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Abstract: Traditional frame-based cameras, despite their effectiveness and usage in computer vision,
exhibit limitations such as high latency, low dynamic range, high power consumption, and motion
blur. For two decades, researchers have explored neuromorphic cameras, which operate differently
from traditional frame-based types, mimicking biological vision systems for enhanced data acquisition
and spatio-temporal resolution. Each pixel asynchronously captures intensity changes in the scene
above certain user-defined thresholds, and streams of events are captured. However, the distinct
characteristics of these sensors mean that traditional computer vision methods are not directly
applicable, necessitating the investigation of new approaches before being applied in real applications.
This work aims to fill existing gaps in the literature by providing a survey and a discussion centered
on the different application domains, differentiating between computer vision problems and whether
solutions are better suited for or have been applied to a specific field. Moreover, an extensive
discussion highlights the major achievements and challenges, in addition to the unique characteristics,
of each application field.

Keywords: event cameras; dynamic vision sensors; event-based cameras; neuromorphic cameras;
computer vision; survey; review

1. Introduction

Computer vision has reached a mature stage and finds applications across a wide
range of fields. Computer vision applications heavily rely on image sensors, which detect
electromagnetic radiation, typically in the form of visible or infrared light. Indeed, image
acquisition plays a pivotal role in machine vision as long as high-quality images allow for
consequent higher-quality processing and analysis. This stage involves both hardware
and software components, and selecting the right components is crucial for the following
processing and analysis.

In general, images can be generated with active or passive methods. In the active
method, a light source illuminates the object, while in the passive method, natural sunlight
serves as the illumination. Usually, in production lines and industrial applications, the
active method is more suitable, since it leads to more reproducible conditions; however, this
method means that the choice of light source and illumination conditions becomes critical.
Depending on the application, typical light sources can be lamps, LEDs, and/or laser
sources. The wavelength of the electromagnetic wave also matters for image recording,
with visible, infrared, or X-ray regions of the spectrum used for scene illumination [1].

In both cases, computer vision has relied on frame-based cameras for a long time;
they produce data corresponding to the captured light intensity at each selected pixel in
a synchronous manner (i.e., the whole sensor records the scene at defined frame rates).
While this technology has been effective and superior to other camera types for many years,
frame-based cameras still exhibit limitations that impact performance and accuracy. Some
of the challenges associated with frame-based cameras include
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• High latency: the latency between the presentation of physical stimuli, the transduc-
tion into analog values, and the encoding time into a digital representation are high if
the data are sampled at a fixed rate, independent from the stimuli.

• Low-dynamic range: frame-based cameras have difficulties in handling scenes with
very high variations in brightness.

• Power consumption: high-quality and feature-rich frame-based cameras present high
consumption, making them unpractical in many resource-constrained environments.

• Motion blur: when capturing high-speed motion, frame-based cameras introduce
motion blur, affecting subsequent image processing accuracy.

• Limited frame rates: traditional sensors allow for slow frame rates (typically in the
order of 20–240 fps), whereas for high-speed recordings, specialized highly complex
and expensive equipment is needed.

Typical frame-based cameras acquire incident light at a frequency indicative of the
temporal resolution and latency of the sensor. Two major reading schemes are global and
rolling shutter. In global shutter schemes, the entire array is read simultaneously at fixed
timestamps; in this way, the camera exposure is synchronized to be the same for all the
pixels of the array. Consequently, the sensor latency depends on the number of pixels on
the sensor to transfer. To decrease latency, rolling shutter cameras read the array row by
row; the time to read out a single row is known as line time and can be of the order of
10–20 microseconds. This reading scheme reduces latency to the product of the line time
and the number of rows but, as a consequence, the occurrence of motion blur artifacts
increases. In general, lower exposition times mitigate blur at the cost of causing overly dark
photos and loss of details. Higher frame rate cameras can mitigate motion blur, but this
leads to increased power consumption and overheating issues, and the associated image
processor or digital signal processor must handle exponentially larger data volumes [2].

The aforementioned limitations impact the possibility of applying traditional com-
puter vision in certain domains, depending on the very specific requirements of each
application field. To address these challenges, researchers have started to explore other
solutions; among them, in the last 60 years, neuromorphic cameras (also known as event
cameras) have emerged, taking inspiration from biological vision systems. If attempts to
electronically model the mammal visual system date to 1970 [3] the seminal work on such
sensor was introduced in 1988 [4] and constructed an analog model of the early stages
of retinal processing on a single silicon chip. Differently from traditional frame-based
cameras, neuromorphic image sensors operate asynchronously, mimicking the spatio-
temporal information extraction of biological vision systems to enhance data acquisition,
sensitivity, dynamic range, and spatio-temporal resolution. Unlike traditional frame-based
cameras, these sensors adhere to a different paradigm, resulting in sparse event data output.
In this way, their application can benefit from reduced temporal latency, high dynamic
range, robustness to lighting conditions, data transmission speed, and reduced power
consumption. Moreover, neuromorphic cameras have the advantage of working under
privacy-reservation conditions since they capture pixel brightness variations instead of
static imagery [5]. As evidence of the potential of such sensors, both academia and industry
have shown interest in neuromorphic cameras and, since their original introduction, several
breakthroughs have improved performance and provided different working alternatives,
leading to commercial solutions and sensors ready for the market. The state of the art
company case studies show how event cameras have been successfully applied in several
fields, from robotics to intelligent transportation systems, from surveillance and security to
healthcare, from facial analysis to space imaging. Figure 1 reports two commercial examples
of neuromorphic cameras, the Prophesee EVK4 [6] (a) and the Inivation DAVIS346 [7] (b).

