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Abstract: A wearable textile bra-tenna system based on dual-polarization sensors for breast cancer
(BC) detection is presented in this paper. The core concept behind our work is to investigate which
type of polarization is most effective for BC detection, using the combination of orthogonal polariza-
tion signals with machine learning (ML) techniques to enhance detection accuracy. The bra-tenna
sensors have a bandwidth ranging from 2–12 GHz. To complement the proposed system, detection
based on machine learning algorithms (MLAs) is developed and tested to enhance its functionality.
Using scattered signals at different polarizations, the bra-tenna system uses MLAs to predict BC in
its early stages. Classification techniques are highly effective for data classification, especially in
the biomedical field. Two scenarios are considered: Scenario 1, where the system detects a tumor
or non-tumor, and Scenario 2, where the system detects three classes of one, two, and non-tumors.
This confirms that MLAs can detect tumors as small as 10 mm. ML techniques, including eight
algorithms such as the Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting
Methods (GBMs), Decision Tree (DT) classifier, Ada Boost (AD), CatBoost, Extreme Gradient Boosting
(XG Boost), and Logistic Regression (LR), are applied to this balanced dataset. For optimal analysis of
the BC, a performance evaluation is performed. Notably, SVM achieves outstanding performance in
both scenarios, with metrics such as its F1 score, recall, accuracy, receiver operating characteristic
(ROC) curve, area under the ROC curve (AUC), and precision all exceeding 90%, helping doctors
to effectively investigate BC. Furthermore, the Horizontal-Horizontal (HH) sensor configuration
achieved the highest accuracy of 98% and 99% for SVMs in the two scenarios, respectively.

Keywords: breast cancer; dataset; Decision Tree; Logistic Regression; Random Forest; textile sensor;
wearable bra-tenna

1. Introduction

Breast cancer is a significant global concern, often described as the leading cause of
death among women in urban areas [1]. The Centers for Disease Control and Prevention
(CDC), a reliable source, states that BC is most likely the sickness that kills women world-
wide. Early detection is the best way to increase the chance of treatment and survivability.
The abnormal growth of the breast cells can lead to cancers in women. Depending on the re-
gion, size and position, these enormous tumor cells split into cancerous and normal cells [2].
The initial tumor region of the noncancerous tumor is referred to as benign, whereas the
secondary tumor area of the cancerous tumor is referred to as malignant. Benign tumors do
not pose a threat to women’s lives because they are treatable and can be made to grow more
slowly with the appropriate care. The patient must obtain the required medical attention,
such as radiation therapy or surgery, to treat a malignant tumor. A computerized diagnostic
system using an ML approach was required because the current tests for detecting BC, such
as mammography, ultrasound, and biopsy, were time-consuming. Among the algorithms
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used in this technique are those that aid in tumor categorization, improve cell detection
accuracy, and reduce processing time.

In recent years, tremendous growth in artificial intelligence (AI) has been seen, partic-
ularly ML, in the context of data analysis and computing, which often enables programs to
operate intelligently [3]. Classification is a crucial and fundamental task in ML and data
mining. Significant research efforts have been dedicated to applying these techniques to a
variety of medical datasets for BC classification.

ML is a common term for the newest technologies in the fourth industrial revolution
(also known as Industry 4.0), which generally gives systems the capacity to learn and
improve from experience automatically without having to be expressly programmed [4,5].
Therefore, MLA is essential for both the intelligent analysis of these data and the creation
of the associated real-world applications. Four main types of learning algorithms may be
distinguished in this domain: supervised, unsupervised, semi-supervised, and reinforce-
ment learning [6]. The success and efficiency of ML solutions depend significantly on both
the nature and quality of the data, as well as the capabilities of the learning algorithms
used. To successfully create data-driven systems, ML algorithms can be used in the areas
of classification analysis, regression, data clustering, feature engineering, dimensionality
reduction, association rule learning, or reinforcement learning [7,8]. It is, therefore, difficult
to choose an appropriate learning algorithm that fits the intended application in a given
area. The explanation for this is that various learning algorithms have distinct goals, and
even within the same category, the results of various ML algorithms might differ based
on the properties of the data [9–14]. Therefore, it is critical to comprehend the tenets of
various MLAs and how they apply to a range of real-world application domains, including
sustainable agriculture, internet of things (IOT) systems, cyber security services, business
and recommendation systems, smart cities, healthcare, COVID-19, and BC [15–21]. Many
prior studies have employed ML techniques, such as LR, DT, SVM, etc., which offer a more
convincing representation [22–28].

Some of the related earlier research on BC diagnosis that was conducted by scien-
tists employing various ML techniques have been discussed. Researchers employed ML
approaches for data categorization and interpretation to enhance the functionality of mi-
crowave detection systems [29–39]. There are methodological flaws in the study [40],
including the algebraic combining of microwave signals’ phase and magnitude, potentially
resulting in poorer tumor identification. The authors’ decision to apply standardization
without clear justification is questionable. The limited sample size of 366 samples may
not be representative of the population, impacting the generalizability of the results. The
method also shows poor accuracy, highlighting the need for a more sophisticated approach.
In [41], the study presents a promising method for detecting BC using XG Boost but faces
methodological issues. The unbalanced dataset may lead to biased results, and the author’s
use of the synthetic minority over-sampling technique (SMOTE) has drawbacks, including
amplification of biases and noise. The study also lacks evidence supporting SMOTE as
the best approach to resolving class imbalance, suggesting a more comprehensive strategy
should compare outcomes of other techniques and assess their effectiveness. The outcome
classifications, including KNN, SVM, RF, and DT, were reported [42]. The Wisconsin Breast
Cancer (WBC) dataset was utilized, and it was sourced from the UCI repository. According
to the simulation findings, SVM, RF, DT, and KNN were the best classifiers.

