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Abstract: Handloom textile products play an essential role in both the financial and cultural land-
scape of natives, necessitating accurate and efficient methods for authenticating against replicated
powerloom textiles for the protection of heritage and indigenous weavers’ economic viability. This
paper presents a new approach to the automated identification of handloom textiles leveraging a
deep metric learning technique. A labeled handloom textile dataset of 25,166 images was created by
collecting handloom textile samples of six unique types, working with indigenous weavers in Assam,
Northeast India. The proposed method achieved remarkable success by acquiring biased feature
representations that facilitate the effective separation of different fiber types in a learned feature
space. Through extensive experimentation and comparison with baseline models, our approach
demonstrated superior efficiency in classifying handloom textiles with an accuracy of 97.8%. Our
approach not only contributes to the preservation and promotion of traditional textile craftsmanship
in the region but also highlights its significance.

Keywords: handloom; textile; classification; deep metric learning (DML); VGG; triplet margin loss;
feature extraction

1. Introduction

Handloom textiles hold immense cultural and artistic value because of their intricate
weaves, vibrant colors, and rich textures. Different nations shares the pride and com-
mitment to preserve their handloom histories. Handloom customs are valued for their
exquisite workmanship and age-old methods that constitute an integral element of a coun-
try’s cultural identity and history. Assam, located in the northeastern part of India, boasts a
rich cultural heritage deeply intertwined with its handloom industry [1]. It becomes an
integral part of the cultural heritage, contributing significantly to the region’s socioeco-
nomic landscape. The looms Figure 1a are used as a textile apparatus that is designed to
mechanize the weaving process by intertwining two sets of threads, known as warps and
wefts. Assam has a significant impact on the textile sector, accounting for 15% of country’s
industrial production and approximately 30% of global exports from India [2]. According
to the 4th National Handloom Census conducted in 2019–2020, Assam’s handloom industry
employs 1.28 million household weavers and over 1.16 million handloom workers. Ac-
cording to department records of 2017 [3], 4012 handloom weaver cooperative societies are
regulating around 0.211 million active independent operating looms. Indeed, it represents
the second-largest employer after the agricultural sector. A traditional weaving loom, along
with a textile sample, is shown in Figure 1. Assam handloom cloth encompasses a diverse
range of textures and appearances with its own unique characteristics [4].

In the handloom market, native handloom products are fighting an existential battle
with the counterfeit producers for their variety. Due to this, consumers are deceived into
spending significantly more on these replicas. The existence of uniqueness becomes a
challenging factor for comparable products with similar structural and raw material speci-
fications to emulate. For the handloom industry [5] to survive, it is therefore imperative to
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accurately identify different handloom textiles for quality assurance, product authentica-
tion, and market competitiveness. Conventional identification approaches are also known
for their time-consuming nature and susceptibility to subjective human biases, as well as
the physical and psychological strain they impose due to their manual nature. Moreover,
they often suffer from inefficiencies. The constrained are limited to ensure stability, and
fault tolerance in textile identification remains a challenge. “Sualkuchi: textile center of
Assam” [6] is situated about 35 km from the state capital of Guwahati, Assam. Its strategic
location on the banks of the mighty Brahmaputra river has historically facilitated trade and
transportation, contributing to its growth as a prominent center for silk weaving. The town
is renowned for its production of Muga silk, the golden silk indigenous to Assam, as well as
Eri silk and Pat silk. During our visit to this place for survey and data collection, we found
that there is only one testing lab, which led to slowing down the entire process. Therefore,
there is a growing need for automated identification solutions that can leverage advanced
technologies to streamline the process while upholding the integrity and authenticity of
handloom textiles.

(a) (b)

Figure 1. (a) Assam weaving loom operated by a native woman and (b) a handloom textile sample.