Nevertheless, due to the distinct characteristics of such sensors, the methods and
algorithms developed for frame-based computer vision are no longer directly applicable
to event-based vision systems. Furthermore, the extensive datasets used for training and
characterizing frame-based systems cannot be seamlessly transferred to their event-based
counterparts due to the fundamental differences in data output. As a consequence, event
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cameras have garnered significant interest from researchers, and academic investigation
in this domain has flourished as experts seek to address fundamental questions related to
event camera technology. Given the transformative potential of event cameras, it is not
surprising that a wealth of work has been proposed to unlock their full capabilities and
overcome associated challenges.

(a) (b)
Figure 1. Two commercial examples of neuromorphic sensors. (a) The Prophesee EVK4 that uses
the Sony IMX636 CMOS. (b) The Inivation DAVIS346. Courtesy of Prof. Maria Martini, Kingston
University London, UK.

Additionally, surveys and comprehensive analyses that consolidate existing knowl-
edge, highlight trends, and provide valuable insights for both practitioners and academics
have been proposed. Nevertheless, it is possible to observe that this, albeit extensive, litera-
ture is missing a critical analysis based on different application domains (see Section 4),
frequently preferring to list certain computer vision tasks instead. Often, a solution for
a low-level computer vision task can serve as a building element for tasks hierarchically
classified at a higher-level. However, while it is acknowledged that the traditional hi-
erarchical classification of computer vision tasks may evolve with the latest progress in
deep learning, and in particular with the advent of end-to-end systems, it is still crucial
to separate computer vision tasks from systems that have been implemented in a specific
application domain, which has unique features and challenges. This is particularly true for
the case of the relatively recent neuromorphic sensor that has less well-established research
compared to classic cameras and, thus, less clear links between results in specific tasks
and applications.

Finally, the reduction in the cost of producing event cameras, the availability of event
camera simulators and datasets, as well and the very rapid advances in deep learning, are
leading to a rapid diffusion of such technology; and this widens the number of works in
this field. Similarly, the number of workshops, academic conferences, and special issues
in journals has increased tremendously over the years, with the necessity to re-organize
works presented in previous surveys to include the most recent research outcomes.

This work aims to fill the aforementioned gaps with the following contributions:

1. a collection of past surveys about neuromorphic cameras and computer vision with
the introduction of a specific taxonomy to easily classify and refer to them;
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2. a critical analysis driven by the different application domains, instead of low-, medium-,
or high-level computer vision tasks;

3. an updated review that includes recent works and research outcomes.

The first two contributions, to the best of our knowledge, are introduced for the first
time in the context of reviews about neuromorphic cameras.

This work is organized as summed up by the scheme shown in Figure 2. Section 2
briefly sums up the working principle of a neuromorphic camera and introduces the event-
based paradigm. The methodology used to select the papers forming the subject of this
survey and the reason behind the selected Scopus search queries are given in Section 3. In
Section 4, existing surveys in the literature are discussed and cataloged using a proposed
taxonomy that considers the main focus of each survey. Section 5 briefly puts in context
the proposed analysis by application domain with respect to low-, middle-, and high-level
computer vision tasks. In Section 6, a review analyzes works that are presented by their
application domain, divided into groups, and each subsection analyzes one of these groups.
The amount of information and works is very high, so a discussion that takes into account
all the aspects presented in this manuscript highlighting common outcomes and challenges,
as well as peculiarities of each application field and future directions, can be found in
Section 7. Section 8 has the conclusions.

Figure 2. A summary of the paper organization. Critical analysis and discussions are highlighted
with red text.

2. Neuromorphic Cameras

The biological vision system has been optimized over hundreds of millions of years of
evolution and has excellent image information perception and highly parallel information
processing capabilities. The retina transmits information in the form of images, shadows,
and colors to the brainstem through a crossover, where the final visual information is
extracted and useless visual information is discarded, recognizing visual information in the
brain when the final processing is complete. With the continuous development of vision
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sensor arrays, the performance of traditional imaging systems that capture brightness
at a fixed rate is constantly being improved. However, the subsequent amount of raw
data collected is also increasing, making data transmission and processing more and
more complex and demanding. In contrast, living organisms efficiently process sensory
information in complex environments due to a well-established hierarchical structure,
co-location of computation and storage, and very complex neural networks. Several types
of image-sensing systems that simulate the biological visual structures of humans and
animals have been proposed [8]. We use neuromorphic sensors to refer to those bio-inspired
devices that try to mimic the sensing and early visual-processing characteristics of living
organisms [9].

Neuromorphic vision is generally divided into three levels: the structural level, which
imitates the retina; the device functional level, which approaches the retina; and the intelligence
level, which surpasses the retina. In neuromorphic vision sensors, an optoelectronic nanode-
vice simulates the biological vision sampling model and information processing function,
and a perception system with or beyond the biological vision ability is constructed under
limited physical space and power consumption constraints using simulation engineering
techniques, such as device function-level approximation [10]. A schematic diagram that
shows the analogies between the human visual system (top) and neuromorphic vision
(bottom) is reported in Figure 3.

Figure 3. Analogies between the human visual system (top) and the neuromorphic vision sensor
(bottom). “Neuron” (https://skfb.ly/oyUVY, accessed on 4 August 2024) by mmarynguyen is
licensed under Creative Commons Attribution-NonCommercial. “Human Head” (https://skfb.ly/
ouFsp, accessed on 4 August 2024) by VistaPrime is licensed under Creative Commons Attribution.
Car and lens generated with Adobe Firefly©.