The University of Wisconsin Hospital’s Dr. William H. Walberg’s dataset was utilized
in [43,44]. This imbalanced WBC dataset was subjected to several data visualization and
ML approaches, such as LR, KNN, SVM, naïve Bayes (NB), DT, RF, and rotation forest.
These ML methods and their visualizations were to be implemented using R, Minitab, and
Python. However, it is critical to pre-process the dataset before running the algorithm.
Three ML approaches—SVM, RF, and Bayesian networks (BNs), were the subjects of a
comparative study in [45]. The training set was the original WBC data collection. The
results of the simulation demonstrate that the chosen approach affects the classification
performance. SVMs perform best in terms of accuracy, specificity, and precision, according
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to the results. On the other hand, RFs have the best chance of accurately diagnosing tumors
despite the analysis and evaluation of numerous predictors of BC recurrence risk and
various types of ML algorithms.

In this paper, the central focus of our research is to explore the most effective type of
polarization for BC detection. We achieve this by combining orthogonal polarization signals
with ML techniques to improve detection accuracy. We provide a thorough understanding
of the ML algorithm for the dataset acquired by the innovative bra-tenna system, which is
used to improve the intelligence and functionality of BC detection. This system comprises
four dual-polarized sensors in which each sensor has the ability to transmit/receive a
microwave signal in both horizontal and vertical polarizations ranging from 2–12 GHz.
Eight distinct ML techniques are investigated for BC diagnosis. The first step is to collect the
dataset from a vector network analyzer (VNA). The next step involves data pre-processing,
which is performed to improve the quality of a dataset to obtain clean data that can be
useful for modeling. During the data pre-processing stage, the data are divided into the
training and the test datasets. Furthermore, two scenarios are analyzed: the first one is the
differentiation between one tumor and no tumor, and the second one is the distinguishing
between one, two, and no tumors. Our approach performs better than existing methods,
demonstrating microwave detection potential as a useful tool for the diagnosis of BC. A
competitive performance was demonstrated when dealing with a balanced dataset above
(90% accuracy).

2. Wearable Orthogonal-Polarized MIMO Bra-Tenna System

The sensor design significantly influences the overall performance of the microwave
BC detection system. It is crucial for the sensor element to demonstrate broadband be-
havior, enabling the radiation of pulses across a wide frequency range with high fidelity
and a reasonable level of gain. By optimizing the size of the individual sensor element,
larger arrays can be constructed, thereby capturing more information from the scattered
signals for effective detection. Implementing ultra-wide band (UWB) technology aids
in creating a high-resolution system and minimizing distortion in the transmission of
short-duration pulses.

2.1. Sensor Design

Figure 1 shows the proposed UWB textile multi-input multi-output (MIMO) sensor’s
geometrical structure with orthogonal polarization [46]. It is recommended that the feeding
structure be CPW-fed for ease of manufacture and integration. The proposed design
primarily consists of a partial ground plane, a feeding network, and a radiating corrugated
half-circle. Impedance matching is improved by using the partially grounded plane. To
further enhance the impedance matching over the whole band, the CPW feeding structure’s
signal line is tapered with Wt = 2.5 mm. An extensive out-of-band rejection is achieved by
using a strip line that functions as a low-pass filter (LPF) to reduce the reciprocal coupling
between the sensor’s radiating elements [47]. Located in between the two monopole
sensors, this LPF is made of conducting fabric. Mutual coupling is successfully reduced
when the stop band characteristics of the LPF match with the sensor’s operating frequency,
therefore almost completely blocking the passage of the generated signal between the two
parts. The potential sensor is designed and constructed with dimensions of L = 60 mm and
W = 70 mm. It is based on a flexible textile substrate with dielectric permittivity of εr = 1.8,
a loss tangent of 0.025, and a thickness of h = 0.3 mm.
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Figure 2. Fabricated prototype on conductive fabric and scattering parameters measurements. (a) 
Measurement setup. (b) Reflection coefficient. (c) Transmission coefficient. 

2.3. Wearable BC Monitoring System 
Figure 3 presents the schematic diagram of the proposed BC detection system, 

showcasing a novel, comfortable, wearable solution tailored for regular and safe BC 
screening in women. The system utilizes textile-based sensors seamlessly integrated into 
a woman’s bra for easy attachment. The schematic highlights the compact design of the 
wearable orthogonal-polarized bra-tenna MIMO sensor, responsible for transmitting and 
receiving UWB signals, along with an electrical 9-port RF switch and data acquisition fa-
cilitated through a VNA. Control and coordination of the entire system are facilitated by 
a personal computer (PC) and an Arduino kit, responsible for signal processing and ex-
ecuting reconstruction algorithms. 

Figure 1. Geometric design of the proposed sensor.

2.2. Sensor Fabrication and Results

A laser cutting machine is used to produce the suggested pattern utilizing conductive
copper nanoparticles on a textile substrate. Figure 2a shows the wearable sensor prototype.
The adhesive-coated conductive fabric may be pressed straight onto the dielectric fabric that
will be included. When the SMA connection is connected, the textile-based MIMO wearable
sensor also entirely avoids heat. Rather than using epoxy glue, conductive adhesive is
utilized to connect the recommended sensor for measurement. The reflection coefficient
data from the experiment and simulation are compared in Figure 2b,c. The simulated and
fabric textile sensors produced good impedance matching. The proposed textile antenna has
a stated −10 dB impedance bandwidth from 2.5 to 12 GHz, covering the whole simulated
3.5–11.65 GHz UWB spectrum. However, there are some slight discrepancies because of
things like SMA connections, manufacturing tolerances, and soldering errors that were not
considered in the simulations.
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Figure 2. Fabricated prototype on conductive fabric and scattering parameters measurements.
(a) Measurement setup. (b) Reflection coefficient. (c) Transmission coefficient.

