. Therefore, for equality reasons, we did not
focus on these variables remaining private in the other protocols either. This is a limitation
of our benchmark, for which we decided that the most important aim was to keep the
proof as similar as possible. Since this limitation is important to consider for real-world
implementations using ZKPs, we further discuss this limitation in Section 7.4.
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The MiMC hash, named for its minimal complexity multiplication, is optimal for use
in zero-knowledge proofs due to its simplicity and minimal multiplication requirements.
While this simplicity limits the complexity of the proof, potentially making MiMC less
directly applicable to more sophisticated cryptographic hash functions or complex com-
putational problems, it is crucial to note that our benchmark intends to assess the core
performance characteristics of the underlying protocols rather than specific applications.

The benchmark’s equivalence to more complex applications is ensured by adjusting
the number of rounds in the MiMC hash, simulating increased computational effort akin
to more sophisticated use cases. The approach is representative of complex applications
since all statements, regardless of their complexity, are transformed into simple proof
circuits with a varying number of gates before being processed into the proof. This method
provides a foundational understanding of protocol behavior under varied computational
loads, irrespective of specific hash functions or applications.

Although the MiMC application may not generalize directly to all scenarios, its pur-
pose here is to offer a controlled environment to evaluate the protocol implementations.
The focus is on the protocols’ handling of computational complexity, with the MiMC hash
serving as a scalable proxy. The differences observed in performance metrics are primarily
attributed to the NIZKP library’s implementation intricacies rather than the inherent limi-
tations of the MiMC hash itself. Thus, while specific hash functions may yield different
absolute performance results, the relative performance insights provided by our benchmark
remain robust and informative.

To summarize, our actual implementation existed of a proof that verifies that the prover
knows a pre-image to a certain MiMC hash image. The MiMC hash had a variable number
of rounds, and we provided the round constants as input to the circuit. We implemented
this application in each of the three chosen Rust protocol libraries. Our implementation
adapted and built upon example implementations for both the Rust SNARK library [27]
and Bulletproof library [28], while we created the Winterfell STARK library implementation
from scratch. Moreover, we implemented the application in the Go gnark zk-SNARK
library as well, for comparison reasons described in Section 5.2. We conjecture that this
implementation provided the best possible comparison between the three protocols. Where
significant for such real-world implementations, we provide additional protocol-specific
context in Sections 6 and 7. We also present additional justification for our implementation
idea in Section 3.2. The code for all implementations can be found in the Git repository for
this research [22].

An important consideration for the Bulletproof implementation was that we did not
apply any form of batch verification, even though this is one of the beneficial aspects of
the Bulletproof protocol that the Bulletproof library implements. While such batching
verification could reduce the total verification time compared to performing each proof
verification separately, it required an application where such batching is viable. In this
work, we benchmarked the process of generating and verifying a single proof, which means
that batching did not apply to our benchmark. We will discuss the implications of this in
Section 7.

Finally, when inspecting our implementation, one should consider that we used
seeded randomness for our benchmark. This means that the randomness we used in our
implementation is not secure. Any real-world implementation should at minimum replace
the seeded randomness with a cryptographically secure randomness source.

5.4. Benchmark Procedure

With the implementation code completely written, we commenced the benchmark
procedure. First, we restarted the hardware which we performed the benchmark on to
clear as many resources as possible. After this restart, we waited a minute for the operating
system and all initiated startup processes to settle. We then opened a separate terminal
window in the Rust and Go implementation directories.
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The first benchmark we performed was the benchmark comparing the protocols
on several numbers of rounds. For the number of rounds, we settled on the numbers
corresponding to 2x − 1 with x ∈ {4, 6, 8, 10, 12}, since this formula is a requirement for
the zk-STARK implementation as described in Section 5.3. This gave us the set of MiMC
rounds {15, 63, 255, 1023, 4095}, which we believe provided a nice range to represent the
performance differences between the NIZKP protocols for various amounts of required
work. We ensured that we applied the correct default configurations and had set the
desired number of MiMC rounds in the benchmark code. We then issued the ‘cargo bench‘
command, which compiled the Rust code as a release target for the best performance and
used this compiled binary to run the benchmark for each of the three protocols sequentially.
When the benchmark for the Rust implementations was complete, we logged the benchmark
results and other metric outputs in an Excel sheet for each protocol under the set number
of MiMC rounds. With the Rust benchmark results recorded, we switched to the other
terminal for the Go implementation and repeated the process, only using the ‘go test -bench
. ./internal/hash/.’ command instead. This command, like the ‘cargo bench’ command for
Rust, compiled the Go SNARK MiMC implementation and ran the benchmark outputting
the results. When we performed all benchmarks for a given number of MiMC rounds,
we repeated the process for each other number of rounds, noting down all the results
in the same Excel sheet. We additionally ran a benchmark comparing the performance
of the zk-STARK implementation for different options. The process for this benchmark
resembled the procedure described above, yet instead of using fixed option parameters
with a dynamic number of rounds, we fixed the number of rounds and modified the
default option parameters by a single option at a time. By initiating the ‘cargo bench
stark‘ command, we conducted the benchmark for just the zk-STARK implementation
and obtained the performance difference caused by a single option parameter change.
We then recorded the benchmark results and metrics in the Excel sheet and subsequently
reverted the option parameter to the default, repeating this process for all options and
several parameters for each option. Finally, we performed one final benchmark for the
STARK, in which we set the option parameters to a combination of values that provided
the best performance according to the individual parameter benchmarks. Now that we
performed all benchmarks, we processed the metrics in the Excel sheet into the benchmark
result tables and graphs found in Section 6.1. The code that we wrote to implement all
benchmarks can be found in the Git repository corresponding to this work [22].

5.5. Justification

Now that we depicted our proposed solution in-depth, we succinctly justify how this
proposed solution addresses the research questions as stated in Section 1. We address the
first research question, “What are the performance differences between the three included
NIZKP protocols, as observed from a real-world implementation of each protocol in an
application that is as equal as possible, expressed in efficiency and security level?”, with
our proposed solution. By implementing the identical MiMC hash application utilizing
a real-world library implementation for each of the three included NIZKP protocols, we
will be able to observe the performance metrics related to the efficiency and security level
for each. While the performance and security metrics available in each protocol will limit
our scope, we can compare the metrics that we were able to obtain for each protocol
to provide an answer to this first research question. By extracting the strengths of each
included NIZKP protocol from the performance metrics and cross-referencing these with
the unique requirements of various applications, we can distill knowledge about the use
case contexts that are most beneficial for each protocol. Using this extracted knowledge, we
will then be able to answer the second research question, which should provide researchers
with recommendations on the situations in which a given NIZKP protocol is best applied.
To conclude, we express our confidence that by implementing the proposed application
we will be able to provide a comprehensive answer to the research questions stated at the
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start of this work. We consider this to constitute sufficient justification to implement our
proposed solution.

5.6. Overview

To conclude this section, we will provide a schematic overview of our proposed
solution in Figure 2.
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Figure 2. Schematic overview of our proposed solution.

6. Results

In this section, we detail and analyze the findings collected from our benchmark.
In Section 6.1, we list the benchmark results in the form of tables, with some explanations
and complementary context for the metrics. In addition, we provide graphs as an alternative
way to compare the performance differences between the ZKP protocols. Subsequently,
we analyze the raw benchmark data and provide more context on the data in Section 6.2.
In this analysis, we dive deeper into the differences between the ZKP protocols and any
anomalous results we obtained from our benchmark.

6.1. Benchmark Results

In this section, we present the results from the benchmark that we implemented as
described in Section 5.3 and subsequently performed according to the procedure described
in Section 5.4. Before listing the results, however, we first provide some context on the
abbreviations used to list the results, next to the configuration we used for each protocol.

6.1.1. Abbreviations

Within Tables 4, 5 and 6, the following abbreviations are used to save space, which
enabled us to fit the tables on a single page:

• Rnds—rounds; the number of rounds used in the MiMC hash.
• Protocol—The NIZKP protocol and corresponding programming library.

– Bulletproof—Used the Rust Bulletproofs crate v4.0.0 [16,29].
– SNARK (R)—Used the Rust Bellman crate v0.14.0 [20,30].
– SNARK (G)—Used the Go gnark package v0.9.1 [31,32].
– STARK—Used the Rust Winterfell crate v0.8.1 [19,33].

• CRS (B)—Common reference string; the size of the CRS (without verification key)
in bytes.

• VK (B)—Verification key; the size of the verification key in bytes.
• W (B)—Witness; the size of the full witness in bytes.
• PW (B)—Public witness; the size of the public witness part in bytes.
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• C (B)—Commitments; the size of the commitments in bytes.
• P (B)—Proof; the size of the proof in bytes.
• CT (ms)—Compile-time; the time required to compile the circuit in milliseconds.
• ST (ms)—Setup time; the time required to perform the setup in milliseconds.
• PT (ms)—Proof time; the time required to generate the proof in milliseconds.
• VT (ms)—Verification time; the time required to verify the proof in milliseconds.
• SC (b)—Security conjectured; the conjectured security level in bits.
• SP (b)—Security proven; the proven security level in bits.
• Option—The option for which the parameter was changed from the default. If (D) is

appended to one of the option names, then this parameter is our chosen default.

– NQ—NUM_QUERIES; the number of queries performed to verify correctness.
– BF—BLOWUP_FACTOR; the factor that determined the probability of detecting

a false proof in each query.
– GF—GRINDING_FACTOR; the factor that impacted the security of the proof

by requiring a certain number of leading zeros in specific hashes, resembling a
proof-of-work.

– FFF—FRI_FOLDING_FACTOR; the factor by which each iterative round reduces
the degree of the polynomial.

– FRMD—FRI_REMAINDER_MAX_DEGREE; the maximum degree of the remain-
der polynomial.

– Hash—Hasher; the algorithm we set to calculate hashes within the protocol.
– FE—FIELD_EXTENSION; field extensions enabled higher proof security than

possible with just the finite field.

6.1.2. Configurations

For the main benchmarks, we chose a default configuration for each of the three
protocols. In the Bulletproof protocol implementation, there were not a lot of configuration
options. The protocol implementation depended on the curve25519_dalek_ng crate [34],
which means that the protocol used the Curve25519 elliptic curve in combination with
the Ristretto group [35]. This group enabled the construction of prime-order elliptic curve
groups that had the special property of a non-malleable encoding. Furthermore, the Bul-
letproof protocol implementation depended on the Merlin crate [36], implementing proof
transcripts and automating the Fiat–Shamir transform [37]. Apart from the dependencies,
we used the following configuration for the Bulletproof implementation:

• Bulletproof generator capacity: This number had to be larger than the number of
multipliers in the circuit, rounded to the next power of two. We accordingly set
the Bulletproof generator’s capacity to (m + 1) ∗ 2, where m is the set number of
MiMC rounds.