With advancements in technology, particularly in computer vision, machine learning,
and spectroscopy, automated and semiautomated techniques for textile classification have
emerged as promising alternatives. In recent years, Deep Learning (DL) has emerged as
a transformative force in various fields, revolutionizing the way we approach complex
pattern recognition and image analysis tasks. We are utilizing the capability of a DL
model to handle the difficulties of manually identifying handloom textiles using our own
labeled image dataset. Although there are many state-of-the-art methods available for
fabric classification, there is still a crucial need for a new approach specifically designed
for handloom fabrics. Some existing traditional techniques such as Discrete Wavelet
Transform [7], LS-SVM [8], and many others have notable drawbacks, including the loss
of spatial information and high computational costs for hyperparameter tuning, and
are limited by noise data and potential biasness. Some of the approaches struggle with
capturing intricate patterns and texture variations effectively. Deep learning models, such as
DCNNs [9], Faster-RCNN [10], and FabricNet [11] lack explicit control over feature weights,
as well as face computational inefficiencies and challenges in selecting key features. Given
the unique and diverse nature of handloom fabric patterns, a specialized classification
method is needed for classifying different handloom fabrics to overcome these limitations.
Such an approach would enhance accuracy, efficiency, and robustness in classification,
thus preserving cultural heritage and contributing to advancements in textile technology.
The following is a summary of the main contributions made by our work:

• We are the first to create our own labeled handloom textile image dataset consisting of
six classes, i.e., Pure Pat, Kesa Pat, Nuni Pat, Pure Muga, Toss Muga, and Dry Toss Muga.
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• We have developed a modified deep matric learning model to extract in a combined
manner the features from the input sample, enabling them to capture subtle variations
in handloom textures and patterns and classify them to their labeled classes.

• We compared our proposed method with the state-of-the-art techniques in-terms of
precision, recall, F1-score, and accuracy.

The paper is organized as follows: a literature review of various existing methods
and their limitations is described in Section 2. Section 3 provides a brief description of the
proposed method, including dataset development details. The explanation of experimental
results and their visualization are in Section 4. At last, the paper is concluded in Section 5.

2. Literature Survey

Although artificial intelligence (AI) is widely used in many industries, the implemen-
tation of AI in the textile manufacturing industry is limited. According to observations,
the initial stage of work began in 2005 [12], when 30 microscopic photographs of cotton
materials with a plain weave were taken to calculate porosity. Scientists found that the more
important pore dimensions of unfastened textiles resulted in higher light transparency
relative to tighter ones when assessing textile porosity through the utilization of image
analysis techniques. In the following work, which was published in 2010 [7], researchers
applied the discrete wavelet transform (DWT) to generate and store first-order statistical
data like mean and standard deviation. To identify any type of textile, the resultant output
was examined with the value of the reference image. Here, the study used image analysis
tools to locate and detect faults in a handloom textile. A survey of existing computer vision
technology in 2011 was done to analyze textile texture [13].

In another study [14], machine learning (ML) was applied in order to distinguish
various items depending on surface texture, including wood, sponge, tiles, carpet, flooring
vinyl, and PVC woven mesh. A number of ML methods, including decision trees, naive
Bayes, and naive Bayes trees were trained to discriminate between textures detected by an
artificial finger that was inspired by biology. The authors furthered the development [15],
which was published in 2014, creating a revolutionary transform method using fabric
yarn patterns dataset. The edge-based method was implemented on the warp and weft of
three different types of yarn-dyed cotton using twenty-four microscopic picture samples. It
outperformed the gray projection method, particularly in cases where the fabric surface
had long hairiness. In 2015 [16], 450 distinct textured photos of various cloth materials
with varied designs were used to further demonstrate the texture features of textile image
categorization. Moment invariant (MI), local binary pattern, and GLCM feature extraction
techniques were employed by the researchers. Next, PCA was used for feature reduction,
and SVM was used for classification. A percentage of 74.15% accuracy was attained.
A paradigm to integrate learning methods for handloom textile identification was proposed
using least-square SVM (LS-SVM) [8] and edge identification.

Jing et al. [17] used the TILDA database to work on fabric, extracting features using
Gabor filters and then reducing them using the feature reduction kernel (PCA). To calculate
the similarity matrix, the Euclidean normal and OTSU were utilized. The measured results
for sensitivity, specificity, and identification success rate range were from 90% to 96%.
Both the specificity and detection success rate for different kinds of issues were greater
than 96% and 93%, respectively. Another cutting-edge biologically inspired technique was
introduced in 2017 [18], which used RGB inputs to invariantly identify the yarn color and
the fabric weave texture. The HMAX model, which was motivated by the visual cortex’s
hierarchy, served as the foundation for the fabric weave pattern label that the authors
suggested. The opponent color channel, which takes impetus from the traditional opponent
color theory of vision, was the foundation of the color descriptor. During the categorization
stage in 2018, a learning model with various layers was used. Researchers [19] also studied
the use of learning techniques for fleece textile grading using pilling assessment.