2.3. Wearable BC Monitoring System

Figure 3 presents the schematic diagram of the proposed BC detection system, show-
casing a novel, comfortable, wearable solution tailored for regular and safe BC screening in
women. The system utilizes textile-based sensors seamlessly integrated into a woman’s
bra for easy attachment. The schematic highlights the compact design of the wearable
orthogonal-polarized bra-tenna MIMO sensor, responsible for transmitting and receiving
UWB signals, along with an electrical 9-port RF switch and data acquisition facilitated
through a VNA. Control and coordination of the entire system are facilitated by a per-
sonal computer (PC) and an Arduino kit, responsible for signal processing and executing
reconstruction algorithms.
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Figure 3. The proposed bra-tenna detection system.

The exploited sensors were placed in pairs facing each other inside the bra system
according to a predetermined calculation of the Fidelity Factor [48]. For simplicity, the
breast model we utilized was built in our laboratory at the Electronics Research Institute
lab (ERI) and had skin and normal cells as one layer with an average permittivity of 17. The
breast model has standard dimensions with a radius of 75 mm. A spherical tumor with a
10 mm radius and permittivity of 50 is incorporated, reflecting the dimensions indicative of
stage one breast cancer, which is an appropriate stage for recognition and effective therapy.
In order to simulate a large number of sensors, the phantom was rotated 360◦ by 20◦ step
while the sensors are kept stationary. In future work, we will consider increasing the
number of antenna elements to avoid any rotation to the phantom to obtain a more reliable
imaging system. Their precise locations are determined using high-precision tools, and
their positioning around the breast model is critical to the design. Each antenna element
is situated 6.5 cm away from the center of the phantom. Simplifying the data acquisition
process, one port is directly connected to the VNA to function as a transmitter, while the
other ports are linked to an RF switch, controlled by an Arduino Mega through a single PC.
By altering the Tx port, the Tx position is changed, and this process is repeated for other
ports using the RF switch. The backscattered signals collected fall within the frequency
range of 2 to 12 GHz. We collect data for three scenarios: one tumor, two tumors, and no
tumors present. Subsequently, we employ automated learning techniques to predict the
presence or absence of a tumor.

3. Data Collection and Pre-Processing

The choice of which specific learning algorithm to use is a critical step. The evaluation
of a classifier is most often based on prediction accuracy, which is calculated as the percent-
age of correct predictions divided by the total number of predictions. These techniques
help us to assess the performance of a classifier and to make informed decisions about
model selection.

Figure 4 illustrates the proposed BC detection model and its workflow. The process
begins with sensor design and data acquisition, where data are categorized into three
classes: no tumor, one tumor, and two tumors. Following pre-processing, which includes
feature extraction, data type conversion, and data splitting for training and testing, the
model proceeds to the selection of algorithms, ultimately leading to the generation and
evaluation of results.
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Figure 4. Proposed BC detection model.

3.1. Machine Learning Algorithms and Evaluation Metrics

The choice of which specific learning algorithm to use is a critical step in our methodol-
ogy. The evaluation of the classifier is predominantly based on prediction accuracy, which
is the percentage of correct predictions divided by the total number of predictions. The
algorithms employed in our study, such as SVMs, RFs, GBMs, DTs, ADs, CatBoosts, XG
Boosts, and LRs, will be summarized in this subsection. Their underlying principles and
evaluation metrics (accuracy, precision, recall, F1 score, ROC curve, and AUC) are familiar
to experts in this domain. We have indicated that the degree of rotation is the primary
feature that we used in our investigation. An overview of various ML detection algorithms
is given in this section with examples.

1. Logistic Regression (LR)

The LR approach is among the most basic types of traditional ML algorithms. The
fitting probability of the event on the logistic curve serves as the basis for predicting a
target variable [10].

2. Support Vector Machine (SVM)

Regression and classification tasks are handled by SVMs [10,29]. It is among the most
potent conventional MLAs. They work by employing a separating hyperplane to divide
data into distinct classes. However, an SVM selects a plane with the largest margin—that
is, the separation between data points from various classes. It can be computed as follows:

If Yi = +1; wxi + b ≥ 1
If Yi = −1; wxi + b ≤ 1
For all i; yi (wxi + b) ≤ 1

(1)

where, as seen in Figure 5 [15], w is a weight vector, b is a constant term that represents the
distance from the origin, and x is a vector data point.
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3. Decision Trees (DTs)

DTs are extensively used in many ML applications because of their effectiveness in
classification and prediction tasks [14]. A DT operates as a supervised learning algorithm
that relies on a hierarchical structure to make recursive splits of nodes into finer steps. It
comprises decision nodes and terminal leaves, where the decision nodes are interconnected
by a predictive model, and each leaf represents a distinct class.

4. Random Forest (RF)

A RF is a supervised learning algorithm widely used by researchers for classification
tasks [16,23]. Renowned as an ensemble classification technique, it employs ensemble
learning, which involves combining multiple classifiers to address complex problems.