• Pedersen commitment generators: We used the default option provided by the library,
meaning that we configured the usage of the ristretto255 base point and SHA3-512
hash of the same base point for the blinding.

The zk-SNARK implementation libraries, similarly, did not provide a wide range of
configuration options. We configured both the Rust and Go implementations to use the
BLS12-381 pairing-friendly elliptic curve [38] for the scalar field and pairings. For the
Go code, we used the BLS12-381 implementation in the gnark-crypto package, while we
used the bls12_381 crate for the Rust code. Additionally, both implementations used
the Groth16 [7] proof system to implement the zk-SNARK proof, a system that both
protocol libraries had built in. We did not select any further configuration parameters.
Where required, we generated any other parameter randomly.

Finally, the zk-STARK library provided the most options for the configuration of all
protocols and implementing libraries. Considering that the STARK implementation did
not have any dependencies outside of the Winterfell crate itself, we only had to choose the
default STARK configuration parameters:
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• Number of queries (NQ): 42.
• Blowup factor (BF): 8.
• Grinding factor (GF): 16.
• FRI folding factor (FFF): 8.
• FRI remainder maximum degree (FRMD): 31.
• Hasher (Hash): Blake3_256.
• Field extension (FE): None.

We explain the meaning of these configuration options in Section 6.1.1. We chose
these configuration parameters because they provided a good security level and were
reasonable options near the middle of possible configurations in most cases. However,
as described in Section 5.4, we also performed a benchmark for different configuration
parameters for the zk-STARK protocol. This further compared the performance difference
that the configuration parameters can make since configuration options were numerous
enough that using just one configuration could have displayed a distorted view of the
protocol performance. The results of the configuration parameter benchmark can be found
in Section 6.1.3.

6.1.3. Results

Now that we described the abbreviations and configurations used for the benchmarks,
we can start listing the benchmark results.

The results from the benchmark for each protocol, using the default configuration as
described in Section 6.1.2, can be found in Tables 4 and 5. Table 4 lists the sizes in bytes of
different data, provided as inputs and outputs. As one can observe, the proof size was the
only metric available for all three protocols and all four implementations. The CRS, because
of the trusted setup requirement that is only applicable to the SNARK protocol, was only
available for the two SNARK implementations. Similarly, the witness was only available for
the Go zk-SNARK implementation because that library generated the witness in a separate
step. After creation, the library used the witness as input to the proof-generating function,
next to the proving key and the constraint circuit. The proof-generating function in the Rust
implementation, on the other hand, only accepted the circuit and CRS as input. The library
presumably generated the witness internally, which we could not directly measure in our
benchmark. Lastly, the commitment size was only available in the Bulletproof protocol yet
served a similar purpose to the witness in the SNARK protocol.

Table 5 lists the proof generation and verification times, in milliseconds, next to the
security level in bits. In this table as well, we only list the results that we could obtain
from each protocol implementation. As shown, only the proving-time and verification
time metrics were available for all three protocols and all four implementations. Just like
for the size benchmarks, the setup time metric corresponding to the trusted setup was
only available for protocols that require a trusted setup, meaning just the two zk-SNARK
implementations. The compile-time, only available to the Go SNARK implementation, was
a separate step in the Go SNARK implementation. For this reason, we recorded it separately.
The Rust SNARK library was written such that other steps include the compile-time; the
compilation is not a separate step. Since at one point the circuit had to be transformed in a
constraint system, and unlike in the Go implementation the Rust implementation took the
non-compiled circuit as input to the proof-generating function, we expect the burden of
the compile-time from the Go implementation was included in the proving-time for the
Rust implementation. We consider this in our analysis in Section 6.2 and discussion in
Section 7.

Finally, the conjectured and proven security levels of the proof in bits were only
available from the protocol in the STARK implementation. The other protocols, sadly,
did not implement any functionality to obtain the security of the proof as configured.
While Section 4 outlines the cryptographic assumptions made for each protocol, and
notes that only the zk-STARK protocol is considered quantum-resistant due to its security
depending on the underlying cryptographic protocols, the proof circuit, and e.g., the
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security of the input, this does not specify the exact security level of each proof we created.
Addressing this limitation, while possible, would require an extraordinary amount of
time, extensive theoretical knowledge of the protocols, and a practical understanding of
the library implementations. Therefore, we consider this to be outside of the scope of
this research work and will elaborate on this limitation in Section 7.4. This means that
we were unable to provide a full picture, but we will endeavor to provide a security
level comparison in Section 6.2 by collecting security level metrics from works by other
researchers. For theoretical security comparisons, we refer the reader to Section 4.

Table 4. Size results of the protocols benchmark.

Rnds Protocol CRS (B) VK (B) W (B) PW (B) C (B) P (B)

15 Bulletproof - - - - 64 737
15 SNARK (R) 6816 528 - - - 192
15 SNARK (G) 10,538 1448 588 524 - 484
15 STARK - - - - - 6657

63 Bulletproof - - - - 64 865
63 SNARK (R) 27,552 528 - - - 192
63 SNARK (G) 40,778 3752 2124 2060 - 484
63 STARK - - - - - 16,518

255 Bulletproof - - - - 64 993
255 SNARK (R) 110,496 528 - - - 192
255 SNARK (G) 161,738 12,968 8268 8204 - 484
255 STARK - - - - - 24,866

1023 Bulletproof - - - - 64 1121
1023 SNARK (R) 442,272 528 - - - 192
1023 SNARK (G) 744,562 49,832 32,844 32,780 - 484
1023 STARK - - - - - 38,769

4095 Bulletproof - - - - 64 1249
4095 SNARK (R) 1,769,376 528 - - - 192
4095 SNARK (G) 2,978,234 197,288 131,148 131,084 - 484
4095 STARK - - - - - 55,132

Table 5. Time and security level results of the protocols benchmark.

Rnds Protocol CT (ms) ST (ms) PT (ms) VT (ms) SC (b) SP (b)

15 Bulletproof - - 6.756 0.899 - -
15 SNARK (R) - 10.467 4.479 1.703 - -
15 SNARK (G) 0.043 3.425 1.299 1.138 - -
15 STARK - - 2.060 0.052 120 73

63 Bulletproof - - 25.210 2.677 - -
63 SNARK (R) - 18.643 5.563 1.686 - -
63 SNARK (G) 0.227 10.292 2.420 1.195 - -
63 STARK - - 0.552 0.142 118 75

255 Bulletproof - - 102.450 11.069 - -
255 SNARK (R) - 42.788 12.218 1.709 - -
255 SNARK (G) 1.830 40.888 5.676 1.407 - -
255 STARK - - 11.339 0.199 116 74

1023 Bulletproof - - 499.610 92.663 - -
1023 SNARK (R) - 132.280 30.268 1.684 - -
1023 SNARK (G) 10.453 150.211 19.867 2.280 - -
1023 STARK - - 13.094 0.313 114 73

4095 Bulletproof - - 3614.500 1271.200 - -
4095 SNARK (R) - 440.560 96.865 1.695 - -
4095 SNARK (G) 42.937 453.436 61.512 5.733 - -
4095 STARK - - 44.876 0.452 112 72
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We then performed the configuration benchmark for the zk-STARK protocol imple-
mentation, in which we changed a single configuration parameter at a time to measure the
performance impact. Table 6 lists the performance metrics obtained from that benchmark
for the metrics available to the STARK implementation. The first column, “Option”, denotes
the configuration parameter that we changed the default value of. We grouped the options
by different values for the same parameter and marked the default parameter with (D).
There are a few things to note in this table. First, the GF 32 benchmark does not have a
listed result. This is due to the benchmark for this parameter not finishing a single iteration
after a few minutes. Second, the FE Cubic benchmark, equally, does not have any results.
This absence came as the result of the library not implementing the cubic field extension
for our use, as specified by the library in a returned error.

Finally, with the results for the zk-STARK implementation configuration benchmark
in hand, we wondered what would happen if we combined all the best-performing param-
eters together. Would the performance differ significantly from our configured default?
To investigate this, we configured the zk-STARK implementation with the following ’best’
parameters, where we made sure the conjured security level did not go below 100 bits:

• Number of queries: 41; lower tested numbers showed better performance, at least for
proof size and verification time, but reduced the security level below our set threshold.

• Blowup factor: 16; slightly increased the proof size and verification time, but strongly
reduced the proof generation time. Blowup factors of 8 or lower demonstrated even
better performance, yet they reduced the security level to a value below our set threshold.

• Grinding factor: 8; had the best proof size, a proof time equivalent to lower values,
and a proof verification time equivalent to grinding factor 24.

• FRI folding factor: 4; showed the best proof and verification time metrics, while the
proof size was only slightly larger than for the default FRI folding factor of 8.

• FRI remainder maximum degree: 255; the highest possible maximum remainder
degree for the FRI had the best performance in all three metrics of proof size, proof
time, and verification time, while not appearing to have impacted the security level.

We changed neither the hasher nor the field extension from the default. The Blake3_192
hasher, as expected, showed better performance than the Blake3_256 hasher for proof size
and time, with a similar verification time. The quadratic field extension, while almost
halving the proof time, significantly increased the proof size and verification time. Apart
from displaying worse metrics, we worried that a different field extension would have an
impact that would make it hard to compare the performance of the optimized parameters
against the performance of the default values. Therefore, we did not alter this setting.
We note that, while in most cases the conjured security level remained the same or at least
above our stated threshold of 100 bits of security, the proven security level was usually
affected negatively when choosing more performant configuration parameter values. When
configured with the stated optimized parameters, we obtained the metrics as shown in
Table 7.

Table 6. Results for option parameter changes in the STARK benchmark.

Option PS (B) PT (ms) VT (ms) SC (b) SP (b)

NQ: 1 2015 1.864 0.019 2 15
NQ: 24 15,985 2.581 0.118 71 49
NQ: 41 25,137 1.912 0.195 116 73
NQ (D): 42 24,866 11.339 0.199 116 74
NQ: 43 25,361 9.592 0.193 116 75
NQ: 84 40,497 2.722 0.351 116 87
NQ: 168 61,759 4.103 0.573 116 87
NQ: 255 80,226 2.355 0.820 116 87
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Table 6. Cont.