In 2018 [20], Praveen Kumar et al. introduced another work on computer vision
method for handloom fabric identification. This method effectively classified different
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types of handloom fabrics. They investigated a variety of image processing approaches,
feature extraction methods, and machine learning algorithms. To identify the distinctive
qualities of various handloom textiles and create classification algorithms, they relied on
feature extraction techniques such as Gabor filters and local binary patterns (LBPs) [21].
Three hundred and twenty typical samples each consisting of eighty samples were taken
from fabrics and categorized into grades 2, 3, 4, or 5. The resulting grayscale images were
filtered using two techniques: smoothing using Gaussian filtering in conjunction with the
DFT approach. Both SVM and ANN were employed in classification. The overall efficiency
of the Daubechies wavelet, ANN, and SVM were adoptable. Researchers looked into the
application of a learning method for handloom textile identification in 2020. Convolutional
neural networks (CNNs) [9] were employed to automatically identify and extract discrim-
inative elements from images of handloom textiles. Their study showed how well deep
learning works for precisely recognizing handloom textiles. Methods of texture analysis for
handloom textile identification were the subject of some research. To describe the distinctive
patterns and textures seen in handloom textiles, the authors investigated a variation in
texture descriptors and statistical aspects. These chosen traits served as the foundation for
the network they built.

One more work [22] included an overview of the use of ML and data mining in the
textile sector. A methodology [23] that utilized a library of 7200 photos from both hand-
looms and powerlooms, along with an ML classifier, yielded an impressive performance
of an automated handloom recognition in 2022. Using a t-test, significant features could
be determined, texture features were extracted, and all feature combinations were used
for training. Recall rates were high, while precision rates were good. Notably, there was
no validation in the study, and it was limited to digital camera photographs. A paradigm
integrating ML and image processing for handloom textile identification was proposed in
2022 [11]. They took pictures of loom cloth and extract features from them using techniques
including edge identification, color analysis, and texture analysis. Next, different ML tech-
niques were used to classify data. Proximal support vector machines (PSVMs) [24] were
used to distinguish handloom and powerloom goods based on attributes extracted from
gray-level photos of both materials using the plain woven textile database. An approach
known as k-fold crossvalidation was employed to rate accuracy. The best classifier had
a lot less tendency to overfit than its rivals because of its robustness, speed of execution,
accuracy, and ease of use of the algorithm.

A planar substance made of textile fibers is called a textile. One of the first methods
for recognizing textile fibers from images was FabricNet [25], which was built with a
unique class of class-based ensemble CNN architecture. Faster R-CNN, SSD, Resnet50,
and Resnet101 algorithms were used to implement the deep learning way of correctly
identifying fibers using fabric datasets. For this problem, Faster R-CNN was found to be
the optimal solution. A study [10] revealed that the pulse-coupled neural network (PCNN)
approach outperformed the other techniques and called for more investigation in the warp
knitted fabric database. Due to its laborious visual examination process, textile recognition
has historically presented a number of difficulties. The residual network (ResNet) was used
in the paper’s implementation of a model based on data augmentation and transfer learning
method for classification and characteristics extraction. The majority of these works were
carried out to identify handloom and powerloom clothes. Some existing studies are listed
in Table 1.

The analysis of various methodologies for fabric classification reveals several common
limitations that impact their effectiveness. Some traditional techniques like the DWT and
HMAX models mainly suffer from spatial information loss as they decompose images
into finer scales, which can lead to inaccuracies in representing intricate textile patterns.
Similarly, methods like LS-SVM and LBP also require significant computational resources
to achieve optimal hyperparameter tuning, making them impractical for real-world appli-
cations that require efficiency. These models also struggle with capturing complex pattern
dependencies and variations in texture, limiting their ability to distinguish between differ-
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ent fabric types accurately. Deep learning approaches, such as DCNNs, often lack precise
control over feature weights, which affects their ability to adapt to the diverse textures
present in fabrics. Furthermore, challenges related to dataset size, generalization across
different fabric types, and noise in training data further hinder the performance of methods.
These collective limitations underscore the urgent need for ongoing research to develop
more robust and efficient fabric classification methods. Moreover, the limitations of existing
handloom fabric datasets contribute to the challenge of classification. Handloom fabric
datasets often suffer from limited sample sizes, which may not adequately represent the
full diversity of handloom fabrics across different regions and cultures. This can lead
to biased or incomplete model training, impacting the generalization and accuracy of
classification algorithms.