5. Gradient Boosting Methods (GBMs)

A GBM focuses on combining multiple decision trees, considered weak learners, to
construct a strong learner for accurate predictions [17]. It utilizes gradient descent as its
optimization algorithm to minimize the loss function, resulting in an improved learner. For
a given loss function, φ (y, f), and a base learner, h(x, θ). The GBM algorithm produces
h(x, θt), which aligns with the negative gradient {gt(xi)}N

i=1 of the data, as described in [17]:

gt(x) = Ey[
∂φ(y, f (x))

∂ f (x)
|x] (2)

f (x) = f t−1(x) (3)

This process ultimately results in an optimized least-squares solution, which can be
expressed as follows:

(ρt, θt) = argminρ,θ ΣN
i=1[−gt(xi) + ρh(xi, θ)2

]
(4)

6. Categorical Boost (“CatBoost”)

In this technique, both gradient boosting and categorical features are combined to
create the “CatBoost” algorithm [27,28]. It employs a random permutation and one-hot-
max-size encoding to emphasize categorical features, thereby enhancing the algorithm’s
robustness [28]. In CatBoost, a random permutation of the dataset is performed, and an
average label value is assigned to each data sample [28]. For binary classification tasks,
CatBoost not only improves classification accuracy but also ensures fast training speeds.

7. Adaptive Boosting (Ada Boost)

Ada Boost, known as an adaptive classifier, significantly enhances the efficiency of the
classifier but can sometimes lead to overfitting. It is particularly effective when used to
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boost the performance of DTs, which serve as the base estimator [19], in binary classification
problems. However, Ada Boost is sensitive to noisy data and outliers.

8. Extreme Gradient Boosting (XG Boost)

XG Boost utilizes ensemble boosting specifically for DT algorithms [35,37]. XG Boost
combines multiple weak models to produce a stronger overall model. Given different
inputs and outputs, (x1, y1), (x2, y2), · · ·, (xn, yn), the ensemble algorithm employs (K)
additive functions to predict an output, as described in [35,37]:

ŷi = Σk
k=0 { fk(x), f ϵF} (5)

where f ϵ F represents the space of classification and regression trees (CARTs). The func-
tion is approximated by minimizing a regularized objective function for a given set of
parameters (q) as follows:

Obj (θ) = Σn
i=0 l (ŷi, yi) + Σk

k=0Ω( fk) (6)

Here, l(ŷi, yi) represents the training loss function that measures the difference between
the predicted values and the actual values, while Ω ( fk) denotes the regularization term
that penalizes the complexity of the model.

In particular, accuracy measures the proportion of correctly classified instances, while
recall and precision provide insight into the algorithm’s ability to detect true positives
(TPs) and false positives (FPs), respectively. The F1 score, which is the harmonic mean
of precision and recall, provides a balanced measure of both. The ROC curve and AUC
provide a visual representation of the algorithm’s performance, with higher AUC values
indicating better separation between positive and negative classes. The ROC curve provides
a visual representation of the performance of each classifier, facilitating the selection of
optimal models and the identification of less effective ones.

The following equations are used in performance measures of the most commonly
used biological and medical accuracy, recall, precision, and F1 score.

Accuracy =
TN + TP

TP + TN + FP + FN
% (7)

recall =
TP

(TP + FN)
% (8)

Precision =
TP

(TP + FP)
% (9)

F1 score =
preccision × recall
preccision + recall

× 2% (10)

3.2. Dataset of BC

In the scenario of a balanced dataset described, four dual-polarization sensors equipped
with 8 ports—comprising four horizontal and four vertical polarizations—were used to
acquire HH and horizontal-vertical (HV) data for the detection of small-sized tumors. The
dataset includes parameters of both s11 and s21 for HH and HV. The dataset of each param-
eter consists of 801 samples associated with their labels over frequencies from 2–12 GHz.
Figure 6 outlines the methodology for gathering datasets in the BC detection. The labels
are coded as 0, 1, and 2, representing none, one, and two tumors, respectively. The dataset
is randomly divided into two subsets, approximately 80% for training and the remaining
20% for testing.
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3.3. Pre-Processing

Pre-processing is a crucial step in preparing the data for ML model training. Upon ac-
quiring the dataset, the next step involves pre-processing, encompassing feature extraction
where relevant data attributes are identified and extracted. This is followed by converting
data types for compatibility with an MLA and then splitting the data into training and test
sets for model development and validation. The data tables illustrate the extracted features
(Feature_1 to Feature_36) and their corresponding target labels (tumor or no tumor). In this
study, we used two different pre-processing scenarios to handle the dataset.
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3.3.1. Scenario 1: One Tumor or No Tumor

In the first scenario, we distinguished between breast tissue with and without tumors
using two datasets: one with tumors and one without. Python was used for pre-processing.
We loaded the datasets using pandas, assigning column names using the ‘names’ param-
eter. We then converted complex numbers to a Python-compatible format and extracted
their magnitudes using numpy’s absolute function, discarding phase information. Tumor
samples were labeled as 1 and non-tumor samples as 0. The datasets were concatenated
and shuffled to ensure randomness. Complex data from the bra-tenna system were trans-
formed to facilitate intuitive analysis. Complex numbers (magnitude and phase) were
converted to magnitudes, capturing signal strength while ignoring phase information. The
pre-processed dataset consisted of 1602 samples (tumor and non-tumor) with 36 features
each. Sample datasets are shown in Tables 1 and 2 before and after pre-processing. The
pseudo-code is shown in Table 3. We developed the synthetic code to demonstrate the
processing of complex-valued data in the frequency domain, a crucial aspect of our method-
ology. As ML algorithms typically deal with real-valued data, we devised a strategy to
deal with the complex-valued measurements obtained from the bra-tenna sensor. This
involved a feature extraction approach in which we computed the magnitude values of
the complex measurements and combined them to form a comprehensive feature set. This
process enabled us to use machine learning techniques to effectively analyze the data and
detect BC.

Table 1. Sample of original dataset BC.

Feature_1 Feature_2 Feature_3 Feature_4 Feature_5 . . .