Option PS (B) PT (ms) VT (ms) SC (b) SP (b)

BF: 2 16,978 4.697 0.151 41 34
BF: 4 20,952 1.250 0.177 99 55
BF (D): 8 24,866 11.339 0.199 116 74
BF: 16 28,532 3.804 0.211 115 84
BF: 32 33,065 16.650 0.231 114 80
BF: 128 40,778 29.176 0.254 112 73

GF: 0 24,963 1.853 0.195 116 60
GF: 4 25,507 1.874 0.200 116 64
GF: 8 23,615 1.895 0.192 116 67
GF (D): 16 24,866 11.339 0.199 116 74
GF: 20 25,283 184.940 0.202 116 77
GF: 24 24,513 2671.200 0.190 116 80
GF: 32 - - - - -

FFF: 2 33,641 5.715 0.211 116 74
FFF: 4 28,032 5.004 0.186 116 74
FFF (D): 8 24,866 11.339 0.199 116 74
FFF: 16 28,640 11.503 0.391 116 74

FRMD: 3 26,628 5.325 0.235 116 74
FRMD: 7 26,940 5.616 0.230 116 74
FRMD: 15 27,835 6.441 0.247 116 74
FRMD (D): 31 24,866 11.339 0.199 116 74
FRMD: 63 24,014 5.051 0.194 116 74
FRMD: 127 25,060 8.762 0.191 116 74
FRMD: 255 20,099 2.420 0.165 116 74

Hash: Blake3_192 21,328 6.327 0.201 96 74
Hash (D): Blake3_256 24,866 11.339 0.199 116 74
Hash: SHA3_256 25,235 41.229 0.400 116 74

FE (D): None 24,866 11.339 0.199 116 74
FE: Quadratic 32,196 5.966 0.354 128 76
FE: Cubic - - - - -

Table 7. zk-STARK combined configuration values benchmark.

PS (B) PT (ms) VT (ms) SC (b) SP (b)

23,685 3.4192 0.17619 115 81

6.2. Analysis

Now that we have detailed all the obtained benchmark results, we start with our
analysis of those results.

First, we analyzed the differences between the Bulletproof, zk-SNARK, and zk-STARK
protocols. To this end, we created some additional graphs that show the obtained metrics
as a plot for each protocol, which also shows the change in this metric for different num-
bers of MiMC rounds. Figure 3 shows the size of the proof generated by each protocol
implementation and the difference that an increasing number of MiMC rounds makes for
this metric. Figures 4 and 5 show a similar plot for the proof generation time and proof
verification time metrics, respectively.

As one can see from the metrics in Table 4 and the plot in Figure 3, there is a clear
distinction between the proof sizes in the four implementations. The SNARK protocol
implementations had the smallest proofs, with a size of 192 bytes for the Rust implementa-
tion and 484 bytes for the Go implementation. The proof size was also constant for both,
meaning that the size of the proof remained the same, independent of the number of MiMC
rounds. This was different for the Bulletproof and zk-STARK implementations, which both
displayed a proof size that increased with the number of MiMC rounds. The proof size
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of the STARK protocol was larger than that of the Bulletproof protocol and additionally
grew more rapidly in size with the number of MiMC rounds than the Bulletproof proof.
This observation, however, fails to capture the broader perspective of data that needs
to be transferred. The two SNARK protocol implementations may have had the lowest
proof sizes, they additionally required the verifier to obtain the verification key. This key
involved a constant additional 528 bytes for the Rust implementation, or an incrementally
increasing size starting at 1448 bytes for the Go implementation. For us to obtain the total
data size as required by the verifier, we summed these figures. This resulted in the data
size from the Rust SNARK implementation, a total of 720 bytes, suddenly being just shy of
the Bulletproof implementation data size. Having said that, the size of the Rust SNARK
implementation was nonetheless still constant, whereas the data size for the Bulletproof im-
plementation grew with the number of hash rounds. At the same time, the combined data
size of the Go SNARK implementation grew even faster in the number of MiMC rounds.
Moreover, the combined amount of data was already larger than for the Bulletproof, even
without the public witness the verifier required to verify a proof in this implementation.
By 1023 MiMC rounds, the amount of data from the combined verification key and proof
size in the Go SNARK implementation was higher than for the STARK implementation.
This showed a clear contrast between the two zk-SNARK implementations, an aspect which
we will deliberate on in Section 7.
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Figure 3. Proof size benchmark plot.
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We will now examine the proof generation times, as detailed in Table 5 and plot-
ted in Figure 4. As one can see, the Bulletproof protocol implementation demonstrated
the slowest proof-generating time, followed from a distance by the two SNARK imple-
mentations. Additionally, even though all protocol implementations showed the proof
generation times to be increasing with the number of MiMC rounds, the Bulletproof im-
plementation proving-time increased faster than the other three implementations. The
two SNARK implementations performed similarly in this metric, and performance between
the two converged at higher numbers of MiMC rounds. In particular, at lower round
numbers, however, the Go implementation performed better than the Rust implementation.
Having said that, the Go SNARK implementation required a separate compile-time, which
the Rust implementation did not need. For a lower number of MiMC rounds, the compile-
time was negligible; however, as the number of rounds increased, this compile-time grew
and became significant. When added to the proof-generating time, the Go implementation
converged with the Rust implementation at 1023 rounds. Beyond this point, the com-
bined compile-time and proving-time in the Go library exceeded that of the Rust library.
The zk-STARK implementation’s proof time metrics showed some intriguing fluctuations.
These fluctuations made it beat the Go SNARK implementation for some numbers of MiMC
rounds while losing out to it in others. In particular, the 63 MiMC rounds benchmark metric
is perplexing since the proof generating time was much faster than at 15 MiMC rounds.
At first, we suspected this result to be a fluke in our benchmark. Re-running the same
benchmark multiple times, however, provided us with consistent results throughout each
attempt. This indicated that the performance fluctuation was caused by something other
than a problem in our benchmark. Therefore, we attribute the performance fluctuation
to some number internal to the protocol, related to the number of MiMC rounds, being
optimal for the FRI process at 63 MiMC rounds, especially compared to the same number
for the 15 rounds benchmark. We elaborate on this topic in our discussion in Section 7.
In general, the data and graphs showed that the zk-STARK and two zk-SNARK imple-
mentations had proof times within the same order of magnitude, while the Bulletproof
protocol was slower in generating proofs. Additionally, the proof time for the Bullet-
proof implementation increased more rapidly with the number of rounds compared to the
other implementations.

We now change our focus from the proof generation times to the proof verification
times, which we plot in Figure 5 from the data in Table 5. Our first observation is that the
rankings between the protocols were like those for the proof generation times. The Bullet-
proof protocols showed the slowest proof generation times, whereas the two zk-SNARK
implementations demonstrated a comparable proof verification time. The zk-STARK im-
plementation demonstrated the fastest proof verification times throughout. Upon closer
inspection, though, there are several more differences. First, the Bulletproof implementa-
tion temporarily had a faster proof verification time than the two STARK implementations
for the lowest number of benchmarked MiMC rounds. Second, unlike the Go SNARK
implementation, which showed slightly increasing verification times for larger numbers of
MiMC rounds, the Rust implementation verification times were constant within the margin
of expected variability of a benchmark. As for the proof generation times, this means that
the Rust implementation became faster than the Go implementation at higher numbers
of MiMC rounds. Third, especially at low round numbers, the zk-STARK protocol was
around an order of magnitude faster than the two zk-SNARK implementations. Given
that the verification times for the STARK increased though, while those of the Rust STARK
implementation remained constant, it is conceivable that the STARK implementation would
have lost this advantage for even larger numbers of MiMC rounds. This observation in-
volves us extrapolating the data though, it is not something we can conclude from our
benchmark data.
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Figure 5. Verification time benchmark plot.

The final analysis for the comparing benchmark is the security level of each protocol.
As specified in Section 6.1.3 and reflected in Table 5, we could only obtain the conjured
and proven security level in bits from a function in the zk-STARK implementation library.
This made it hard to directly compare the security levels for each implementation, which
we will indicate as a limitation in Section 7.4. However, we could obtain an expected
security level for the protocol implementations from referential works by others. In [39],
the authors surveyed several elliptic curves for proof systems, including the BLS12-381
curve. They specified the BLS12-381 curve, the curve used in both our SNARK implemen-
tations, to have a 127- or 126-bit security for the group and prime field, respectively. While
they likewise discussed curve25519 as used in the Bulletproof implementation, they did
not mention any security level. Because the only configuration option for the zk-SNARK
implementation was the used elliptic curve, as discussed in Section 6.1.2, we assume that
the curve alone decided most of the protocol security in the SNARK implementation.
This would give the two SNARK implementations the same (almost 128-bit level) security
as stated for the BLS12-381 curve, which we expect to be a conjured security level and not a
proven one. Similarly, because the Bulletproofs paper [9] only mentioned the security of the
protocol in the context of the libsecp256k1 curve, we expect the curve to define the burden
of the security level of the protocol. Since our Bulletproof protocol benchmark implemen-
tation used Curve25519, which provides an approximately 128-bit security level [40], we
hypothesize this to be the conjured security level of the Bulletproof implementation as well.
This is not the case for the zk-STARK, for which Ben-Sasson et al. described the proven
security bounds in their work [41]. As they demonstrated, the conjured security level for
zk-STARK is the minimum between a number calculated from the number of queries and
grinding factor, the collision resistance of the used hash, and a number calculated from the
field extension and trace length [42]. The lack of direct numbers for the security level of
each protocol implementation in our benchmark resulted in uncertainty, though from the
hypothesized numbers that we obtained from a spectrum of sources, the best we could infer
was that the security level for the three protocols feature a comparable conjured security
level. Yet, for this conclusion, we admittedly did not consider several practical factors in
the SNARK and Bulletproof protocols. For this reason, we state that the conclusion does
not provide a comprehensive view.

At last, we analyzed the benchmark comparing the different configuration parameter
values in the zk-STARK protocol implementation. First, we dissected the obtained metrics
for changing each configuration parameter, starting with the number of queries. As can
be seen in Section 6.1.2, the proof size and verification time increased with the number of
queries. This makes sense since the more queries, i.e., checks in the protocol, the protocol
had to perform, the more work had to be included in the proof and verified. This can be
observed clearly in the results, in that the number of queries determined a large part of the
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security level. The one metric that behaved anomalously to the expectation in this regard
was the proof time metric. Even when the prover did not have to perform any additional
work for a larger number of queries, this does not explain why the benchmark results
drastically differ between even small value changes. Furthermore, these metrics neither
consistently go up nor down, which is explicitly visible when looking at the sixfold increase
in the proof time between 41 and 42 queries. We currently do not have an explanation for this
phenomenon, yet the results for this metric were intriguing. Next up is the blowup factor.
For this parameter, we could see a clear increase in the proof size and verification time. Apart
from some fluctuation, the proof time also seemed to increase with a larger blowup factor,
especially toward higher values. This observation can be accounted for by an increasing
blowup factor leading to a higher likelihood that a verifier detects a false proof. In turn, this
can be observed in the security level increasing with the blowup factor and the additional
work that this required. We now look at the grinding factor, which determined a specific
number of leading zeros in hashes, resembling a proof-of-work-like concept. This would
require extra work from the prover for larger grinding factor values, which is indeed
what we observed. In return for this extra work, the proof demonstrated a higher proven
security level, though the conjured security level remained identical. The verification time,
furthermore, did not significantly shift outside of the variation expected from a benchmark.
The proof size, on the other hand, fluctuated in a manner that we cannot explain with
benchmark variation. Instead, the small variation of a few thousand bytes indicated
an expected proof size difference, initiated by fluctuations in parameters internal to the
protocol that the proof had to include. The FRI folding factor did not show a clear increase
or decrease in the proof size, proof time, and verification time metrics with the size of the
parameter value. Instead, it seems that the optimum balance was somewhere in the middle.
Whereas a folding factor set to 8 provided an optimal proof size, a value of 4 provided
optimal proof generation and verification times. These optimum values were consistent
with the impact that the FRI folding factor had, namely that it determined how much
each iterative round reduced the degree of the polynomial. Therefore, large values would
mean that each iterative round had to reduce the polynomial degree by a large amount,
requiring a lot of work. Small FRI folding factor values, on the contrary, would require a lot
of iterations to reduce the polynomial to the desired degree. The FRI folding factor did not
seem to influence the security level. Lastly, there was the FRI remainder maximum degree
parameter, an increase that generally led to a smaller proof size and lower proof verification
time. The proof time overall showed the same trend, though as it did for the number of
queries and the blowup factor, it fluctuated significantly. The observation that the proof
size and verification times went down with a higher maximum remainder degree makes
sense given that this value allowed a polynomial to have a higher maximum remainder
degree. This enabled the protocol to not reduce the degree of the polynomial as much,
which removed the need for the proof to include these additional iterations. This further
reduced the work required for the verification. From our benchmark results, we observed
that a reduced maximum FRI remainder degree did not impact the security level.