Table 1. Some existing handloom textile classification models, datasets used, and limitations.

Methodology Dataset Limitation

Discrete Wavelet Transform [7] Silk textile dataset (3501 Images) The method utlizes decomposition progresses to
finer scales, resulting in loss in spatial information

LS-SVM [8] Plain weaving fibers dataset (245 Images) Optimal hyperparameter tuning is
computationally expensive

HMAX model [18] Fabric weave pattern dataset
(5640 Images)

Structural dependencies
exhibited in intricate patterns

Gabor filters and LBP [21] Textile fabric dataset (40,000 Images) Limited variations inherent in extracting texture at
various orientations and scales

DCNN + AWF [9] ImageNet dataset (51,300 Images) Lack of explicit control over
feature weights in the network

PCNN [10] Warp knitted fabric dataset (1000 Images) Generalization issue occurs in the training samples

Faster-RCNN [11] Own created dataset (3000 Images) Computational inefficiencies
of the designed network

FabricNet [25] Normal fabric dataset (2000 Images) Key features selection is difficult in the network

PSVM [24] Woven fabric dataset (130 Images) Limited to noisy data in training phase

KPCA [17] TILDA dataset (3200 Images) Complex parameter selection
cause bias in the network

3. Methodology

The methodology of the proposed work is divided into two subsections such as
dataset creation and development of an efficient learning model. Detailed descriptions of
the dataset development and designed network are presented in Section 3.1 and Section 3.2,
respectively. Our approach focuses on classifying handloom fabric images by predicting
their respective category labels. This is achieved through a learning framework that
maps each fabric image to its corresponding class. The framework, as shown in Figure 2,
is designed to learn the hidden features from the input image, ensuring that images
within the same class are closer in the learned feature space, while images from different
classes are more distant. The proposed deep learning framework encompasses a series of
interconnected stages, beginning with a dataset preparation. This initial phase involved
gathering of relevant samples with their respective labels, preprocessing, and splitting the
data. Following the data preparation, a model architecture was designed by modifying the
CNN structure for the specific task. The schematic workflow of the designed network is
demonstrated in Figure 3. With the architecture in place, the model underwent training,
during which it learned to make efficient predictions. Finding the predictions, the loss
function was estimated and compared to a margin value (threshold). Hyperparameter
tuning was then conducted to optimize model performance loss, followed by evaluation of
split testing data to assess their generalization ability.
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Figure 2. Representation of our proposed model.
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Figure 3. A schematic depiction of the proposed workflow.

3.1. Dataset Development

Datasets play a crucial role in the proper training and testing of an accurate deep
learning-based model. It was discovered that few regional handloom textile datasets [26]
were produced with low-quality and low-resolution samples, which impacted the identifi-
cation process. Microsoft COCO [27], TILDA Fabric [28], and ImageNet [29] datasets were
also recommended in certain works; however, the outcomes in terms of accurate identifica-
tion are very limited. To overcome these challenges, we created our own high-resolution
images segment dataset from different handloom Pat and Muga silk images. As shown in
Figure 4, we captured images of 600 counts, with a similar allocation of 100 textile samples
of each class containing Pure Pat, Kesa Pat, Nuni Pat, Pure Muga, Toss Muga, and Dry
Toss Muga. Smartphone devices of two varieties (iPhone 11 and OnePlus Nord CE 3) were
employed. While taking images, external elements like focus, illumination, and distortion
were considered while keeping a 5–10 cm distance between the textile and comprehensive
camera specifications.

Figure 4 shows the example of six handloom textile types. Pure Pat, known for its fine
craftsmanship, boasts a smooth and glossy surface. Its appearance is characterized by a
subtle sheen and intricate designs, often featuring motifs inspired by nature and traditional
Assamese culture. Kesa Pat, on the other hand, stands out with its bold and vibrant colors,
along with geometric patterns that create a visually striking effect. The texture of Kesa Pat
is slightly coarser compared to Pure Pat, with a more pronounced weave that adds depth
and texture to the textile. Nuni Pat, renowned for its delicate embroidery work, features
intricate thread work that lends it a tactile richness and dimensionality. The Nuni Pat is soft
and supple, with the raised embroidery creating a subtle texture that invites exploration
by hand. Toss Muga and Dry Toss Muga, both made from the rare Muga silk, exhibit a
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natural golden hue that sets them apart. While Toss Muga has a soft and lustrous feel,
Dry Toss Muga has a slightly rougher texture due to its untreated nature, offering a more
rustic appeal. Pure Muga epitomizes luxury with its unparalleled softness and exquisite
appearance. Its smooth surface and natural sheen make it a delight to touch, while its rich
golden color exudes opulence and elegance.