−0.320734322071075–
0.541588723659515i

−0.323773860931396–
0.549457371234894i

−0.328166037797928–
0.547743916511536i

−0.330092638731003–
0.545518636703491i

−0.328741282224655–
0.546375811100006i . . .

−0.339545249938965–
0.539299964904785i

−0.345008134841919–
0.54773360490799i

−0.345800369977951–
0.54529732465744i

−0.34616020321846–
0.542522668838501i

−0.347417116165161–
0.547296822071075i . . .

Table 2. Sample of dataset breast cancer after pre-processing.

Feature_1 Feature_2 Feature_3 Feature_4 Feature_5 . . .

0.423603 0.423209 0.429494 0.433112 0.436930 . . .

0.472382 0.470431 0.475964 0.473692 0.475052 . . .

0.251808 0.254344 0.249489 0.248362 0.242685 . . .

0.400151 0.398328 0.403605 0.40977 0.41290 . . .

0.249165 0.251867 0.250815 0.23965 0.24348 . . .

Table 3. Pseudo-code for Scenario 1.

1. IMPORT LIBRARIES: numpy, pandas, sklearn.model_selection
2. DEFINE FILE PATHS: PATH_with, PATH_without
3. READ CSV FILES: df_with, df_without = read_csv(PATH_with, PATH_without)
4. CONVERT TO COMPLEX NUMBERS: df_with, df_without = convert_to_complex(df_with, df_without)
5. CALCULATE MAGNITUDES: df_with, df_without = calculate_magnitudes(df_with, df_without)
6. ADD TUMOR COLUMN: df_with[‘tumor’] = 1, df_without[‘tumor’] = 0
7. CONCATENATE DATAFRAMES: df = concatenate(df_with, df_without)
8. SHUFFLE ROWS: df = shuffle(df)
9. SPLIT DATA: train, test = split(df), test_size = 0.2

The scattering parameter distributions for the first case (one tumor, no tumor) show
some interesting trends regarding polarization and signal intensity. Figure 6 shows that
by visual inspection, co-polarized measurements of HH appear to have higher signal
intensity than cross-polarized data HV for both s11 and s21 parameters. This finding is
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consistent with the understanding that signal cancellation is less severe in co-polarized
sensor configurations than in cross-polarized ones. In addition, the HH s21 and HV s21
distributions shown in Figure 7b,d appear more distinct compared with the HH s11 and
HV s11 distributions shown in Figure 7a,c. This could indicate that the application of the
Horizontal-Horizontal polarization technique results in a more pronounced signal response.
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3.3.2. Scenario 2: One or Two Tumors vs. No Tumor

In the second scenario, we extended our analysis to distinguish between breast tissues
with one or two tumors and those without. We concatenated the datasets from Scenario 1,
added an additional dataset with two tumors (2403 samples) and applied the same pre-
processing steps as described in Scenario 1. The main differences in this scenario are in the
label assignment and data concatenation steps. Specifically, we assigned labels as follows:
0 for no tumor, 1 for one tumor, and 2 for two tumors. We then concatenated the three
datasets, resulting in a comprehensive dataset that captures the variability of breast tissue
conditions. The distribution of the pre-processed data is shown in Figure 8, which highlights
the different patterns and characteristics of the three classes. This visualization provides
valuable insights into the underlying structure of the data and informs the development of
ML models that can effectively detect the presence of small-sized tumors.
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As shown in Figure 8, the results from Scenario 1 are further corroborated by exam-
ining the S-parameter distributions (s11 and s21) in Scenario 2 (one, two, and no tumors).
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Co-polarized measurements (HH and HV) for s11, shown in Figure 8a,c, show higher signal
intensities compared with s21, as shown in Figure 8b,d, similar to Scenario 1. In addition,
the HH s11 distributions appear more distinct than their HV counterparts.

4. Results and Discussion

This section presents a comprehensive comparative study of the performance of eight
ML algorithms, SVM, RF, GBM, DT, AD, CatBoost, and LR, in detecting BC using a pre-
processed balanced dataset. To ensure a thorough evaluation, we used an 80:20 train-test
split and assessed the performance of each algorithm using a range of metrics, including ac-
curacy, recall, precision, F1 score, ROC curve, and AUC. By considering multiple algorithms
and evaluation metrics, we aimed to provide a nuanced understanding of the strengths
and limitations of each approach rather than advocating for a single best algorithm.

As we delve into the results of our comprehensive study, we are presented with a
wealth of information that sheds light on the performance of eight ML algorithms in BC
detection. We will meticulously analyze the results, table by table, to gain a thorough
understanding of the strengths and limitations of each algorithm.

4.1. Scenario 1: One Tumor or Not

As shown in Table 4, eight MLAs were tested to discriminate a tumor from non-tumor
cases. CatBoost and SVM showed exceptional accuracy, precision, recall, and F1 scores,
with SVM achieving 98% accuracy and CatBoost 90%. As shown in Figure 9, the ROC
analysis supported these findings, with SVM achieving a perfect AUC of 1.0 and CatBoost
securing a strong AUC of 0.97, as shown in Figure 9b,h. LR, GB, XG Boost, and RF show
decent performance with AUC values ranging from 0.94 to 0.95, as shown in Figure 9a,d,f,g.
DT and Ada Boost achieve an AUC of 0.83, as shown in Figure 9c,e.

Table 4. Comparison of machine learning algorithms based on HH S11.