The final benchmark results, which collected the metrics for the STARK protocol when
configured using a combination of the best-performing parameters, produced some disap-
pointing results. The outcomes of this benchmark can be seen in Table 7. Each metric, except
for the conjured security level, showed an improvement over the default configuration.
While this is true, a closer examination reveals that the achieved metrics were worse than
those achieved by just changing the FRI remainder maximum degree to 255. Only the
proven security level improved when using this ’optimal’ configuration as opposed to
choosing the default configuration and altering the FRI remainder maximum degree to 255.
We further reflect on this finding in Section 7.

7. Discussion

In this section, we discuss the research and benchmark performed as described in pre-
vious sections. Starting in Section 7.1, we discuss the results achieved from the benchmark,
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including a discussion of our findings as well as a general discussion on the implementation
and the used ZKP protocol libraries. With the achieved results discussed, we aim to answer
our research questions from Section 1 in Section 7.2. We conclude the discussion by talking
about the strengths of our research in Section 7.3, and subsequently contrast these strengths
by examining the limitations of our work in Section 7.4.

7.1. Achieved Results

In our work, we benchmarked four general-purpose NIZKP libraries implementing the
zk-SNARK, zk-STARK, and Bulletproof protocols for real applications. We benchmarked
these libraries in an equivalent application related to the privacy-preserving authentication
context. From the benchmark results, detailed in Section 6, we observed the following
ordering between the protocols regarding proof size, proof generation time, and proof
verification time:

• Proof size: We found that the SNARK protocol produced the smallest proofs, with
the zk-STARK protocol producing the largest proofs. The Bulletproof implementation
produced proofs that were somewhere in the middle, yet closer to the proof size from
the SNARK. The Bulletproof proof size was within one order of magnitude from
the two SNARK implementations, while the STARK implementation proof was at
least one order of magnitude larger than the two other protocols. We note that this
observation considers just the proof size, not including the verifying key size in the
SNARK protocol.

• Proof generation time: Though with some fluctuations in the duration metrics, we
overall observed the STARK implementation to be the fastest in generating proof.
The two SNARK implementations came in second place, with the proof times for
these three implementations remaining within a one-order-of-magnitude difference.
Generating a proof using the Bulletproof implementation took longer than the other
protocols, with a proof time that was more than an order of magnitude larger for the
upper MiMC round numbers.

• Proof verification time: When verifying a proof, the STARK protocol performed
the verification fastest. The Bulletproof proof verified the slowest, except at the
lowest number of MiMC rounds where the proof verified slightly faster than the
two SNARK proofs. Interestingly, the verification times for the STARK and Bullet-
proof proofs increased much more rapidly with the number of MiMC rounds than
the SNARK proofs. While the STARK implementation was well over an order of
magnitude faster at lower MiMC round numbers, this difference had shrunk to just
around or even within an order of magnitude difference compared to the Go or Rust
SNARK implementations, respectively, at the largest number of MiMC rounds. In the
same way, the Bulletproof proof went from verifying slightly faster than the SNARK
proofs at the lowest number of MiMC rounds to verifying more than two orders of
magnitude slower than the SNARK proof by the largest number of benchmarked
MiMC rounds.

We included these metrics for reference in Table 8. Assuming the found metrics
are valid, and disregarding that the hardware used to perform the benchmark is un-
known, we cross-referenced the metrics to our results obtained from the benchmark to
observe that our results indicated a corresponding performance ordering for most metrics.
The ordering for the proof size matched, and even the exact figures were comparable
to the ones we obtained at higher numbers of MiMC rounds. We remark that it is not
exactly meaningful that the exact metrics match, though since we expect the found com-
parison to be obtained from an entirely different application benchmarked on different
hardware. Therefore, we expect this correspondence to be coincidental. For the proof
time, the ordering of the best-performing protocols also matched, even with the SNARK
and STARK metrics being much closer to each other than to the Bulletproof at higher
MiMC round numbers. Only for the verification time, the ordering in our benchmark
was different from the cross-reference source. Whereas in our benchmark the STARK
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implementation verified faster than the SNARK implementations, the cross-referenced
comparison stated the inverse. What did match, however, was that the SNARK and
STARK times were much closer together, with the Bulletproof proof verifying signifi-
cantly slower. At least, when considering the results we obtained for larger numbers of
MiMC rounds.

Table 8. Found external protocol comparison.

Protocol P (B) PT (ms) VT (ms)

Bulletproof 1300 30,000 1100
SNARK 288 2300 10
STARK 45,000 1600 16

Regarding the cross-check for the proof size, this only included the actual proof
size. When we included the verification key as well, as required by the verifier to verify
proof in the two SNARK protocol implementations, the outcome changed. Not only
did the Rust implementation, in that case, have a combined size almost as large as the
proof size for the Bulletproof protocol, but for lower MiMC round numbers, the total
data size for the Go SNARK implementation became larger than the Bulletproof proof.
Not only that, but the combined size also furthermore became so large at higher numbers
of MiMC rounds that the Go SNARK implementation had a larger combined verification
key and proof size than the size of the STARK implementation proof. That was the
case without even including the witness size, which the verifier additionally required
in the Go SNARK implementation. Not only would including the verifying key in the
comparison alter the performance ordering between the different protocols, but it also
furthermore unveiled a clear contrast between the performance of two implementations of
the same protocol. A contrast that manifested itself to a significantly smaller degree in the
time-based metrics. We found this difference, a verifying key constant in size or almost
increasing exponentially in size with the number of MiMC rounds, intriguing at the very
least. While we aimed to limit such contrast between the different implementations of the
three different protocols by using libraries written in the same programming language for
each protocol, these observations not only tell us that that was the right thing to do but
also show the importance of optimized protocol libraries. The libraries implementing the
protocol can significantly impact the final performance, just like the programming language
they were written in. Libraries can improve performance for example by using efficient
computations and taking into account memory management and hardware bottlenecks.
Such optimization can make a substantial difference in the performance, even when both
library implementations use the same Groth16 backend [7] underneath. So, libraries
implementing cryptographic protocols play a crucial role in determining the efficiency and
performance of these protocols. By leveraging optimized computations, efficient memory
management, and hardware acceleration, libraries can significantly enhance the speed and
reliability of cryptographic operations. The impacts of the libraries on performance are
as follows:

1. Efficient computations:

• Algorithm optimization: Libraries can optimize the underlying algorithms used
in cryptographic protocols. This includes implementing efficient mathematical
operations, such as fast modular arithmetic, which can significantly reduce
computation time.

• Data structures: The choice of data structures within a library can affect perfor-
mance. Efficient data structures can lead to faster data access and manipulation,
improving overall speed and responsiveness.
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2. Memory Management:

• Memory allocation: Libraries that efficiently manage memory allocation and
deallocation can reduce allocation performance overhead. This is crucial in
resource-constrained environments where memory is limited.

• Cache utilization: Libraries that are designed to take advantage of CPU cache can
reduce latency by minimizing the need to access slower main memory. Optimiz-
ing data locality and access patterns can lead to substantial performance gains.

3. Hardware bottlenecks:

• Parallelism and concurrency: Libraries that support parallel processing can
leverage multi-core processors to execute multiple operations simultaneously,
reducing execution time for complex cryptographic tasks.

• Hardware acceleration: Some libraries are optimized to use hardware accel-
erators, such as GPUs or FPGAs, which can perform specific cryptographic
operations much faster than general-purpose CPUs.

4. Programming language influence:

• Language features: The programming language in which a library is written can
influence performance. Languages that support low-level memory access and
fine-grained control over hardware resources, like C or Rust, can enable highly
optimized implementations.

• Compiler optimizations: The choice of compiler and its optimization settings can
also impact performance. Compilers for languages like C++ or Rust can apply
aggressive optimizations that improve the efficiency of compiled code.

5. Impact on protocol performance:

• Proof and verification sizes: As mentioned, the size of the proof and verification
key can vary significantly depending on the library implementation. This affects
not only storage requirements but also the time required for verification.

• Time-based metrics: The execution time of cryptographic operations can vary
based on library optimizations. Differences in computation speed, memory usage,
and data handling can lead to noticeable variations in performance metrics.

Lastly, we want to discuss the results achieved in the benchmark comparing the con-
figuration parameter values for the zk-STARK protocol implementation. We examined
the performance when configured using the settings that individually provided optimal
performance, as described in Section 5.4. We found that this improved the performance
compared to our default configuration for all metrics except the conjured security level.
We could argue that this means that we initially chose the wrong default configuration
parameters. However, as mentioned in Section 6.2, we achieved even better performance
metrics when using the default configuration adjusting only the FRI maximum remain-
der degree. This demonstrated that the ’optimal’ configuration parameter values when
combined are not necessarily ’optimal’ at all and the combination of different parameters
forms a complex system of trade-offs. To truly inspect the impact of each parameter and
the best-performing configuration, in that case, would require more than benchmarking all
combinations of parameters. Just to benchmark all combinations of our selected individual
parameter changes would require benchmarking 8 ∗ 6 ∗ 7 ∗ 4 ∗ 7 ∗ 3 ∗ 3 = 84,672 configura-
tions. Considering all parameter values would significantly increase this value. Even then,
we would have benchmarked for just a single number of MiMC rounds, which as seen
from our benchmark can significantly influence the performance of the STARK protocol
implementation. And even at that point, we still would have only performed the bench-
marks on a single hardware configuration, while different hardware configurations may
benefit from different software configuration settings. Because of this, we still consider our
approach of choosing the initial configuration using parameter values somewhere in the
middle to be a safe choice, which enabled us to inspect the impact each parameter has on
the protocol performance. In addition, we observed that the proof size, verification time,



Information 2024, 15, 463 28 of 43

and conjured security level were not extremely different. Even the proof time, for which
our default number of queries of 42 was a bad pick, was reduced only six times by choosing
41 as the number of queries. While such performance improvement is not negligible, it
is sufficiently within an order of magnitude difference even though it constitutes a larger
improvement than the threefold improvement achieved by the combination benchmark.
Given that the zk-STARK protocol had a proof size more than an order of magnitude larger
than the second-largest proof size created by the Bulletproof protocol, not to mention that
the STARK implementation already showed the best performance for the proof time and
proof verification time, a more optimal configuration would ultimately not have altered our
conclusions. Therefore, we conclude that our findings are still valid, despite the sub-optimal
default configuration that we used for the zk-STARK protocol.