Similarly to conventional cameras, a neuromorphic vision sensor, also known as an
event camera, address-event representation (AER), or silicon retina, is composed of pixels, but,
instead of capturing intensity, each pixel asynchronously captures intensity changes in the
scene that exceed user-defined thresholds. The camera outputs streams of events, where
the i − th event ei is defined by

ei = (xi, ti, pi), (1)

with xi denoting the pixel position with spatial coordinates (xi, yi) where the event is
triggered, with ti the timestamp, and with pi the polarity of the event that can be defined as
ON (positive)/ OFF (negative), or also, pi ∈ {1,−1}, to distinguish an increase or decrease
in intensity from darker to brighter values or vice-versa, exceeding given thresholds. The
event data in a time sequence are recorded as {ei}Ne

i=1, with Ne being the number of total
events in the interval of time te.

https://skfb.ly/oyUVY
https://skfb.ly/ouFsp
https://skfb.ly/ouFsp
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In other words, a single event occurs if there is a change in the brightness magnitude
(from the last event or the initial brightness condition) that reaches a threshold C+ for
positive or ON changes and C− for negative (OFF) events. Events are triggered in an
asynchronous way and timestamped with microsecond resolution and can be transmitted
with very low latency (in general, in the order of sub-milliseconds). Figure 4 shows an
example of different sensor outputs when recording a white rotating PC fan in the xyt-plan:
the frame-based camera (right) grabs a frame depending on its internal clock, and thus on
the established exposition time and as a function of the frame rate. This means that blur
will be present when the rotation speed is high with respect to the camera frame rate, and
that the same scene will be captured when the image is still. In the case of event cameras, a
continuous stream will be captured, where the only pixels that activate will capture the
movement, either observing a change from dark to bright or vice-versa. In the case of high
rotation speeds, the motion will still be completely captured. On the contrary, in case of no
motion and no noise, no events will be streamed.

Figure 4. Output from a neuromorphic sensor (left) and a frame-based camera (right) while recording
a rotating PC fan in the xyt-plan. ON and OFF events are rendered respectively as blue and black
pixels on a white background.

The fast response of a sensor capable of capturing events at a high rate makes it suitable
for considering accumulating events over time, to better grasp the scene. When creating
an output representation comparable to images of frame-based cameras, it is possible to
perform the following: all the events that occurred in a time interval are moved to image
coordinates depending on the pixel position, the most recent event can be kept in case of
multiple events at the same pixel, and thus the image can be formed at a frame rate that
is a function of the accumulation time. The case of “no event” for a given pixel is usually
modeled by giving the value 0 to that pixel. In this way, a video stream can be created. An
example of an obtained image by accumulating events over time from an event camera
obtained in an indoor navigation scenario is reported in Figure 5a. ON and OFF events
are rendered respectively as blue and black pixels on a white background. At this point, it
is fundamental to highlight how the functioning of event cameras poses a new paradigm
shift, where the output is sparse and asynchronous instead of dense and synchronized.
Moreover, the output is no longer a set of grayscale intensities, but a stream of events
ei, as defined in Equation (1). This poses new challenges in terms of camera setup and
computer vision algorithm design: first of all, classic computer vision algorithms are not
easily or directly applicable, since they are designed to work with a fundamentally different
information source. This has opened a new research area that investigates alternative
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representations that are more suitable for algorithms dedicated to event processing and/or
that can facilitate the feature extraction phase of computer vision pipelines. Refer to [11]
for more details on event representation. Moreover, the captured stream of events strongly
depends on the values of the different configurable thresholds (biases) associated with the
event camera acquisition scheme, making an experimental setup stage necessary, where
the values depend on the specific application context and the environmental conditions.

(a) Accumulation image obtained with an
accumulation time of 33 ms.

(b) The same scene recorded with a
frame-based camera.

Figure 5. (a): An example accumulation image from an event camera while moving in an indoor
environment. ON and OFF events are rendered respectively as blue and black pixels on a white
background. (b): the same scene taken from a RGB camera.

Early event-based sensors presented high noise levels, unsuitable for real and com-
mercial applications [12]. The development of optoelectronic materials, together with
advancements in robotics and biomedical fields, has led to a new generation of event-based
cameras that have been adopted by research and industry. The major differentiating pa-
rameters of event cameras with respect to frame-based cameras are their latency, dynamic
range, power consumption, and bandwidth.

The dynamic vision sensor (DVS) [13] emulates a simplified three-layer retina to
realize an abstraction of the information flow through the photoreceptor, bipolar, and
ganglion cells. Internally, a differentiation circuit amplifies the changes with high precision
and outputs a voltage logarithmically encoding the photo-current. This output voltage is
compared against global thresholds that are offset from the reset voltage to detect increasing
(ON) and decreasing (OFF) changes.

In practice, DVS has become a synonym for event camera, although it only represents
a possible technology and thus a type of neuromorphic camera. In fact, other families of
event cameras are also available. For example, an asynchronous time-based image sensor
(ATIS) [14] encodes both relative changes and absolute exposure information, thanks to
an exposure measurement unit. Absolute instantaneous pixel illuminance is acquired by
converting the integrated photo charge into the timing of asynchronous pulse edges. The
disadvantage is that the pixels are at least double the area of DVS pixels. Another way to
combine relative changes with static information is in a dynamic and active pixel vision
sensor (DAVIS) [15]. The difference is that ATIS are still an asynchronous event-driven
technology, while in DAVIS an active pixel sensor (APS) retrieves static scene information
like in a frame-based camera, and events can be placed on top of this representation. Two
frames with both color and event information from the dataset released in [16] are reported
in Figure 6. Being based on frame-based principles, DAVIS sensors have limited dynamic
range compared to DVS, and they display redundancies in the case of static scenes. Refer
to [17] for more information on these families of sensors, and to [12] for a discussion that
also includes other emerging technologies.
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Figure 6. Two frames with respective color and event information from the CED: Color Event Dataset
in [16].

3. Materials and Methods

First, a pilot investigation established the required foundation and understanding
of the domain, as well as the selection of appropriate keywords to search and select the
papers. Data were gathered from Scopus, because of its large coverage [18]. The output of
this phase was the following Scopus query, used with the Scopus Search API to extract the
paper list. The aforementioned search was carried out in April 2024.