Class 0: Non-Tumor Class 1: One Tumor

Models Precision Recall F1 Precision Recall F1 Accuracy AUC

Logistic Regression 87% 87% 87% 87% 88% 87% 87% 0.94

SVM 97% 99% 98% 99% 97% 98% 98% 1

Decision Tree 84% 85% 85% 82% 80% 81% 83% 0.83

Random Forest 86% 84% 85% 81% 83% 82% 83% 0.94

Ada Boost 74% 77% 75% 71% 68% 69% 73% 0.83

Gradient Boosting 90% 88% 89% 85% 88% 87% 88% 0.95

XG Boost 87% 86% 87% 84% 85% 84% 86% 0.95

CatBoost 92% 89% 90% 87% 91% 89% 90% 0.97

Table 5 illustrates a similar pattern with HV S11, where SVM performs better. As can be
seen in Figure 10b, this algorithm has an accuracy score of 94% with an AUC of 0.96. Other
algorithms that have accuracy scores between 73% and 87% with AUC in Figure 10a,c–g
include DT, RF, Ada Boost, GB, XG Boost, and CatBoost.

Table 6’s HH S21 displays a slightly different pattern. With an accuracy of 86% and an
AUC of 0.94, as in Figure 11b, SVM leads in this case. GB and CatBoosting are next with
0.87 and 0.89 of AUC, as in Figure 11d,f,h. However, as shown in Figure 11a,c–e,g, LR, DT,
RF, Ada Boost, and XG Boost find it difficult to keep up, with accuracy scores of 68%, 69%,
79%, 63%, and 77%, respectively, and an AUC ranging from 0.65 to 0.86.
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Table 5. Comparison of machine learning algorithms HV S11.

Class 0: Non-Tumor Class 1: One Tumor

Models Precision Recall F1 Precision Recall F1 Accuracy AUC

Logistic Regression 81% 87% 84% 86% 81% 84% 84% 0.89

SVM 95% 92% 94% 93% 96% 94% 94% 0.96

Decision Tree 76% 82% 79% 82% 76% 78% 79% 0.79

Random Forest 81% 85% 83% 85% 80% 83% 83% 0.91

Ada Boost 71% 73% 72% 74% 72% 73% 73% 0.82

Gradient Boosting 84% 87% 86% 87% 84% 86% 86% 0.92

XG Boost 85% 83% 84% 84% 86% 85% 85% 0.94

CatBoost 85% 89% 87% 89% 85% 87% 87% 0.94

Table 6. Comparison of machine learning algorithms HH S21.

Class 0: Non-Tumor Class 1: One Tumor

Models Precision Recall F1 Precision Recall F1 Accuracy AUC

Logistic Regression 60% 78% 68% 78% 60% 68% 68% 0.75

SVM 80% 91% 85% 92% 82% 87% 86% 0.94

Decision Tree 69% 69% 69% 69% 68% 68% 69% 0.69

Random Forest 81% 77% 79% 78% 81% 80% 79% 0.87

Ada Boost 63% 61% 62% 62% 64% 63% 63% 0.65

Gradient Boosting 79% 81% 80% 81% 79% 80% 80% 0.87

XG Boost 78% 76% 77% 76% 79% 78% 77% 0.86

CatBoost 83% 80% 82% 81% 84% 82% 82% 0.89
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Figure 11. ROC curve of various classifiers for HH S21.

Lastly, the HV S21 in Table 7 shows that SVM dominates the accuracy scores with 94%
and 0.96 of AUC, as shown in Figure 12b. With an AUC of 0.91, LR performs fairly well, as
seen in Figure 12a. As demonstrated in Figure 12c–h, in comparison, the accuracy of DT,
RF, Ada Boost, GB, XG Boost, and CatBoost is lower and has a good range of AUC between
0.79 and 0.93.

Table 7. Comparison of machine learning algorithms HV S21.

Class 0: Non-Tumor Class 1: One Tumor

Models Precision Recall F1 Precision Recall F1 Accuracy AUC

Logistic Regression 87% 82% 84% 83% 88% 85% 85% 0.91

SVM 98% 91% 94% 91% 98% 95% 94% 0.96

Decision Tree 75% 78% 76% 80% 76% 78% 77% 0.79

Random Forest 80% 81% 81% 83% 82% 82% 81% 0.91

Ada Boost 72% 72% 72% 75% 75% 75% 74% 0.81

Gradient Boosting 84% 85% 85% 87% 86% 86% 83% 0.92

XG Boost 80% 87% 83% 87% 81% 84% 84% 0.93

CatBoost 77% 80% 79% 82% 79% 80% 79% 0.90
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4.2. Scenario 2: One, Two, and No Tumors

In the multi-class scenario, we used the ROC curve to evaluate the performance of
each algorithm on the three classes (0, 1, and 2). Due to the limitations of the ROC curve in
handling multiple classes, we plotted the ROC curves for each class separately, allowing for
a more nuanced understanding of each algorithm’s performance. We used these metrics to
compare the performance of the following algorithms: LR, SVM, DT, RF, Ada Boost, GBM,
XG Boost, and CatBoost.

The eight MLA performance indicators, as presented in Table 8 for HH S11, reveal
key insights. Figure 13b shows that SVM is the best performer, achieving an impressive
99% accuracy and an AUC of 1 across three classes. RF, GB, XG Boost, and CatBoost also
perform well, with accuracy scores ranging from 85% to 88% and AUC values between 0.94
and 1, as depicted in Figure 12d,f–h. On the other hand, Figures 12c,e and 13a illustrate
that LR, DT, and Ada Boost struggle comparatively, with accuracy scores of 76%, 79%, and
58%, respectively, and lower AUC values in most classes.

Table 8. Comparison of machine learning algorithms HH S11.