7.2. Research Question Answers

Based on the achieved results, we can now attempt to answer the research questions
from Section 1. The two research questions stated for this work are as follows:

1. What are the performance differences between the three included NIZKP protocols,
as observed from a real-world implementation of each protocol in an application that
is as equal as possible, expressed in efficiency and security level?

2. What use case contexts are most beneficial for each NIZKP protocol, given the unique
combination of its features and performance metrics?

The first question we can conveniently answer for the performance by using Table 9,
which includes the average performance for each protocol over the five benchmarks with
different numbers of MiMC rounds. We calculated the average using the original, exact
numbers and then rounded the average proof and verification times to three decimal places.

Table 9. Protocol comparison using the average performance over the five default benchmarks with
different MiMC rounds.

Protocol P (B) PT (ms) VT (ms)

Bulletproof 993.0 849.705 275.701
SNARK (Rust) 192.0 29.878 1.695
SNARK (Go) 484.0 18.155 2.351
STARK 28,388.4 14.384 0.232

From this table, we can observe that the SNARK protocol generates the smallest
proofs, whereas the generated proofs from the Bulletproof and STARK protocols are slightly
larger or significantly larger, respectively. This proved to be a significant disparity with
the proof and verification times, for which we observed the shortest average proof gen-
eration and verification times from the STARK protocol. The SNARK and Bulletproof
protocols took longer to create and verify their proofs. This observation answers the
research question regarding the performance aspect, yet it is not a comprehensive per-
spective on its own. The SNARK protocol, as implemented in our benchmark, required a
trusted setup. There exist situations where this is not desirable, as it requires trust in the
party that performs the setup. Similarly, the STARK protocol in our benchmark involved
limitations in using private data in the proofs, whereas for the Bulletproof protocol, we
did not apply some specific benefits not found in other protocols. We refer the reader to
other sections in this section for more discussion on this aspect. Given the limited avail-
ability of security level metrics from the libraries we used to implement the benchmark
applications, we were unfortunately, as likewise discussed in other sections in this section,
unable to answer the security level component of this question. While other sources for
these metrics indicated that the security level was comparative for the used configurations,
this was no guarantee and would require additional research and implementation work
to confirm.
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The second research question we answer in detail through our recommendations in
Section 8.2. To summarize: The zk-SNARK protocol is a good overall choice for perfor-
mance, granted that a trusted setup is conceivable for the specific use case. The small
proof sizes make the protocol particularly beneficial for Internet of Things (IoT) usage,
where notable storage, bandwidth, or processing power limitations apply. The Bulletproof
protocol is a viable alternative for the zk-SNARK in these applications when a trusted
setup is unacceptable and can furthermore be a great option for applications that require
proofs that values lie within a pre-determined range. This suitability, however, comes at the
cost of much larger proof creation and verification times, though the latter can be reduced
significantly when the application allows the batching of proof verifications. The zk-STARK
protocol, finally, is currently best applied to succinctly prove the correctness of computa-
tions. This makes the STARK protocol for example applicable to cloud computing and
distributed learning applications. The STARK protocol allows quickly generating the proof
for large statements, and is even quicker in verifying the generated proofs, though there
exists a significant trade-off in the substantial size of the generated proofs. Finally, the
zk-STARK protocol is the only viable option when the quantum resistance of the protocols is
an important requirement, given that the other two protocols use cryptographic primitives
that are not quantum-resistant.

With the research questions answered, we reflect on the aims and objectives mentioned
in Section 1:

1. To implement and evaluate the protocols in a practical setting, using a common
benchmark for a real-world use case.

2. To compare the efficiency and security of these three protocols, including their trade-
offs between efficiency and security.

3. To provide recommendations for the use of these protocols in different applications,
based on their strengths and weaknesses.

Regarding the first objective, we fully achieved it by considering that our benchmark
evaluated the protocols in a practical setting for a real-world use case. Regarding the
second objective, while we were able to compare the efficiency of the three NIZKP pro-
tocols, including their efficiency trade-offs, we were insufficiently able to do the same
for the security aspects of the protocols. Given the limitations of the libraries that we
used to benchmark the three protocols, we could only obtain the security level metrics
from a single protocol. While this work did include an attempt to complement these
metrics using expertise from works by other authors, this did not satisfy the compari-
son for the actual implementations that we had in mind. Somewhat consoling is our
inclusion of the security primitives and limitations for each protocol in Section 4, which
provided alternative insights into the security of each protocol that should partly offset
the limited security comparison in the practical setting. This aspect constitutes a potential
direction for future research. As for the third objective—we adequately look at this in
Section 8.2. While it was inconceivable to enumerate all potential applications best suited
to each protocol, we believe that we provided a fair number of categories and applica-
tions that constitute a thriving environment for each protocol. We leave the ideation of
other applications up to other researchers, which they can derive from the information
conveyed in this work, with the potential for them to unearth entirely new, unprecedented,
application categories.

7.3. Strengths

The main strength of this work lies in the benchmark procedure performed on the
three main NIZKP protocols: zk-SNARK, zk-STARK, and Bulletproofs. The benchmark
application that we implemented for this procedure was relevant to real-life applications
focusing on privacy preservation and authentication. Additionally, we performed the
benchmark using four existing general-purpose NIZKP libraries that allowed for general
applicability in all kinds of zero-knowledge-proof applications. This is an important aspect
of our work since these libraries enable using ZKPs in all kinds of applications without the
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extensive knowledge that would be required to securely realize a custom implementation
for one of the NIZKP protocols. Altogether, this means that our benchmark provides
a helpful indication of the performance differences between each ZKP protocol when
utilized. To the best of our knowledge, our work constitutes the first research that directly
compares the three main NIZKP protocols using results from an equivalent benchmark
implemented with existing general-purpose ZKP programming libraries. We argue that
our decision to use general-purpose NIZKP libraries increases the relevance of the obtained
benchmark results for researchers aiming to implement an application since the libraries
allow researchers to implement a ZKP into their application faster and more securely
without deep knowledge of the cryptography behind each protocol. In situations where
the overhead of general-purpose NIZKP libraries is known to be unacceptable, the exact
ZKP protocol that one should use is undoubtedly known. In the unlikely event that
this statement does not apply, the relative speed by which the general purpose NIZKP
libraries allow for the implementation of a ZKP will quickly surface this requirement from
the proof-of-concept implementation. Affected researchers can then pivot to a custom
NIZKP implementation, or different protocol altogether, without having wasted too much
research time.

In Section 7.1, we detailed some metrics that float around on the internet comparing
the three main NIZKP protocols, but we were unable to find the source of these metrics.
As a result, we could not determine which application they benchmarked and which
hardware and software they used in the process. This left us with uncertainty regarding
how the metrics were obtained. In contrast, one of the main strengths of our work is the
detailed documentation of the benchmarking procedure. Not only does this enable other
researchers to reproduce our efforts, but it also allows them to extend this research to fill
additional knowledge gaps and advance understanding of ZKPs.

Another strength of our work is that it not only provides a comparison benchmark
between the three main NIZKP protocols but also describes the cryptographic primitives
forming each protocol in Section 4. This not only allows researchers to gain insights
into the right ZKP protocol to use in their application regarding performance but also
provides them with a source for knowledge of the cryptographic primitives behind each
of the ZKP protocols. From our perspective, this makes our work an ideal starting point
for any researcher to obtain more knowledge of the three NIZKP protocols, especially
when they have the intent to utilize one of the three discussed NIZKP protocols for a
privacy-preserving application.

7.4. Limitations

In view of the strengths as discussed in Section 7.3, it is just as important to dis-
cuss the many limitations of this work. Discussing these limitations accentuates where
our work leaves something to be desired, and where other researchers can step in to
fill the knowledge gaps. Most of the limitations described in this section were a direct
result of the scoping of the work and the decisions we made in the process. Some of
these decisions were a compromise, where we deliberately accepted a limitation men-
tioned in this section to further increase one of the strengths of this work as mentioned in
Section 7.3.

The main limitation of this work is that the results obtained from the benchmark
do not necessarily indicate the performance of only the protocol. The metrics partially
reflect the performance of the ZKP implementation library, which may or may not be well
optimized, and to a lesser degree that of the programming language in which it is written.
This is a direct trade-off from our aim to benchmark a real-world implementation of an
application using zero-knowledge proofs, which necessarily involves an implementation of
each NIZKP protocol that can impact the performance. We further increased the impact
of the implementation on the protocol performance through our decision to benchmark
general-purpose NIZKP libraries. While we justified this decision by stating that this is how
most applications will implement ZKPs, through a general-purpose NIZKP library that re-
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moves the extensive knowledge requirement for a custom implementation, it meant that the
obtained performance metrics were even further removed from the theoretical performance
that the protocol could provide. We observed this impact firsthand when inspecting and
discussing the performance differences between the Rust and Go implementations of the
zk-SNARK protocol. These two libraries showed vastly different performances, even while
we ensured both used BLS12-381 elliptic curve [38] and the Groth16 backend [7]. To reduce
the impact of this limitation, we decided early on to implement the benchmark using a
library for each ZKP protocol written in the same programming language. As discussed
in Section 5, we chose the Rust language for this, while we also included a single library
in another language as a means for comparison. The comparison enabled us to show,
with numbers, how the library can impact the performance of a protocol, as discussed
in Section 7.1. While we expect this decision to have benefited the conclusiveness of the
obtained benchmark results, we also admit that we cannot guarantee this. There are simply
not enough libraries that implement zero-knowledge proof protocols to include multiple
libraries written in the same programming language for the same ZKP protocol in this
research. This is another limitation of our work, which other researchers have the potential
to rectify in the future when alternative NIZKP libraries have emerged for each protocol.
The comparison with metrics for each protocol circulating on the internet which we used
to show that our benchmark achieved comparable results, however, contributed to our
confidence that the overall performance observations from our benchmark were accurate
despite these limitations. It is crucial to address the limitations of our work, which high-
light areas for potential improvement and further research. These limitations often stem
from the scoping decisions made during this study, frequently as trade-offs to enhance
certain strengths.