Pure Muga Dry Toss Muga Toss Muga

Pure Pat Kesa Pat Nuni Pat

25,166
Images

20%70%

Handloom Cloth
Samples of Each Class

(100 samples/class)

Multiple Image Captured 
on Each Sample

(600 images/class)

Cropped in Three Equal 
Square Sections and 
Resized to 𝟓𝟎𝟎 × 𝟓𝟎𝟎

(1800 images/class
 Total images = 10,800)

Image Augmentation
Total images = 25,166)

Training Validation

10%

Testing

Figure 4. Our dataset development process resulted in a total of 25,166 images from six classes of
handloom textile samples (Pure Pat, Kesa Pat, Nuni Pat, Pure Muga, Toss Muga, and Dry Toss Muga).

For training and validating the model effectively, we ensured that all pertinent sam-
ple attributes were considered. We visited the handloom textile production facility and
gathered a variety of weaving samples that were verified by specialists in the Directorate
of Handloom & Textile, Government of Assam, guaranteeing trustworthy and ground
truth. To illustrate various features of each category, a number of photographs were taken
from collected cloth samples. To provide varying viewpoints, we cropped each image into
three equal-sized cropped images: center, top left, and bottom right of the images Figure 4.
Following resizing to 500 × 500 pixels (model parameters), we obtained 1800 images for
each class. In the decision to standardize dataset images to 500 × 500 pixels for uniform
dimension, variability in image resolution is minimized, ensuring consistency across the
dataset and facilitating robust model performance. The 500 × 500 pixel resolution provides
sufficient spatial information to capture the nuanced textures and patterns characteristic
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of handloom fabrics. Further image augmentation was implemented to improve model
generalization and variety. With that, there were 4210 images for each class except the Kesa
Pat class. Due to limitations in our Kesa Pat textile samples, such as the transparent nature
of the textile, we could only generate 4116 images. Hence, the final dataset consisted of
25,166 images. The data processing steps of the collected images are shown in Figure 4,
and detailed image distribution is listed in Table 2. The dataset was preprocessed using
edge-adaptive total variation model for noise removal. We grouped the data samples
per class: 70% for training, 20% for validation, and the remaining 10% images were kept
separately for testing.

Table 2. The detail of our dataset.

Category Handloom Fabic
Samples Captured Images Cropped Images Augmented Images

Pure Pat 100 600 1800 4210

Kesa Pat 100 600 1800 4166

Nuni Pat 100 600 1800 4210

Pure Muga 100 600 1800 4210

Toss Muga 100 600 1800 4210

Dry Toss Muga 100 600 1800 4210

3.2. Proposed Network

As shown in Figure 5, in this experiment, we implemented an architecture of a Deep
Metric Learning (DML) Network tailored for classification of various handloom clothes.
This learning network was efficient for the classification of various handloom textiles due
to its ability to learn discriminative representations in a high-dimensional space. While
metric learning is traditionally used for matching problems, where the goal is to determine
if two patterns match, we have innovatively applied DML to enhance the classification
of handloom fabrics. Therefore, although our method employs a DML architecture, it is
tailored specifically to improve classification performance, effectively bridging the gap
between matching and classification tasks. This approach allows us to leverage the strengths
of DML for more robust and precise classification of diverse handloom fabrics. This method
is employed specifically to improve classification performance, effectively bridging the gap
between matching and classification tasks.

Triplet Margin Loss Function

Feature Extraction

VGG16

Classification

MLP

Output:
 1. Pure Pat
 2. Nooni Pat
 3. Kesa Pat
 4.Pure Muga
 5. Toss Muga
 6. Dry Toss Muga

Input Image

Figure 5. Architecture of the proposed deep metric learning (DML) network model for classification
of various handloom textiles.