Class 0: Non-Tumor Class 1: One Tumor Class 2: Two Tumors

Models Prec. Recall F1 Prec. Recall F1 Prec. Recall F1 Accuracy

Logistic Regression 85% 66% 75% 70% 87% 78% 75% 74% 74% 76%

SVM 97% 99% 98% 99% 97% 98% 100% 100% 100% 99%

Decision Tree 71% 77% 74% 82% 73% 77% 85% 87% 86% 79%

Random Forest 83% 78% 81% 83% 83% 83% 90% 94% 92% 85%

Ada Boost 52% 53% 52% 58% 52% 55% 65% 70% 67% 58%

Gradient Boosting 81% 79% 80% 81% 80% 80% 92% 96% 94% 85%

XG Boost 82% 79% 81% 81% 79% 80% 90% 95% 93% 85%

CatBoost 84% 84% 84% 85% 85% 85% 95% 95% 95% 88%
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Figure 13. ROC curve of various classifiers for HH S11.

A slightly different pattern can be seen in HH S21 for Scenario 2 in Table 9, where
three algorithms with an AUC between 0.94 and 1.0 are used. RF, GB, and XG Boost take
the lead with accuracy scores of 88%, as shown in Figure 14d,f,g. As seen in Figure 14h,
CatBoost comes a close second with an accuracy score of 87% with 0.95 and 1.0 of AUC for
three classes. Figure 14a–c,e shows that LR, SVM, DT, and Ada Boost lag behind with a low
AUC in most classes.

Table 9. Comparison of machine learning algorithms HH S21.

Class 0: Non-Tumor Class 1: One Tumor Class 2: Two Tumors

Models Prec. Recall F1 Prec. Recall F1 Prec. Recall F1 Accuracy

Logistic Regression 67% 76% 71% 72% 63% 67% 100% 100% 100% 80%

SVM 58% 94% 71% 83% 31% 45% 100% 100% 100% 75%

Decision Tree 72% 58% 64% 61% 74% 67% 100% 100% 100% 78%

Random Forest 86% 78% 82% 76% 85% 80% 100% 100% 100% 88%

Ada Boost 57% 66% 61% 53% 44% 48% 100% 100% 100% 72%

Gradient Boosting 84% 78% 81% 77% 84% 80% 100% 100% 100% 88%

XG Boost 85% 77% 81% 77% 85% 81% 100% 100% 100% 88%

CatBoost 81% 79% 80% 77% 80% 78% 100% 100% 100% 87%

Similar results can be seen in Table 10 for HV S11, where SVM dominates the accuracy
with 93% and AUC values of 0.96, 0.98, and 0.99 for the three classes, as shown in Figure 15b.
Low accuracy is followed by LR, DT, RF, Ada Boost, GB, XG Boost, and CatBoost. As can
be seen in Figure 15a,f–h, LR, GB, XG Boost, and CatBoost perform well for AUCs, while
DT and Ada Boost lag behind for low AUCs, as can be seen in Figure 15c,d.

The HV S21 results for Scenario 2 are shown in Table 11, and as Figure 16b shows,
SVM achieves the highest accuracy score of 92% with a narrow range of AUC values. In
comparison, the accuracy scores of the other algorithms range from 53% to 78%, indicat-
ing relatively low performance. In particular, as shown in Figure 16e–h, the ensemble
algorithms—with the exception of AD—perform robustly with converging AUC values.
Figure 16a,b,d show that LR, DT, and AD now have lower AUC values.



Information 2024, 15, 467 29 of 36
Information 2024, 15, x FOR PEER REVIEW 32 of 40 
 

 

 
(a) Logistic Regression 

 
(b) SVM 

 
(c) Decision Tree 

 
(d) Random Forest 

 
(e) Ada Boost 

 
(f) Gradient Boosting 

Figure 14. Cont.



Information 2024, 15, 467 30 of 36
Information 2024, 15, x FOR PEER REVIEW 33 of 40 
 

 

 
(g) XG Boost 

 
(h) CatBoost 

Figure 14. ROC curve of various classifiers for HH Sଶଵ. 
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Figure 14. ROC curve of various classifiers for HH S21.

Table 10. Comparison of machine learning algorithms for HV S11.

Class 0: Non-Tumor Class 1: One Tumor Class 2: Two Tumors

Models Prec. Recall F1 Prec. Recall F1 Prec. Recall F1 Accuracy

Logistic Regression 73% 74% 74% 76% 72% 74% 71% 75% 73% 74%

SVM 87% 93% 90% 97% 90% 93% 96% 95% 95% 93%

Decision Tree 52% 61% 56% 54% 57% 55% 66% 50% 57% 56%

Random Forest 73% 67% 70% 75% 72% 73% 72% 80% 76% 73%

Ada Boost 51% 46% 49% 54% 53% 54% 46% 51% 49% 50%

Gradient Boosting 73% 78% 75% 79% 77% 78% 79% 76% 77% 77%

XG Boost 76% 80% 78% 77% 79% 78% 80% 72% 76% 77%

CatBoost 71% 74% 72% 75% 75% 75% 74% 70% 72% 73%

Table 11. Comparison of machine learning algorithms HV S21.