Table 10 presents the primary limitations of our work and potential mitigations in
Table 11 that could be explored in future research.

Table 10. Primary limitations and potential mitigations.

Primary Limitations Potential Mitigations

Implementation dependency

Benchmark results are influenced by the performance of ZKP
implementation libraries and programming languages.
Relying on general-purpose NIZKP libraries means results
may differ from theoretical performance metrics.

Language and library variation
Primarily used Rust libraries and included a comparative
library in another language. The limited availability of ZKP
libraries restricted comprehensive testing.

Performance metrics

Metrics partially reflect library-specific optimizations and, to a
lesser extent, programming language efficiency. The scarcity of
libraries made it challenging to provide a
comprehensive comparison.

Scalability constraints
Evaluations were conducted on limited data sizes and
scenarios. Real-world applications might encounter scalability
issues not addressed in this study.

Security analysis scope
The study focused more on performance metrics than in-depth
security analysis. A detailed security evaluation could reveal
potential vulnerabilities and areas for improvement.

Resource limitations
Due to limited computational resources, the study could not
explore all potential configurations and optimizations for
each protocol.

Protocol-specific constraints
Certain protocols might have inherent limitations that were
not fully explored, such as proof sizes and verification times,
which could impact their applicability in specific use cases.



Information 2024, 15, 463 32 of 43

Table 11 Outlines the potential mitigations for the identified limitations.

Table 11. Potential mitigations.

Potential Mitigations

Broader library inclusion: Future studies could include a broader range of libraries, possibly across
multiple programming languages, to provide a more comprehensive performance assessment.

Library-specific benchmarking: Conducting detailed benchmarking for individual libraries and
their specific optimizations can help isolate and understand the performance impacts better.

Community contributions: Encouraging the development and optimization of more ZKP libraries
through community contributions could provide a richer dataset for future benchmarks.

Extended scalability testing: Future research should include extensive scalability testing on
larger datasets and more varied scenarios to identify potential bottlenecks and limitations in
real-world applications.

In-depth security analysis: A thorough security analysis of each protocol and library could help
identify vulnerabilities and areas for improvement, ensuring robust and secure implementations.

Resource allocation: Allocating more computational resources for extensive testing and
optimization can help achieve more accurate and reliable benchmark results.

Protocol enhancement: Further research on enhancing protocol-specific features, such as reducing
proof sizes and verification times, can improve their applicability and performance in diverse
use cases.

8. Conclusions

In this section, we conclude our research in which we performed a benchmark for the
zk-SNARK, zk-STARK, and Bulletproof ZKP protocols. First off, in Section 8.1, we recollect
the results from Section 6 and reiterate our key findings. Following our key findings, we
provide some recommendations on the utilization of NIZKPs that follow our benchmark
in Section 8.2. Subsequently, we provide some promising future research directions on all
kinds of NIZKP aspects that we would like to see realized in section Section 8.3. In drawing
things to a close, we finalize our work by providing a conclusion with some final remarks
in Section 8.5.

8.1. Key Findings

In this section, we concisely reiterate the key takeaways from our NIZKP protocol
benchmark. For more in-depth findings, we refer the reader to Sections 6 and 7, correspond-
ing to the results and discussion sections. We first recollect the results of the performance
metrics found for all three NIZKP protocols, averaged over the five benchmarks on different
numbers of hash rounds, listed in Table 9. From this table, we clearly observed that the
SNARK protocol generated the smallest proofs, while the STARK protocol generated by
far the largest proofs. Regarding the proof generation and verification times, the STARK
protocol was faster in both metrics than the two SNARK protocol implementations, while
the Bulletproof protocol turned out to be by far the slowest for these metrics. Furthermore,
we observed these findings to be analogous to the externally found protocol comparison
for which we could not determine how they were benchmarked, included for reference in
Table 8. The exception to this equivalence was the protocol ordering in the proof verification
times between the SNARK and STARK, which switched places in our results. Given that
the absolute difference between these reversed metrics was small for both our results and
the external results, especially compared to the difference with the Bulletproof protocol,
this does not constitute an alarming difference.

With all configuration settings in the zk-STARK protocol library, we found it sensible to
benchmark the performance differences between these configurations. While we discovered
that our default configuration may not have been optimal, we remarked that this realistically
did not impact the conclusion from the comparisons between the protocols. Furthermore,
we observed that the configuration parameter values which were individually optimal did
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not exactly provide the best possible performance when combined. We claimed this to be a
result of the complexity of the inner workings of the protocol. We suggested evaluating
several configurations that fit the context when utilizing zk-STARKs in an application
use case.

Regarding the security level of the protocols, we identified evidence that the perfor-
mance on this aspect between the protocols did not deviate from our chosen configura-
tions. With that said, this finding was inconclusive given that three of the four protocol-
implementing libraries did not include a method to obtain such a security-level metric.
As such, we had to supplement our findings with complementary data from research works
by other authors.

Benchmarking Considerations and Variability

In conducting performance benchmarks for cryptographic protocols, several factors
can influence the results, which must be carefully considered to ensure the accuracy and
relevance of the findings. Two critical aspects that can introduce variability in benchmarking
results are the optimization levels of different implementations and the hardware/software
platforms on which the benchmarks are executed.

• Implementation Variability:
Different implementations of the Minimized Multiplicative Complexity (MiMC) hash
function, or any cryptographic algorithm, may exhibit significant differences in per-
formance due to variations in optimization strategies. Implementations may be
optimized for specific hardware architectures, programming languages, or software
environments, leading to discrepancies in performance metrics. For instance, optimiza-
tions such as loop unrolling, parallel processing, or efficient memory access patterns
can impact the speed and resource utilization of the MiMC function. Consequently,
benchmarks conducted using different implementations of the same algorithm might
yield varying results, making it crucial to evaluate the specific characteristics and
optimizations employed by each implementation.
To address this issue, we have implemented a comprehensive evaluation framework
that includes multiple implementations of equivalent MiMC hash function algorithm
implementations. By benchmarking these implementations under controlled condi-
tions and examining their performance characteristics, we aim to provide a more
nuanced understanding of how optimization impacts the results. We acknowledge
that while our benchmarks offer valuable insights, they may still be influenced by the
inherent differences in implementation approaches. Future research should focus on
standardizing benchmarks across a broader range of implementations and exploring
the impact of different optimization techniques on performance metrics.

• Hardware and Software Platform Variability: Benchmark results can also be signifi-
cantly affected by the hardware and software platforms on which they are executed.
Variations in processor architecture, memory hierarchy, and system load can introduce
discrepancies in performance measurements. For example, benchmarks conducted
on different types of processors (e.g., CPUs vs. GPUs) or across different operating
systems may exhibit divergent results due to differences in computational capabilities,
memory access speeds, and system overhead.
To mitigate the impact of platform variability, we have standardized our benchmarking
environment as much as possible. We conducted our benchmarks on a consistent
hardware setup and used a uniform software configuration to minimize external
influences on the results. However, given the inherent variability of hardware and
software platforms, it is challenging to achieve absolute comparability across all
possible configurations. Therefore, it is essential for future research to include a
broader range of hardware and software environments in benchmarking studies and
to report detailed platform specifications to enable more accurate comparisons.
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By addressing these considerations, we aim to provide a more robust and compre-
hensive analysis of the performance of the cryptographic protocols under investigation.
We encourage further research to explore the impact of implementation optimizations and
platform variability on benchmarking results to enhance the reliability and applicability of
performance evaluations in cryptographic research.

8.2. Recommendations

Reflecting on the obtained results from Section 6, and the discussion that subsequently
ensued in Section 7, in this section we strive to provide some recommendations on which
application contexts we would recommend utilizing each protocol.

We start with the zk-SNARK protocol. The two implementations for this protocol showed
the smallest proof sizes, in addition to the proof size itself being constant. The small proof size
makes this protocol a great contender for applications where either storage space is limited,
or where the network connection has a restricted capacity or transfer speed. An example
of a situation where storage space is limited is in blockchain systems, for which we can see
the zk-SNARK protocol already in use, e.g., in Zcash [43]. Limited network connections, on
the other hand, are a reality for Low Power Wide Area Networks (LPWANs), often used
in Internet of Things (IoT) applications and sensor networks where the devices are in a
remote location and have low power requirements [44]. The small and constant size of the
SNARK proofs, especially those created by the Rust implementation, make the zk-SNARK
protocol a good protocol to consider for these kinds of applications. Furthermore, as the
benchmark, creating a SNARK proof is not much more compute-intensive than creating
a STARK proof, which is beneficial for the IoT application where devices and sensors are
often low-powered devices with little computing power. The most important consideration
to make before applying the zk-SNARK protocol, even for these applications, is whether
the requirement for a trusted setup is acceptable. There are sparks of hope to apply the
zk-SNARK protocol in situations where a trusted setup is unacceptable. Researchers have
recently created new SNARK backend techniques, including Supersonic [45] and Halo [46],
which do not require a trusted setup in certain situations. Zcash currently uses a Halo 2
zk-SNARK backend [46] in their network, which according to them eliminates the trusted
setup requirement. As it currently stands, however, the trusted setup is a definite requirement
in the Groth16 backend implementation used by both the Rust and Go zk-SNARK protocol
libraries benchmarked in this work. Therefore, we recommend investigating the use of the
zk-SNARK protocol for applications where the proof size is a key factor, including blockchain
and IoT applications, yet to ensure that the trusted setup requirement to obtain a CRS is not a
hindrance in said application.

For applications in which a trusted setup is not an option, the Bulletproof protocol
offers a viable alternative. Bulletproof proofs are not considerably larger than SNARK
proofs, especially when compared to STARK proofs. Unlike the SNARK proofs, though, the
size of the Bulletproof proofs is not constant. A further downside for the applicability of the
Bulletproof protocol is the much larger proof creation and verification times than in the two
other protocols, which furthermore increase more rapidly as well with the size of the compu-
tation. At present, this makes the Bulletproof protocol less suitable to apply to low-compute
IoT environments. In applications where aggregation of proof and batch verification, as
discussed in Section 7.4, is possible, the proof size and especially the verification times can
however be significantly reduced. This is beneficial in situations where a single prover must
create the proof, but many verifiers need to verify that proof. This applies for example when
proving and verifying transactions in blockchains, for which e.g., the Monero network [47]
already applies the Bulletproof protocol. The Bulletproof protocol has yet another benefit,
not visible in our benchmark since we use R1CS proofs, in that it specializes in range proofs.
This allows the Bulletproof protocol to be especially beneficial and performant in appli-
cations that use ZKPs to prove that a certain value lies within a pre-determined interval.
In general, applications that benefit from such a range of proofs include financial trans-
actions, income checks, and age verification. There are, however, many more specialized
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uses for range proofs, including genomic range queries [48]. In brief, we recommend that
the Bulletproof protocol could be a viable alternative to the SNARK protocol in situations
where a trusted setup is undesirable, where the proof creation cost is not a limiting factor, or
where proof is verified frequently after it is created once. Furthermore, we recommend in-
vestigating the use of the Bulletproof protocol specifically where the proof must prove that
a value is inside of a pre-determined range, a use case in which Bulletproof range proofs are
particularly good.