TITLE(
("neuromorphic" AND ("vision" OR "camera" OR "sensor"))
OR "event camera" OR "event based camera" OR "event triggered camera"
OR "dynamic vision sensor" OR "event based sensor" OR "event sensor"
OR "address event representation" OR "event vision sensor"
OR "event based vision sensor" OR "silicon retina")
OR KEY(
("neuromorphic" AND ("vision" OR "camera" OR "sensor"))
OR "event camera" OR "event based camera" OR "event triggered camera"
OR "dynamic vision sensor" OR "event based sensor" OR "event sensor"
OR "address event representation" OR "event vision sensor"
OR "event based vision sensor" OR "silicon retina")
AND LIMIT-TO(LANGUAGE, "English")

The selected field codes were TITLE and KEY (that includes AUTHKEY, INDEXTERMS,
TRADENAME, and CHEMNAME); the field code ABS that also searched in the abstract text was
excluded because the keywords search in abstracts was misleading and included many
works not related with the scope of this manuscript. The selected attributes and Boolean
relations used for the TITLE field code were replicated for the KEY and were selected to
include all names by which event cameras are known; we only added the constraint that
the word neuromorphic must be present together with vision, camera or sensor. The word
event alone can lead to non-relevant results; thus, it was only used in combination with
the correct and complete names associated with event cameras. Spaces or dashes were
automatically handled by the search engine. Finally, the language was limited to English.
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Criteria for selecting primary studies and data collection were defined to reduce
selection bias and provide a mean for ascertaining the validity of the review process. The
initial search result produced 2667 records. After removing possible duplicates and similar
issues (e.g., corrigendum, live demonstrations, etc.), this number fell to 2603. After this,
studies whose abstract did not suggest any relation with our scope were excluded. At
the end of this phase, about 1500 works were eligible. We separated surveys (the main
ones are summed up and discussed in the next section) from other works, and divided the
remaining works by primary application field (if any), reviewing and citing most relevant
works in the different subsections of Section 6. We considered relevance depending on the
publication year, number of citations, if the article addressed specific issues for the first
time, and how much the work focused on the application field; about the latter, this meant
that if many works focused on the same problem, we could not report all of them, even if
they were very relevant, while a very unique attempt to use event cameras in a new field
was cited, to show the potential of such sensors. The works that were eligible but were not
classifiable in any application field were excluded from the analysis of Section 6 but kept
for our overall analysis and cited if they contributed to a certain definition/citation during
the manuscript and/or during the discussions. At this point, we repeated the research
with Google Scholar to extend the research to thesis works and arXiv pre- and post-prints,
to avoid missing certain very specific documents. The Google Scholar query system has
fewer degrees of freedom than Scopus, so different queries with the specific keywords of
each single application field were repeated. In this way, eight papers were included in
our review. Finally, in seven cases, works that were cited in the selected papers were also
included because of their significance. A summary of the complete search process is shown
in Figure 7. The documents added after the Scopus query filtering phase were represented
by the “injection” block. The same occurred with surveys, but this was done intentionally
to extend the overview of other aspects not related to the main scope of this survey (see the
next section).

As a final note, while the criteria employed in the selection of works inherently lent a
qualitative aspect to our analysis of Section 6, they offered valuable insights pertinent to the
scope of this review. Furthermore, Section 7 will facilitate a discussion aimed at deriving
objective insights and drawing definitive conclusions.

Figure 7. A scheme of the manuscript selection process. We report the documents added after filtering
the output from the Scopus search as “injection” in the diagram.

4. Other Surveys

There is a wide range of emerging scenarios to which event cameras can contribute.
Due to the influence that event cameras have in academia and in industry, different surveys
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and reviews have been proposed in recent years. From their analysis, it emerged that it is
convenient to divide these works into three main sets:

• Surveys based on the development of neuromorphic vision sensors: these works
focus on physical sensor design and hardware aspects, ranging from conventional
devices based on integrated circuits to new emerging technologies;

• Surveys based on a specific application domain: these works mainly focus on a
very specific topic, reconstructing the evolution of proposed methods to address the
challenges related to the specific domain;

• Surveys based on a collection of methods: these works consider how classic computer
vision problems have been redesigned when the input comes from a neuromorphic
sensor.

Herein, the most recent surveys are presented and discussed.

4.1. Development of Neuromorphic Vision Sensors

To the best of our knowledge, the first reviews that considered event cameras date
from 1996 and are represented by the work of [9,19]. Here, circuit design principles
are discussed, also reviewing early visual processing capabilities. From that moment
on, different surveys have been proposed over the years [20,21], discussing hardware
aspects and/or the design of very-large-scale integration (VLSI) neuromorphic circuits for
event-camera-based signal processing. In [22], the analysis of sensors was extended to
other sensors mimicking other senses like silicon cochleas. Other similar works analyzed
the hardware aspects of optical sensing devices [17], suggesting how such new sensors
can outperform classic frame cameras in many application fields, due to their numerous
advantages. A comparison of hardware aspects of event and frame-based cameras was
given in [23]. The work in [12] specialized in the design aspects of neuromorphic sensors,
also focusing on emerging devices including optoelectronic random-access memory, neural
networks, and hemispherically shaped vision sensors. In [24], a survey of event cameras
in a more generic context of bio-inspired vision systems was reported, while the work
in [8] presented an in-depth analysis of optoelectronic materials and perovskites to design
modern bio-inspired vision sensors, envisioning event-based cameras in a broader context
of bionic sensors.