Class 0: Non-Tumor Class 1: One Tumor Class 2: Two Tumors

Models Prec. Recall F1 Prec. Recall F1 Prec. Recall F1 Accuracy

Logistic Regression 72% 76% 74% 77% 69% 73% 74% 78% 76% 74%

SVM 93% 88% 90% 94% 93% 93% 92% 98% 95% 92%

Decision Tree 95% 56% 60% 48% 77% 59% 68% 37% 48% 57%

Random Forest 79% 74% 77% 82% 71% 76% 69% 84% 76% 76%

Ada Boost 57% 54% 56% 56% 58% 57% 47% 47% 47% 53%

Gradient Boosting 77% 83% 80% 83% 77% 80% 75% 74% 75% 78%

XG Boost 75% 80% 77% 81% 78% 79% 76% 73% 75% 77%

CatBoost 71% 74% 72% 75% 77% 76% 71% 66% 69% 72%
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Looking at the results of our extensive research, a few important findings stand out. 
Firstly, SVMs demonstrated superior performance in identifying BC, consistently excel-
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separation, but it can be resource-intensive and struggle with noisy data, particularly in 
BC detection tasks with moderate dataset sizes and complex feature spaces. DTs are a 
versatile classification and regression method, especially useful in BC detection due to 
their ability to handle non-linear relationships, minimal data pre-processing, and ro-
bustness to outliers. However, they can become computationally burdensome. RF is an 
effective technique for detecting BC because of its high accuracy, resilience to overfitting, 
and ability to work well with large datasets. Even with these drawbacks, RF remains 
useful and adaptable for tasks involving predictive modeling. Ada Boost is a versatile 
MLA for BC detection, enhancing weak learners’ performance and achieving high accu-
racy. However, it is sensitive to noisy data, requires hyperparameter tuning, and can be 
computationally intensive. GBM is a versatile algorithm for BC detection, capable of 
handling complex relationships and missing data. Despite its computational complexity, 
hyperparameter tuning requirements, and potential for overfitting, GBM remains a pre-
ferred choice for predictive modeling tasks. XG Boost is a robust MLA for BC detection 
despite its computational complexity, hyperparameter tuning, and interpretability issues. 
Despite these challenges, it remains a top choice for predictive modeling tasks. CatBoost 
is a robust ML tool for complex datasets like breast cancer detection, excelling in han-
dling categorical features, achieving high accuracy, and preventing overfitting. Despite 
its computational complexity, need for fine-tuning, and longer training times, it remains 
effective and versatile. Table 12 provides a summary of various ML models, comparing 
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Looking at the results of our extensive research, a few important findings stand out.
Firstly, SVMs demonstrated superior performance in identifying BC, consistently excelling
in both scenarios, as shown in Figure 17a,b for Scenario 1 and Scenario 2. GB, XG Boost,
and CatBoost also perform admirably, suggesting that they could be useful alternatives.

This comparison illustrates the superior performance of RF and XGBoost over SVM
for the given datasets in terms of accuracy.

It is interesting to note that HV configuration generally performs worse than HH
configuration. Based on these results, we recommend the use of dataset S11 with its HH
antenna configuration, which demonstrates optimal performance in our study.

Finally, based on the results mentioned above, we can conclude that LR is a robust
algorithm for binary classification tasks like BC detection due to its ease of interpretability,
fast training times, and lower computational requirements. However, its linear assumption
and sensitivity to feature scaling can limit its effectiveness. SVM is a powerful MLA with
high accuracy, effective handling of high-dimensional data, and clear class separation, but
it can be resource-intensive and struggle with noisy data, particularly in BC detection tasks
with moderate dataset sizes and complex feature spaces. DTs are a versatile classification
and regression method, especially useful in BC detection due to their ability to handle
non-linear relationships, minimal data pre-processing, and robustness to outliers. However,
they can become computationally burdensome. RF is an effective technique for detecting
BC because of its high accuracy, resilience to overfitting, and ability to work well with large
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datasets. Even with these drawbacks, RF remains useful and adaptable for tasks involving
predictive modeling. Ada Boost is a versatile MLA for BC detection, enhancing weak
learners’ performance and achieving high accuracy. However, it is sensitive to noisy data,
requires hyperparameter tuning, and can be computationally intensive. GBM is a versatile
algorithm for BC detection, capable of handling complex relationships and missing data.
Despite its computational complexity, hyperparameter tuning requirements, and potential
for overfitting, GBM remains a preferred choice for predictive modeling tasks. XG Boost
is a robust MLA for BC detection despite its computational complexity, hyperparameter
tuning, and interpretability issues. Despite these challenges, it remains a top choice for
predictive modeling tasks. CatBoost is a robust ML tool for complex datasets like breast
cancer detection, excelling in handling categorical features, achieving high accuracy, and
preventing overfitting. Despite its computational complexity, need for fine-tuning, and
longer training times, it remains effective and versatile. Table 12 provides a summary of
various ML models, comparing them across several dimensions such as time complexity,
problem type, and whether they are parametric or non-parametric models.
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Figure 17. Highest accuracy for Scenario 1 and Scenario 2. (a) Performance variations of the SVM
algorithm across different datasets, (b) Performance comparison of RF, GB, and XGBoost algorithms
against the SVM algorithm.

Table 12. Parameter of machine learning algorithms.

Parameter Time Complexity
(Training Phase) Problem Type Model Parameter

Models
LR n(O(d)) = O(nd) Classification Parametric

SVM O(n2 × d) or O(n3) Classification and regression Non-parametric
DT O(m · n2) Classification and regression Non-parametric
RF O(v × n log(n)) Classification and regression Non-parametric

Ada Boost O(Tf) Classification and regression Non-parametric
GBM O(Td) Classification and regression Non-parametric

XG Boost O(tdxlogn) Classification and regression Non-parametric
CatBoost O(sn2) Classification and regression Non-parametric

5. Conclusions

This paper presents a novel and innovative system for the early detection of BC using
the pre-processed balanced dataset. By using a dual-polarization sensor-based wearable
textile bra-tenna system together with ML, the system is able to effectively detect tumors
as small as 10 mm. Eight distinct ML techniques were applied to the dataset and the
performance of the system was analyzed in two scenarios. We trained each algorithm on
80% of the dataset and evaluated its performance on the remaining 20% test set. The results
showed that the proposed system achieved excellent performance, with an accuracy of
over 90% in both scenarios. This high level of accuracy surpasses that of existing methods
and highlights the potential of microwave detection as a valuable tool for BC diagnosis.
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