Finally, there is the zk-STARK protocol. Given the proof size which, in our benchmark,
was at least an order of magnitude larger than that for the other two protocols, we can
only recommend the use of the STARK protocol for applications where the proof size is not
important. An example where the proof size is unlikely to be important is in the context of
cloud computing, data centers, or machine learning. In that application context, ample stor-
age space and network capacity are available, and datasets used as input to calculations can
be extremely large to begin with. In return for the large proof sizes, we observed a low proof
creation time and especially short proof verification time compared to the other protocols
in our benchmark. These small proof and verification times become especially useful when
applied to large computations as performed in data centers and machine learning. This
applicability factors into the zk-STARK protocol in general, and to an even greater degree
for the Winterfell library used in our benchmark. Currently, this library does not implement
perfect zero-knowledge, instead, the library aims to enable succinctly proving computa-
tions. This makes it hard to securely implement applications where the proof proves a
statement on confidential data, as the generated proof could leak the data. This is a signif-
icant distinction from the Bulletproof and zk-SNARK protocol implementations, which
do intend to guard against the verifier obtaining confidential information. For the reasons
listed above, we recommend considering the zk-STARK protocol, and specifically the Win-
terfell library, in situations where the application uses ZKPs to ensure the correct execution
of a computation in a succinct manner. This includes but is not limited to, machine learning,
distributed or multi-party computations, and verifiable computing applications, e.g., in
the cloud.

This brings us to our final advice when contemplating which NIZKP protocol and
library to use for a given application context. We recommend, where possible, creating
a proof of concept for the desired application using multiple libraries implementing the
same protocol. When in doubt between multiple protocols, try them all in a way that
is representative yet does not cost a lot of time. This recommendation stems from two
observations: first, the challenges we had in applying the three protocols to a single, equiv-
alent, application. Second, the Rust and Go libraries both implement the same Groth16
SNARK protocol [7], yet exhibit different performance metrics, particularly regarding the
size of the proving and verifying keys in the CRS. Furthermore, we not only recommend
trying out multiple protocols and multiple libraries for the same protocol, but we also
advocate attempting different methods to utilize ZKPs in the application. Specifically, when
using the STARK protocol, Furthermore, we recommend evaluating the performance for
several configurations to see which best achieves a pre-determined set of objectives for
the application. All these tests can lead to vastly different performance metrics, which
could make or break the usability of NIZKPs in an application context. While we under-
stand that this recommendation requires a considerable time investment, we hope that
our work can reduce this time investment by serving as a knowledge base to limit the
amount of experimentation required to find the right NIZKP protocol that best fits the
application needs. Table 12 provides protocol-specific recommendations, while Table 13
summarizes which protocols we would consider optimal for several applications. In ad-
dition to protocol-specific recommendations, we provide general recommendations in
Table 14.
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Table 12. Protocol-Specific Recommendations.

Protocol Recommendations

zk-SNARK Ideal for applications with limited storage or network capacity, such as blockchain
systems and IoT networks. Suitable for low-power devices due to relatively low
proof creation costs compared to alternatives. Consider the trusted setup requirement
and explore emerging techniques like Supersonic and Halo. Additionally, zk-SNARKs
are beneficial for scenarios requiring frequent proof generation and verification due
to their efficiency. It is also recommended to monitor advancements in zk-SNARK
optimizations to leverage the latest improvements.

Bulletproof Offers a viable alternative when a trusted setup is not feasible. Effective for range
proofs, beneficial in financial transactions, income checks, and age verification.
Applicable in scenarios where proofs are verified frequently, such as blockchain
transactions. Bulletproofs are advantageous in environments where the size of
proofs needs to be kept minimal without compromising security. Continued
research into optimizing Bulletproof algorithms can enhance their performance
and applicability.

zk-STARK Recommended for applications where proof size is not a critical factor, such as
cloud computing, data centers, and machine learning. Low-proof creation and
verification times make it suitable for large computations. Confidentiality concerns
with the Winterfell Library should be considered. zk-STARKs are especially useful in
environments where scalability and quantum resistance are paramount. Researchers
should explore zk-STARKs for applications requiring massive data processing and
high throughput.

Table 13. Comparison of applications and the optimal protocol to use.

Application Protocol Reason

Low-power wide area networks
(LPWANs), including
sensor networks

zk-SNARK Small proofs for limited storage and network
bandwidth situations

Internet of Things (IoT) zk-SNARK Relatively fast-proof generation for low-power
processors, especially for battery-constrained
devices

Blockchains zk-SNARK Small proofs keep the accumulated size of the
ledger smaller

Applications with existing trust
relations, for example between
patients and hospitals

zk-SNARK Existing trusted relations (e.g., hospital) can
perform the required trusted setup (e.g.,
between the patient and an external laboratory)

Financial audits, including on
liability and transactions

Bulletproof No trusted setup, fast proofs especially for
financial ranges

Digital currencies Bulletproof Relatively small proofs without trusted setup

Fixed range applications,
including reviews (1–5 stars)

Bulletproof Bulletproofs optimize proofs for ranges by
reducing the frequency of opening
commitments

Cloud computing zk-STARK Proving large computations are fast, while
proof sizes are not important because of data
center storage availability

Artificial intelligence (AI),
machine learning,
distributed learning

zk-STARK Fast proofs, and verifications are important
when performed in many iterations or by
many verifiers, large datasets and models
make proof sizes unimportant

Quantum critical applications zk-STARK The only protocol that is considered secure
against quantum threats
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Table 14. General recommendations.

Proof-of-concept implementations: We recommend creating proof-of-concept implementations using multiple
libraries and protocols to identify the best fit for a specific application. Testing different configurations can
significantly impact performance metrics, influencing the practical usability of NIZKPs. These implementations
should focus on real-world scenarios to ensure the protocols meet practical needs.

Experimental configurations: Different configurations should be evaluated to achieve the best performance for
the application. This involves trying various protocol settings and library optimizations. It is important to
document these configurations to facilitate reproducibility and further research.

Collaboration and knowledge sharing: Encourage collaboration between researchers and practitioners to
share knowledge and experiences in implementing and optimizing NIZKP protocols. This can lead to a better
understanding and improvements in protocol performance and applicability. Collaborative platforms and
regular workshops can foster such engagements.

Education and training: Providing education and training for developers and engineers on the implementation
and use of NIZKP protocols can enhance their adoption and effective use in various applications. This includes
developing comprehensive training materials and courses to build expertise in the community.

Standards development: Developing industry standards for implementing and benchmarking NIZKP
protocols can facilitate their widespread adoption and ensure consistency in performance evaluation across
different studies. Standards can also aid in establishing best practices for security and efficiency.

Adoption of hybrid approaches: Consider hybrid approaches that combine multiple NIZKP protocols to leverage
their respective strengths. For instance, zk-SNARKs could be used for efficiency, while zk-STARKs provide
scalability and quantum resistance. Such hybrid solutions could offer more robust and versatile applications.

Continuous monitoring of advances: Stay updated with ongoing research and advancements in the field of
ZKPs. Regularly revisiting and integrating new findings can ensure the solutions remain at the cutting edge
and address evolving security and performance requirements.

8.3. Future Directions

With the results, discussion, strengths, limitations, and recommendations out of the
way, we will now provide some suggestions for future research directions.

First, we would like to suggest research that compares many different programming
libraries implementing the same NIZKP protocol. These libraries could be written in differ-
ent programming languages, as long as the implemented protocol is the same. This would
not only better indicate the differences between several libraries than we did in our compar-
ison since that was not our main goal, but it would also provide a nice overview for anyone
wanting to implement a given protocol in an application using a library. The comparison
could not only compare the performance of the protocols but also the features that each
implementation includes. In addition, a comparison of different libraries implementing an
identical protocol would have an easier time implementing a more detailed and interesting
application for the benchmark. The direct result of such a benchmark would be that it
provides visibility to the specialization of the protocol more than our benchmark did. We
believe that research performing the described comparison is valuable to read for anyone
who has the goal to utilize that specific NIZKP protocol in any given application.

Second, we think it would be interesting for future researchers to examine whether
our initial benchmark application idea of implementing ZKAttest, as introduced by Faz-
Hernández et al. [13], for all three NIZKP protocols, would be doable after all. Our research
as described did not have the capacity to implement this application, yet any research could
easily extend our current benchmark with the results of a benchmark for such an application.
Such an addition would provide an even better idea of the real-world performance to expect
from each protocol and matching libraries.

Third, we believe there is room for more research into new and improved NIZKP proto-
cols. Researchers have performed vast amounts of research on NIZKP protocols in the past
few years, with the Bulletproof protocol [9] and FRI underlying the STARK protocol [49]
originating only in 2017. Work on the zk-SNARK protocol has not been dormant either,
with the introduction of Sonic [50], Supersonic [45], Halo [46], and Halo 2. Zcash currently
uses a Halo 2 zk-SNARK backend in their network, which, according to them, eliminates
the trusted setup requirement [46]. Even the Groth16 SNARK scheme [7], which originated
in 2016 and is widely implemented in SNARK libraries, is continuously improved upon;
for example, see Section 7. Section 7.4 mentions work by Gailly et al. [51] from 2021, which
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introduced aggregation for Groth16 proofs. As we found in this research, however, in
practice, implementations understandably lag research. Furthermore, there is still a vast
number of limitations and performance implications that anyone utilizing NIZKPs to prove
knowledge or computations in their application must deal with. We expect that future
research works can resolve more of these limitations, which would open opportunities to
gain benefits from using the ZKP protocols in applications without the current downsides.
For this reason, we argue that more research on NIZKP protocol improvements would
benefit the ZKP ecosystem.

Fourth, as mentioned in the limitations to our work in Section 7, our work was
unable to compare in detail the actual security level of most of the benchmarked protocol
implementations. This leaves us with questions on which of the three protocols is most
secure. Therefore, we indicate this aspect could be researched in-depth in future work.

Fifth and last, we recommend a future research direction into the establishment of
benchmarking standards for ZKP applications. We anticipate that introducing such a
standard would make it easier to compare research on applications implementing ZKPs
when the authors of these works benchmarked their application and followed the set
standard while doing so. Furthermore, we anticipate that an established benchmark
standard would entice implementing libraries to implement functionality to obtain the
metrics defined in this benchmarking standard, which would make it even easier for
researchers who implement an application using such a library to include the standardized
ZKP metrics for comparison. While we do not expect a standard to be all-encompassing, nor
do we expect every researcher to embrace it, we would still consider it an improvement over
the current situation in which comparing the performance of ZKP protocols in applications
is a complex endeavor.