4.2. Specific Domain

The literature analysis showed that there is an impressive amount of work that has
exploited event camera design or employed such sensors to address vision tasks; thus, it is
not surprising that many surveys directly tackled a specific task or restricted the analysis to
a single application domain. In [25], the problem of binocular stereo vision was analyzed,
both from a sensor and algorithm perspective, while a similar approach was taken in [2] for
the task of depth estimation. In [26], the focus was on autonomous driving and assistance
systems, while in [27] it was robotics and autonomous systems. The application field
of medicine was tackled in the work in [28], not limited to imaging but also involving
the processing of bio-signals for diagnosis, and biomedical interfaces. The work in [29]
introduced a literature review of event-based data-driven technology considering available
datasets and simulators, showing the potential of this technology over other event-based
algorithms. A focus on robotics, with an analysis that involved both perception and control,
was presented in the work in [30], while [31] tackled the problem of semantic segmentation.

Spiking Neural Networks

A growing computational paradigm for efficient neural architectures comes from spiking
neural networks (SNNs). They consist of neurons interconnected by synapses that determine
information propagation from the source to target neurons. Unlike conventional neural networks,
the information is encoded and transmitted in the form of spiking neurons [32–34]. In SNNs,
a spike takes the form of a single binary bit. If a neuron receives input spikes (from an
event or other neurons since they are hierarchically organized), it modifies its internal state
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and produces an output spike if the computed state is higher than a threshold. SNNs are
suitable for implementation on neuromorphic hardware, to provide even more efficient
and low-latency solutions [35].

Examples of comprehensive overviews on SNNs are found in [36–41]. Guided by a
hierarchical classification of SNN learning rules, they reviewed recent trends in learning
rules and network architectures. Although their application ranges and the different sets of
architectures can easily spread towards the third group, i.e., collection of methods, we still
classified them as specific domain surveys because of the unique characteristics of SNNs,
starting from their basic building blocks, spiking neurons.

Nevertheless, specialized surveys that depended on the specific application are avail-
able [42,43], or with a focus on hardware aspects [35,44]. Considering the availability of
surveys on SNN and how SNN often goes beyond computer vision, touching perception
theory, neuromorphic computing, and neuroscience, we did not directly consider SNNs in
our survey, unless they directly involved computer vision systems for a specific application
domain.

4.3. Collection of Methods

The work in [11] represents a seminal work about event cameras from a computer
vision perspective, with a very well-structured analysis about how to meaningful represent
events, as well as a taxonomy for the different event processing solutions after the paradigm
shift of dealing with events instead of frames. Afterwards, a review of different tasks was
performed, ranging from optical flow estimation to 3D reconstruction and simultaneous lo-
calization and mapping (SLAM). An in-depth survey of current trends in deep-learning for
event-based vision was presented in [45]. The authors divided the state-of-the-art works by
the event representation chosen (surface, voxel, spike, etc.) and by task (image restoration
and enhancement vs. scene understanding and 3D vision). Challenges introduced by the
different computational paradigms for both camera design and computational models were
also considered in [46]. Recently, a survey that dealt with several classic computer vision
tasks was given in [10]. The authors also explored hardware and circuit design aspects
in detail.

Event cameras, their applications, and associated tasks were also considered in [47,48],
the first with an analysis of possible tasks, the latter with a focus on how conventional
vision algorithms have to be reformulated to adapt to this paradigm shift, also considering
datasets and simulators. The work in [49] expanded the focus from vision to neuromorphic
auditory and olfactory sensors. Very recently, the work in [50] briefly introduced event
cameras, exploring methods for tasks like autofocusing, 3D reconstruction, and super-
resolution imaging.

4.4. Analysis and Discussion

To guide readers towards the works that best align with their research interest, and to
foster interdisciplinary research, a summary of the works is provided in Table 1. For each
work, we present the year of publication, the category to which the work belongs following
our previous distinction, and a brief description of the work. Note that, in some cases, an
analyzed work discusses different aspects of neuromorphic vision together: in this case, the
classification was carried out following the primary focus, or based on which parts are more
exhaustive. Summing up, an exhaustive analysis of these works makes it possible to state
some observations. If surveys on sensor development reflect the evolution of such a sensor
over the years, for the case of the domain-specific surveys, it is also possible to observe
how the topics addressed by the analyzed surveys have tended to evolve and adapt in
response to new insights and developments. This highlights the relevance and timeliness of
these surveys, reflective of the current trends and advancements in the respective domains.
Moreover, apart from works that reviewed hardware and circuit design or those on spiking
neural networks, the existing surveys, on the one hand, tend to present low-, middle-, and
high-level computer vision tasks without distinction; on the other hand, they often also
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combine together tasks with the final field of application, such as autonomous navigation,
robotics, or medicine. In many cases, a solution for a low-level computer vision task can
be a single composing block of a high-level task. So that this categorization can change
with new advances in deep learning and with the advent of end-to-end systems, it becomes
crucial to differentiate between the specific challenges of tasks and their suitability for
addressing specific industrial problems and/or satisfying the needs of application fields. As
stated in the introduction, this work, among its contributions, is an attempt to fill this gap.

Table 1. Summary of relevant surveys on neuromorphic cameras. For spiking neural networks, since
these are outside of the scope of this survey, we only report the year and indicate the topic with SNN
for further reading.