Unlike traditional deep learning methods that focus solely on minimizing classifica-
tion error, DML networks aim to optimize the embedding space so that similar samples
are closer together while dissimilar samples are farther apart. This method is especially
beneficial for capturing the differences in texture, color, and weave patterns. Our approach
integrates a VGG16 network as a feature extractor. A pretrained VGG16 model [30] was
utilized as the backbone of CNN, leveraging its hierarchical structure to extract meaning-
ful features from input images. VGG16 is an established convolutional neural network
(CNN) architecture renowned for its simplicity and effectiveness in various image anal-
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ysis techniques like image generation and recognition. VGG16 has become a benchmark
model due to its straightforward architecture, which consists of 16 weight layers, including
convolutional and fully connected layers. This simplicity has made it widely adopted in
applications ranging from image classification to object detection and segmentation. It
has a relatively low computational cost compared to deeper and more complex models.
Additionally, VGG16 supports layerwise feature extraction, allowing researchers and prac-
titioners to leverage intermediate features for transfer learning. It typically culminates in
several deep connected layers, facilitating high-level feature learning and classification.
VGG16 offers a stack of 3 × 3 convolutional layers, which is effective for capturing intricate
details and patterns present in handloom fabrics. It facilitates easier fine-tuning, which is
critical for ensuring robust performance on our dataset. While more recent architectures like
ResNet and DenseNet may offer deeper or more intricate feature hierarchies, VGG16 strikes
a balance by providing a strong baseline performance without excessive computational
demands. This model also supports a manageable number of parameters [31], making it
suitable for implementation, and it also provides efficient accuracy. Given the complex-
ities inherent in deep metric learning, where the emphasis is on learning discriminative
feature representations, VGG16’s architecture provides a stable platform to build upon and
optimize for our classification task.

Each convolutional layer applies a collection of learning filters to the training samples,
progressively extracting hierarchical abilities that record ever-more intricate patterns and
structures. Max pooling layers reduce spatial dimensions while retaining salient features,
enhancing the network’s translational invariance. ReLU activation functions introduce
nonlinearity, aiding in feature representation learning. By removing the fully connected
layers of the VGG model, we utilized the Multilayer Perceptron (MLP) [32] for feature map
extraction based on the dimensionality reduction concept.

The extracted features were thus fed into an MLP, which consists of an input layer,
one or more hidden layers, and an output layer. The input layer of the MLP received the
feature vectors from VGG, and nonlinear changes were carried out via the hidden layers
to learn complex patterns from the data using the softmax activation function. Softmax
function takes the raw scores (logits) from the previous layer and normalizes them into a
probability distribution. Finally, output layer of the MLP predicts the probabilities of the
input belonging to six classes each. The MLP network compresses the feature vectors into
a lower-dimensional space, facilitating efficient representation learning while preserving
discriminative information relevant to the classification task. We leveraged Triplet Margin
Loss [33] as the primary loss function to facilitate the learning of discriminative feature
representations. To train, we employed triplet margin loss, a commonly used loss function
in deep metric learning.

Triplet margin loss encourages the network to learn embeddings such that the distance
between an input image and its positive counterpart is minimized, while the distance
between the input and negative images is maximized by a predefined margin value also
known as a threshold value of 0.5, as it tends to generalize better. This triplet-based loss
formulation enables the network to learn discriminative embeddings that can effectively
separate instances of different classes in the feature space. It has the ability to directly
optimize for similarity or dissimilarity between samples rather than focusing solely on
class labels. We enable the network to learn from a discriminative feature space where
samples from the same class are grouped closely together, and samples from different
classes are positioned farther apart. This structured feature space enhances the network’s
ability to accurately classify a single pattern into its respective class. Next in the inference
method, the parameters of the pretrained model were fixed. Using the same feature ex-
tractor, the inference images were converted into feature vectors. These feature vectors
were classified into our mentioned, classes ensuring robust and effective classification
performance. This combination transforms the high-dimensional feature representations
into a lower-dimensional space. This method was employed to perform multiclass classi-
fication by fitting a linear function to the embedded feature space while penalizing large
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weight values to prevent overfitting. This architechture works well particularly in scenarios
with limited training data. By utilizing the advantages of each component, we aimed to
achieve high accuracy, independency of hyperparameter selection, and robustness, thereby
facilitating the development of an effective system for real-world applications.

4. Experimental Results

The experimental results section is divided into the following subsections: Experi-
mental Parameter Setup, Peer Competitors, and Comparison Experiments. A detailed
explanation of all the subsections is given below.

4.1. Experimental Parameter Setup

We conducted our experiment on our own developed dataset comprising images
of handloom textile samples gathered from varied sources, as illustrated in Section 3.1.
The dataset includes total six classes of clothes such as Pure Pat, Kesa Pat, Nuni Pat, Pure
Muga, Toss Muga, and Dry Toss Muga. As mentioned in Section 3.1, we split the data
samples into 70–20% for training and validation and the remaining 10% images for testing.
We used our designed network for the classification experiment with a batch size of 32,
learning rate of 0.001, and using Adam optimizer. The model architecture is shown in
Table 3.