Alternative Zero-Knowledge Proof Protocols

In addition to zk-SNARK, zk-STARK, and Bulletproofs, other non-interactive zero-
knowledge proof implementations offer various advantages depending on application
requirements. All proof systems, except for zk-SNARG, are considered to be alterna-
tive zk-SNARK constructions to the Groth16 implementation benchmarked in this work.
This section provides a detailed comparison of these alternatives, including their strengths,
weaknesses, quantum resistance, and preferred applications. Table 15 summarizes the key
characteristics of these systems.

Table 15. Comparison of alternative zero-knowledge proof protocols.

Protocol Main Advantages Strengths Weaknesses Quantum
Resistance Preferred Applications

zk-SNARG No trusted setup,
efficient verification

Avoids trusted
setup, faster
verification than
Bulletproofs

Less mature compared
to zk-SNARK and
zk-STARK

Vulnerable to
quantum attacks

Applications requiring
rapid verification

PLONK
Universal and
updatable setup,
efficient proofs

Flexible with
updatable setup,
efficient proof size

Computational
overhead for
universal setup

Vulnerable to
quantum attacks

Large-scale applications
needing flexible setups

Sonic
Universal and
updatable setup,
fast verification

Universal trusted
setup, fast
verification times

Complexity in
implementation

Vulnerable to
quantum attacks

Applications needing
fast verification without
trusted setup

Halo
No trusted setup,
supports
recursive proofs

Eliminates trusted
setup, scalable
recursive proofs

Computational
overhead for
recursive proofs

Vulnerable to
quantum attacks

Scalable applications
requiring
recursive proofs

Ligero
Optimized for large
statements, no
trusted setup

Handles large
statements
efficiently, no
trusted setup

Performance
degradation with
small statements

Vulnerable to
quantum attacks

Large-scale
computations with no
trusted setup
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Table 15. Cont.

Protocol Main Advantages Strengths Weaknesses Quantum
Resistance Preferred Applications

Spartan
Balanced efficiency
in proofs and times,
no trusted setup

Balanced trade-off,
no trusted setup

May not be the fastest
for all applications

Vulnerable to
quantum attacks

General use with
balanced efficiency

RedShift No trusted setup,
efficient proof size

Eliminates trusted
setup, efficient
proof sizes

Relatively new with
limited real-world
application

Vulnerable to
quantum attacks

Emerging applications
needing no trusted
setup

Table 15 provides a comprehensive comparison of various zero-knowledge proof
protocols, integrating quantum resistance to give a complete overview of each protocol’s
characteristics and suitability for different applications. Future research should consider
these aspects to identify and develop more resilient cryptographic solutions.

8.4. Quantum Resistance of NIZKP Protocols

The advent of quantum computing poses a significant challenge to the field of cryptog-
raphy. As quantum computers become more powerful, they could potentially break many
of the cryptographic assumptions that current cryptographic protocols rely on. NIZKPs are
no exception. This section discusses the quantum resistance of the three primary NIZKP
protocols analyzed in this study: zk-SNARK, zk-STARK, and Bulletproof.

8.4.1. zk-SNARK Protocol

The zk-SNARK protocol, while efficient in terms of proof size and verification time,
relies on cryptographic assumptions that are vulnerable to quantum attacks. Specifically, zk-
SNARKs are built upon elliptic curve cryptography and the hardness of certain problems,
such as the discrete logarithm problem. Quantum computers have the potential to solve
these problems efficiently using Shor’s algorithm, thereby compromising the security
of zk-SNARKs.

Key points:

• Elliptic curve cryptography: zk-SNARKs often use elliptic curves, which are suscepti-
ble to quantum attacks due to Shor’s algorithm.

• Discrete logarithm problem: The security of zk-SNARKs is partially based on the
difficulty of solving the discrete logarithm problem, which can be efficiently solved by
quantum computers.

• Current mitigations: While zk-SNARKs are not quantum-resistant, research is on-
going into post-quantum cryptographic methods that could be used to secure these
protocols in the future.

8.4.2. zk-STARK Protocol

In contrast to zk-SNARKs, zk-STARKs are designed to be quantum-resistant. zk-
STARKs leverage hash functions and other cryptographic primitives that are not vulnerable
to known quantum algorithms, such as Shor’s algorithm. This inherent resistance to
quantum attacks makes zk-STARKs a promising choice for future-proof applications.

Key Points:

• Hash functions: zk-STARKs use hash functions, which are currently believed to be
resistant to quantum attacks.

• No trusted setup: Unlike zk-SNARKs, zk-STARKs do not require a trusted setup,
adding another layer of security.

• Future-proofing: The quantum resistance of zk-STARKs makes them suitable for
long-term security considerations.
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8.4.3. Bulletproof Protocol

The Bulletproof protocol is specifically optimized for efficient range proofs, even
though it can also generate general proofs for any rank-one constraint system (R1CS)
without a trusted setup. While the Bulletproof protocol is susceptible to quantum attacks
using Shor’s algorithm, this breaks the anonymity of the protocol while the soundness of
the protocol is expected to remain intact.

Key Points:

• Anonymity: Bulletproofs use a sophisticated version of calculating inner proofs which
allows them to reduce the number of times a commitment needs to be opened when
creating range proofs. This provides it with performance benefits in range proofs
while being able to generate general proofs for any R1CS as well as using the same
inner proofs. However, the algorithms used in the Bulletproof protocol will not protect
and be able to hide the data inside the proofs against quantum attacks, leaving the
anonymity of the proof system vulnerable to quantum attacks.

• No trusted setup: Bulletproofs have an advantage over zk-SNARKs in that they do
not require a trusted setup in order to generate a common reference string (CRS).

• Use cases: Bulletproofs are suitable for applications but may not be useful in situations
where the anonymity of data must remain guaranteed in a future where sufficiently
powerful quantum computers are widely available. Even so, the verifier can rest
assured that the soundness of the proof system remains valid.

8.4.4. Future Proof

Given the potential of quantum computing to disrupt current cryptographic protocols,
it is essential to consider quantum resistance in the selection of NIZKP protocols for future
applications. Future research should focus on the following areas:

• Post-quantum cryptography: Investigate the development of post-quantum crypto-
graphic methods that can be integrated into zk-SNARKs to enhance their resistance to
quantum attacks.

• Protocol adaptation: Explore adaptations of existing protocols to improve their quan-
tum resistance without significantly compromising their efficiency.

• Standards development: Support the development of standards for quantum-resistant
cryptographic protocols to guide the industry toward future-proof solutions.

• Benchmarking quantum resistance: Establish benchmarking methods to assess the
quantum resistance of various cryptographic protocols, including NIZKPs.

As quantum computing technology advances, it is crucial to ensure that cryptographic
protocols remain secure against these emerging threats. By focusing on quantum resistance,
researchers and practitioners can develop more robust and future-proof cryptographic solutions.

8.5. Last Word

In this research, we designed and implemented a benchmark to compare the three NIZKP
protocols, zk-SNARK, zk-STARK, and Bulletproofs, in a real-world setting. To achieve this,
we designed a single benchmark application that incorporates privacy-preserving authenti-
cation uses. The application we decided on, after deliberating some other options, was to
implement a MiMC hash with a variable number of rounds. After describing the method-
ology for this work, we provided a concise description of the mathematical primitives
underlying each protocol. This description included the security assumptions they made, as
well as the vulnerabilities and limitations present in each. By providing this information we
aimed to supply readers with sufficient information to understand the basic workings that
enabled their functionality and established their characteristics. By additionally describing
previous ZKP vulnerabilities and how to prevent or resolve them, we strengthened the
idea that deciding which protocol to use is not always a performance-related proposition.
Our intention for this was to reinforce the notion that security and privacy are central to im-
plementing NIZKP protocols in actual production-ready applications. With the primitives
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clarified, we commenced by implementing the benchmark application. We implemented
the application equally for each protocol using existing general-purpose NIZKP libraries,
namely Bellman [30] for the SNARK protocol, Winterfell [33] for the STARK protocol,
and Bulletproofs [29] for the Bulletproof protocol. All three libraries were written in the
Rust programming language. On top of that, we implemented the same application using
the gnark zk-SNARK library [43] written in the Go programming language. We decided
on this additional implementation to compare the performance differences between two
NIZKP libraries implementing the same protocol yet written in a different programming
language. We benchmarked all implementations using a default configuration. Afterward,
we benchmarked just the zk-STARK protocol, altering a single configuration parameter
at a time. Inspecting the results then allowed us to determine the performance impact of
altering this parameter. The results from conducting the benchmark indicated the following
performance characteristics: The SNARK protocol proofs were the smallest, in addition to
being constant. The Bulletproof proofs were slightly larger, whereas the STARK protocol
created by far the largest proofs. Neither the Bulletproof nor the STARK proofs were
constant in size, and both increased with the number of hash rounds. The proof times
for the SNARK and STARK protocols were comparable, with the STARK creating a proof
faster overall. The Bulletproof protocol was much slower in creating proofs, which only
worsened with an increasing number of hash rounds. We observed a similar pattern to the
proof creation for the verification times, with the remark that we did not apply any form of
batch verification in our benchmark. In the subsequent sections, we discussed the collected
results and described the strengths and limitations of our research. While our research had
several limitations, we argued that these resulted from the choices we had to make for our
benchmark and that these limitations did not invalidate the results. Moreover, the strengths
resulting from those decisions outweighed the induced limitations. In the last section of
this work, we wrapped up our research by providing recommendations on the strengths of
each benchmarked protocol and described the application contexts in which each protocol
would prosper. We explained that the SNARK protocol would be the best protocol for
applications that benefit from small proofs when the requirement for a trusted setup is not
a critical issue. In situations where a trusted setup is undesirable, the Bulletproof protocol
provides similarly sized proofs, at the cost of a higher proof creation and verification time.
The Bulletproof protocol is furthermore beneficial for its specialization in range proofs,
though we only benchmarked Bulletproof R1CS proofs in this work. Finally, we found
the zk-STARK protocol to be most advantageous in application categories where large
proof sizes are not a problem, whereas quick proof generation and verification times are
convenient. We indicated that verifiable computation and machine learning are examples of
such application categories, which the Winterfell library cemented by focusing on succinct
proofs of computation, unlike the other two protocol libraries.

Ultimately, we expect our research to be useful for anyone looking into the use of
non-interactive zero-knowledge proofs for an application. We consider our work to be
an excellent starting point from which to obtain knowledge about the mathematical and
cryptographic primitives that formed the three main NIZKP protocols and their analogous
real-world performance aspects to consider.
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