Typology Authors Publication
Year

Brief Description

Sensors development

Etienne-Cummings and Van
der Spiegel [9] 1996 First surveys on neuromporhic cameras

Indiveri et al. [19] 1996 First surveys on neuromporhic cameras
Kramer and Indiveri [20] 1998 Sensor analysis and two robotics applications

Indiveri [21] 2008 Neuromorphic circuits and selective attention chip
pixel analyis

Liu and Delbruck [22] 2010 Sensor analysis
Posch et al. [17] 2014 Sensor design

Wu [23] 2018 Hardware design aspects and neural network-
oriented vision chips

Liao et al. [12] 2021 Sensor analysis
Kim et al. [24] 2022 Sensor analysis

Li et al. [8] 2023 Sensor design with focus on materials

Domain Specific

Steffen et al. [25] 2019 Stereo Vision
Chen et al. [26] 2020 Autonomous driving
Sun et al. [29] 2021 Data-driven approaches

Furmonas et al. [2] 2022 Depth estimation
Sandamirskaya et al. [27] 2022 Robotics

Bartolozzi et al. [30] 2022 Robotics
Jia [31] 2022 Semantic segmentation

Aboumerhi et al. [28] 2023 Medicine
Bing et al. [43] 2018 SNN

Pfeiffer and Pfeil [41] 2019 SNN
Paredes et al. [42] 2019 SNN
Bouvier et al. [35] 2019 SNN
Tavanaei et al. [38] 2019 SNN

Nunes et al. [36] 2022 SNN
Yamazaki et al. [39] 2022 SNN

Wang et al. [40] 2022 SNN
Basu et al. [44] 2022 SNN

Yi et al. [37] 2023 SNN

Collection of Methods

Dong-il and Tae-jae et al.
[47] 2015 Task-driven analysis

Lakshmi et al. [48] 2019 Paradigm shift, dataset and simulators
Gallego et al. [11] 2020 Event representation, computational approaches,

applications
Tayarani-Najaran et al. [49] 2021 Visual, auditory, and olfactory domains

Zou et al. [46] 2022 Analysis driven by paradigm shift
Zheng et al. [45] 2023 Computer vision tasks with deep learning focus
Li and Sun [10] 2023 Data
Zhu et al. [50] 2024 Task-driven analysis
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5. Event Cameras and Computer Vision Tasks

Although there are no clear-cut boundaries, it is very useful to classify computer vision
processes into a hierarchy of high-, middle-, (or intermediate-) and low-level tasks [51]. Low-
level processes, also called retinotopic processes, involve primitive operations to reduce
noise, contrast enhancement, and image sharpening, and their output is usually another
image. Middle-level or regional processing involves tasks such as image partitioning into
regions or objects (segmentation), or their description to reduce them to a form suitable
for further processing, like the classification of individual objects. High-level processing
deals with the interpretation and use of what is seen in the image and, at the far end of
the continuum, the cognitive functions normally associated with vision. In other words,
high-level vision deals with the interpretation and use of what is seen in the image, whereas
middle-level vision deals with how this information is organized into what we experience
as objects and surfaces [52]. In classic computer vision pipelines, this hierarchy is necessary
to distinguish the different computational steps of a complete solution, which starts with
image pre-processing (low-level tasks), tunes data for feature extraction (middle-level
tasks), and uses the latter to extract meaningful object or scene properties (high-level tasks).
Note that the amount of data tends to decrease when passing from the full image to a set
of descriptors or regions of interest, up to the final output that can be, for example, pixel
coordinates of the object bounding box and/or the belonging class [53]. The data flow
concerning the hierarchical level representation and meaning of the task is summed up
in the diagram in Figure 8. Each column represents, respectively, the hierarchical level,
the goal, the total data decrease associated with levels, and a visual example in a classic
computer vision pipeline for the case of human hand gesture recognition. About the latter,
it is possible to observe how the raw data acquisition can lead to noisy data, which are
cleaned with low-level processing algorithms (e.g., median filters to remove salt and pepper
noise) and compressed to speed up computation. A segmentation process separates useful
information from the background, and these data are used as the input for a classifier,
which outputs the final label. In this way, the amount of associated data also reduces with
each step.

Figure 8. The three-level hierarchical organization to classify computer vision tasks. Usually, the
amount of data tends to be lower with higher-level presentations.

Even the recent deep learning approaches that enabled end-to-end learning to address
various computer vision tasks are capable of higher-level abstract features that represent
powerful semantic representations and are usually located in deeper layers, while the



Information 2024, 15, 472 14 of 41

first layers tend to represent low- (color regions) and middle-level features (like edges,
corner) [54]. Independently from this analogy, this hierarchical organization is also useful
to highlight how low-level tasks are the building blocks of a higher-level task. For example,
a high-level task could be human activity recognition. Low-level tasks could be feature
extraction and image segmentation, and middle-level computer vision tasks could be object
detection, tracking, and recognition [55].

Computer vision pipelines may achieve great levels of accuracy and understanding of
a visual input by integrating low- and high-level information, and event cameras do not
represent an exception. We discussed how other surveys usually focused on such tasks
as the building blocks of complete applications (see Section 3); a further logical step is to
classify the state of the art with a direct focus on the application domain, as will be done in
the next section.

6. Applications

In the following, a review of state-of-the-art works categorized by their different
application fields and following the methodology presented in Section 3 is presented. The
reviewed works employed neuromorphic cameras, either as the unique data source, as well
as in multi-sensor systems, and/or with other information sources (e.g., LEDs, measuring
instruments, etc.). Application domains that are similar or strongly related were grouped;
each of the following subsections will focus on a different group.

At the end of each subsection, a table summarizing the reviewed works is reported (see
Tables 2–10); for each work, we report the publication year, the specific final application the
work tried to address, details on the sensors employed in the work, notes on data to experi-
mentally evaluate the system, the main computer vision task(s) involved, and publication
type; e.g., journal, conference, thesis work. Details on the conference/journal name are also
reported. In the tables, with DVS, we denote a pure event stream without grayscale/color
information. The heterogeneity of the analyzed works makes it necessary to state several
considerations on the content of these tables. First of all, regarding data availability, if
authors employed data that have not been released, we report this as not available (n.a.).
Several works employed both synthetic and real data, coupled in different ways: in some
cases, training and tests were performed on datasets converted with the usage of event
camera simulators, but a real scenario was added at the end of the experimental phase; in
other cases, both approaches were used for different sub-tasks. We tried to give priority
to the usage of event cameras, without reporting all the single cases considered in the
manuscript, unless we considered the scientific relevance of the section using synthetic data
more relevant compared to the experimental test with the event camera. This means that
the label n.a. does not necessarily imply a non-replicable experimental evaluation. Note
that, in certain cases, the authors created data with various sensors or with a DAVIS device,
but then the solution purely employed the event stream (other information was used for
the evaluation or as part of the released data). In this case, the following convention was
adopted: the type of event camera used in the work is always reported, independently
from the proposed system; other sensors are reported if data are available as part of the
released dataset. This was also applied in the cases where we did not find data reported
as available, or available soon; we apologize in advance to those authors who eventually
made data available online, but not reported in this manuscript. If data are available, a
link to the dataset website/download page is reported. Regarding the column named main
computer vision tasks, a task-based treatment was beyond our scope and has already been
widely covered in the literature; however, it was useful to report computer vision tasks
involved, to highlight their association with the final application, so we reported the most
important ones for each work, although many tasks are not discussed in this work.