Table 3. Details of the proposed model architecture.

Layer Kernel & Units Activation Stride Pool Size

Conv1_1 3 × 3 × 64 ReLU 2 -

Conv1_2 3 × 3 × 64 ReLU 2 -

MaxPool1 - - 2 2 × 2

Conv2_1 3 × 3 × 128 ReLU 2 -

Conv2_2 3 × 3 × 128 ReLU 2 -

MaxPool2 - - 2 2 × 2

Conv3_1 3 × 3 × 256 ReLU 2 -

Conv3_2 3 × 3 × 256 ReLU 2 -

Conv3_3 3 × 3 × 256 ReLU 2 -

MaxPool3 - - 2 2 × 2

Conv4_1 3 × 3 × 512 ReLU 2 -

Conv4_2 3 × 3 × 512 ReLU 2 -

Conv4_3 3 × 3 × 512 ReLU 2 -

MaxPool4 - - 2 2 × 2

Flatten - - - -

Dense1 Units: 4096 ReLU - -

Dropout1 0.5 - - -

Dense2 Units: 4096 ReLU - -

Dropout2 0.5 - - -

Output 6 Softmax - -

The experimental results illustrate the efficacy of our deep metric learning approach to
handloom textile type identification. After 48 epochs of using the dataset, the architecture’s
training accuracy was approximately 97.8%, and its validation accuracy was 93%. It showed
robustness to variations in lighting conditions, texture patterns, and fiber orientations. The
training, validation accuracy, and loss are represented graphically in Figure 6. After this,
the model was evaluated with the remaining 10% of the dataset, (i.e., 421 images of
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each handloom textile class), resulting in a confusion matrix that is shown in Figure 7.
A comparison of the proposed method with other approaches in terms of accuracy and
loss over a range of 50 epochs for our dataset is shown in Figure 8. The size, number of
parameters, and depth are interconnected aspects of a learning model’s architecture [34].
Expansion of the parameter quantity often leads to increased space occupancy due to
the additional memory required for storage. However, our model achieved a balanced
compromise by maintaining a reasonable depth. This balance ensures an equitable trade-off
between computational cost and performance. Thus, it meets the demands for significant
computing tools for interpretation and training while effectively managing the network’s
load on learning data. In contrast to other models, our suggested model performed rather
well in validation accuracy and loss. This model offers adaptability and sturdiness in spite
of minimum training data and handles intraclass variations smoothly.
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Figure 6. Performance evaluation of the proposed method during training and validation in terms of
(a) accuracy and (b) loss with respect to epochs.

Figure 7. Confusion matrix: performance evaluation using the independent test dataset.
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Figure 8. Comparative evaluation of different existing models and our proposed model for classifica-
tion of handloom textiles in terms of (a) accuracy and (b) loss.

4.2. Peer Competitors

The cutting-edge techniques were chosen as the peer rivals in order to demonstrate the
efficacy and efficiency of the suggested solution. The competitors were mostly chosen from
two distinct groups. Traditional architectures like LS-SVM, PSVM, and Gabor filter with
LBP were primarily included in the first group. Interpretability and reliable baseline models
were provided by this method, which can be used to assess how well more sophisticated
learning architectures work. The second group included different CNN architectures like
PCNN, DCNN with Adaptive Wiener filter, Faster-RCNN, and FabricNet. These CNN
architectures have won numerous large-scale ImageNet visual recognition competitions
and have been applied to a variety of classification-based experiments. It is imperative to
note that our suggested approach primarily concentrates on offering respectable accuracy
with the least amount of resource consumption.