6.1. Agriculture and Animal Monitoring

The key technology in this field is certainly represented by autonomous robots and
drones, which are already extensively applied in precision agriculture and farm monitor-
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ing, independently from the particular sensor employed [56]. Often, unmanned aerial
vehicles (UAVs) for agriculture and farming still make extensive usage of frame-based
cameras to perform 2D object detection and tracking in the visual spectrum [57], although
hyperspectral imaging is also an emerging technology [58]. Herein, we review systems
directly developed to be applied in agriculture and animal monitoring, as well as scene
interpretation for autonomous navigation in agricultural and dense vegetation scenarios.

The thesis work in [59] proposed a pipeline that performs fruit detection and classi-
fication from event camera inputs. Real-world scenarios like object overlap or variation
in size and appearance are taken into account. The specific context was oriented towards
investigating the usage of a color DAVIS sensor to extract spatio-temporal patterns in each
color filter, having identified color as a feature more relevant than shape and appearance.
The complete color information can only be obtained using either an APS readout or com-
putationally demanding events-to-frames reconstruction techniques, thus the focus moved
towards event signals for the classification stage. In [60], a dataset for autonomous naviga-
tion in different agricultural environments was proposed. The authors highlighted how the
currently available datasets tend to privilege the data acquisition process in cities, offices,
roads, etc., all cases that are very different from the visual appearance of data coming
from the agricultural environment, motivating the introduction of a specific dataset. The
aforementioned work proposed the Agri-EBV-autumn dataset, composed of 26 sequences
(in 5 different scenarios) of event-based cameras, LiDAR, RGB, and depth information, with
additional data for sensor calibration and temporal synchronization. A similar desideratum
on the availability of specific data was expressed by the authors in [61]: in fact, the task
of autonomous navigation in dense vegetation scenarios presents different conditions like
lighting changes, terrains, and/or the effects of wind on leaves. The authors employed a
ground robot to collect visual sequences in natural outdoor scenarios with an event camera
and applied a bio-inspired neural algorithm for spatio-temporal memory. Finally, they
encoded memory in a spiking neural network running on a neuromorphic computer to
obtain real-time performance.

Tracking movements of fish for animal behavior analysis was proposed in [62]. A
frame-based camera was coupled with an event camera to acquire a dataset used to test
classic tracking methods on the bounding boxes detected by a convolutional neural network
(CNN). A beamsplitter was used to approximately align the field of view of both cameras,
and then the homography was estimated and used to refine the alignment. The work
in [63] used event cameras to identify a behavior called ecstatic display in nesting Chinstrap
penguins; this is characterized by an animal that stands upright, points its head upwards,
beats its wings back and forth, and emits a loud call. The problem was formulated as a
temporal action detection task and solved in two steps: firstly, temporal region proposals
were generated; afterwards, they were classified as ecstatic display or not.

Table 2. Summary of reviewed works in agriculture and animal monitoring.

Work Application Sensors Datasets Main Computer Vi-
sion Tasks Publication Type

[60] (2021)
Autonomous naviga-
tion in agricultural
environments

DVS, Depth, Color,
LiDAR Released [64] SLAM Conference (IEEE

ICRA)

[59] (2022) Fruit detection DAVIS n.a. Segmentation MPhil thesis work

[62] (2022) Fish trajectory track-
ing DVS, Frame-based n.a. Detection, tracking arXiv preprint

[61] (2023)
Autonomous naviga-
tion in dense vegeta-
tion environments

DAVIS Released [65] SLAM Journal (Science
Robotics)

[63] (2023) Penguin behavior
analysis DAVIS Released [66] Classification Conference

(IEEE/CVF CVPR)
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6.2. Surveillance and Security

One of the first works using event cameras for detecting vehicles and pedestrians
in traffic surveillance scenarios was in [67]. Here, tracking by mean shift and clustering
were opportunely tied down to detect and track objects of interest. This approach was
extended in [68], leading to an embedded platform for visual surveillance that performs
tracking, vehicle speed and length estimation, and vehicle type classification (car and
trucks). In [69], event cameras were employed to detect and track multiple persons applying
and evaluating Gaussian mixture models. In [70], a single event camera was used to detect the
location information of UAVs using their own onboard circle-shaped blinking LEDs. The authors
employed a temporal band-pass filter to detect the marker and then used this output to compute
relative 3D coordinates of the UAV with respect to the camera. Finally, the work in [71] dealt with
the problem of crowd monitoring, and it released the first specific dataset together with a
GAN architecture to detect anomalous behavior in crowds. However, no public data were
made available.