4.3. Comparison Experiments

As shown in Table 4, we used various assessment measures, such as precision [35],
recall [36], and F1-score [37], as shown in Equation (1), Equation (2), and Equation (3),
respectively, to estimate the comparing results using our dataset. It is apparent that our
model outperformed other existing models. It shows that our proposed method is more
accurate than others at predicting favorable outcomes. It makes a big impact in this situation
based on the false negative (FN) scenario. High recall ensures that important instances of
the positive class are not missed by the model. Our model achieved comparable results to
others with high rates. Its high precision of 0.895 indicates a low false positive (FP) rate,
meaning it accurately identifies relevant instances of true positive (TP) and true negative
(TN) values. The impressive recall of 0.883 showcases its ability to find all relevant instances,
minimizing false negatives. Moreover, the F1-score of 0.943 harmonizes precision and recall,
indicating a well-balanced model with minimal trade-offs between the two metrics.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Precision = 2 × Precision × Recall
Precision + Recall

(3)

Our method addresses the limitations found in existing approaches by leveraging
the strengths of the VGG architecture for robust feature extraction, preserving spatial
information that is often lost in decomposition-based methods like discrete wavelet trans-
form. By integrating an MLP, we achieved optimal hyperparameter tuning without the
computational overhead associated with the LS-SVM. The use of triplet margin loss ef-
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fectively managed structural dependencies and generalization issues that affect models
such as HMAX and PCNN. Furthermore, our approach enhanced feature selection and
computational efficiency, overcoming the challenges faced by FabricNet and Faster-RCNN
while providing explicit control over the feature weights and providing a significant im-
provement over DCNN + AWF methods. Our method proves to be the optimal choice due
to its exceptional performance, high efficiency, and suitability to our specific classification
task, offering a comprehensive solution to the diverse limitations of prior techniques in
textile analysis.

Table 4. Performance comparison of the proposed method with state-of-the-art techniques in terms
of precision, recall, F1-score, and accuracy.

Method Precision Recall F1-Score Accuracy

LS-SVM 0.121 0.344 0.230 0.620

GF and LBP 0.754 0.671 0.754 0.648

PCNN 0.628 0.385 0.758 0.855

DCNN + AWF 0.970 0.987 0.775 0.890

FabricNet 0.844 0.784 0.921 0.925

Proposed Method 0.895 0.883 0.943 0.978

To investigate the robustness of our proposed method, k-fold crossvalidation tech-
niques have been adopted. Using this method, instead of splitting the dataset in advance,
the model gets affected by random variations in the data split, resulting in a reliable mea-
sure of the model’s actual performance. To address this, we have plotted a Table 5 of k-fold
crossvalidation (CV) accuracy in our approach with respect to different numbers of k. The k-
fold crossvalidation (CV) technique divides the dataset into k equal parts. In each iteration,
k-1 parts are used to train the model, while the remaining part is used for testing. This
process is repeated k times, ensuring each part serves as the testing set once. The outcomes
of these k iterations are then averaged to obtain a more accurate and dependable estimate
of the model’s performance. This crossvalidation method enhances the assessment of the
model’s generalizability and reduces the risk of overfitting, ensuring that the evaluation is
not biased by any particular train–test split. In the case of our approach, the results show
that except for k values 2 and 3, there was an average validation accuracy of more than
95%, proving the methods robustness and reliability. Based on the above results, it is clear
that in both the validation methods the proposed technique achieved an average accuracy
that was better than all the methods in comparisons. This result proves the robustness and
effectiveness of the proposed method compared to the other state of the art methods.

Table 5. Resulting k-fold cross validation accuracy values with respect to different numbers of k and
their average (Avg.) and standard deviation (Std.) values

k Value Accuracy

2 88.04

3 90.24

4 93.84

5 96.44

6 97.34

7 98.64

8 97.66

9 96.75

10 98.14

Avg. 95.23

Std. 3.56
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5. Conclusions

Handloom textile products play an essential role in both the financial and cultural
landscape of Assam and the northeastern part of India. Automated identification of the
original textile plays a significant role in authenticating originality against replicated power
loom textiles. This work presents a significant advancement in the automated identification
of handloom textiles using the deep metric learning technique. To conduct the experiment,
we generated a dataset consisting of 25,216 images from six different categories such as
Pure Pat, Kesa Pat, Nuni Pat, Pure Muga, Toss Muga, and Dry Toss Muga. By leveraging
the approach in our own labeled dataset development, we have showcased its effectiveness
in accurately identifying the different types of textiles. Our method not only outshines
existing techniques but also achieves a remarkable accuracy rate of 97.8%, as verified
through rigorous experimentation and comparison with baseline methods. This result not
only contributes to advancing automated textile identification systems but also has broader
implications for preserving cultural heritage and ensuring the sustainability of traditional
industries. Future research in this field could refine the deep metric learning framework
and enhance the identification system’s comprehension and resilience by incorporating
complementary techniques like image augmentation and domain adaptations.
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