In [72,73], two solutions to detect human intrusion using an UAV with an event camera
as the unique image device were presented. Both systems detect clusters of events caused
by moving objects in a static background. Then, in the first work, a CNN was used to
estimate the probability that a cluster corresponds to a person. In the second, an attention
priority map modeled the fact that the event camera was not static to capture the regions
that triggered more events within a time frame and, together with a corner tracker, events
with higher priority were selected and the corners were correctly tracked. This let the
system filter out clusters that were not updated in a consistent manner or that contained
a number of corner tracks lower than a threshold. A computationally efficient approach
for intrusion detection was proposed in [74]. A module targeted moving objects using
a multivariate normal distribution that was updated event by event using their spatio-
temporal information; this update was quick, since it only involved computing the mean
and covariance. When the probabilistic distribution converged, a custom CNN was applied
to a local region of interest in the image detects if the movement came from a person.

In [75], event cameras were selected to achieve person re-identification, because they
can better guarantee the anonymity of subjects, without having the privacy concerns of
traditional camera usage in public spaces. The proposed system was evaluated in synthetic
datasets and used groups of events to perform person matching in non-overlapping event
data using a CNN. The authors stressed that, with traditional images, it is common to
apply face blurring or masking, as well as encryption techniques, but if this guarantees
privacy for the vision component, it does not necessarily ensure end-to-end privacy. A
problem with event cameras is that images reconstructed from a stream of events might
constrain event-based privacy-preserving person re-id. Thus, they tested the accuracy
with reconstructed images, which was in general lower, concluding how event sensors can
represent a step towards privacy-preserving person re-id.

Table 3. Summary of reviewed works in surveillance and security.

Work Application Sensors Datasets Main Computer Vi-
sion Tasks Publication Type

[67] (2006) Traffic surveillance DVS n.a. Detection, tracking Conference (IEEE
DSP)

[68] (2007) Traffic surveillance DVS n.a. Classification, track-
ing

Conference (ACM
ICDSC)

[69] (2012) People detection DVS n.a. Tracking Conference
(IEEE/CVF CVPRW)

[71] (2019) Anomalous behavior
analysis DAVIS n.a. Classification arXiv preprint
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Table 3. Cont.

Work Application Sensors Datasets Main Computer Vi-
sion Tasks Publication Type

[73] (2020) Intrusion detection DAVIS, IMU Released [76] Detection, tracking Conference (IEEE
ICRA)

[70] (2021) UAV tracking DVS n.a. Tracking Conference (IEEE
IROS)

[72] (2021) Intrusion detection DAVIS n.a. Detection, tracking Conference (IEEE
ICUAS)

[74] (2022) Intrusion detection DAVIS n.a. Detection, tracking Conference (IEEE
SSRR)

[75] (2022) Person re-identification Synthetic data
SAIVT [77],
DukeMTMC-reid
[78]

Detection, Classifica-
tion

Conference
(IEEE/CVF WACV)

6.3. Visual Inspection and Machinery Fault Diagnosis

The intrinsic nature of event cameras certainly makes them attractive for typical
industrial machine vision applications like object counting and particle trajectory tracking.

The first work to characterize and find the upper limits of different event cameras
in front of a lathe and a computerized numerical control was proposed in [79]. In [80],
the Hough Circle Transform was developed to track microspheres and estimate Brownian
motion, i.e., the thermal agitation of micro/nanosized particles in a fluid. The results
showed real-time position detection at a frequency of several kHz with a low computational
cost. Brownian motion was precisely detected with high speed. In [81], an event camera
was used for particle tracking measurements. The experimental setup was built in a way
such that only a few pixels registered changes, greatly reducing the bandwidth, as well as
storage and processing requirements. The system was tested with a solid–liquid two-phase
pipe flow, investigating Reynolds numbers based on pipe diameter and bulk velocity.

In [82], an event camera was used as an add-on to Magneto-optic Kerr effect (MOKE)
microscopy, used to observe magnetic domains and various other micro-structures in
magnetic materials. The authors reconstructed videos from events by frame stacking and
used time surface methods to evaluate the results. A system to count falling corn grains
using an event camera was proposed in [83]. The system was composed of a vibrating
feeder to allow the number of falling corn grains to be controlled. Images made with an
event accumulation time set to 2 ms were used (i.e., an image generation rate of 500 fps).
Corn grains were segmented using morphological classic image processing and, by using
horizontal count lines and tracking of the same grain over time, they were able to correctly
count each fast-moving single corn grain only once. In [84], event cameras were used
for machine fault diagnosis. In particular, a two-channel 2D representation was created
by considering positive and negative events as two single channels, and this image was
used as the input of a CNN architecture to detect four types of rotating machine faults of
industrial bearings. Three rotating speeds of 1200, 1800, and 2400 r/min were evaluated in
the experiments.

The work in [85] investigated the possibility of detecting the rotational speed from
event data, with applications in engine monitoring during car repairs, fault detection in
electrical appliances, and more. The solution proposed several image processing steps to
estimate the rotational speed; first of all, clustering was used to detect the different rotating
targets, while an outlier removal component removed the background noise. The K-means
was employed to separate clusters, using the Davis–Bouldin index [86] to work without
prior knowledge of the number of clusters. Streams of the same downsampled cluster were
registered with the iterative closest point (ICP), to obtain the angle of rotation in a known
period of time, and this knowledge was used to achieve accurate estimation of rotational
speed.
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In [87], event cameras were used as optical disdrometers, i.e., devices to measure the
diameter and speed of hydrometeors at ground level. The system was tested with a droplet
generator in a setup where droplets were occupying between 10 and 20 pixels of the sensor
area. The datasets have been made publicly available. In the context of Schlieren imaging,
a technique to estimate the flow of transparent media (with several applications in industry,
from aerodynamics to gas leakage detection), event cameras were combined with frame
cameras to visualize gas streams in [88]. Here, the authors also created and published a
dataset due to the lack of available data. In [89], event data were used to classify delivery
packages and detect falling events in a ring sorting belt scenario. The authors employed
YOLO [90] as the backbone network for testing different event representations. A dataset
for the two tasks was also proposed. The system classifies three types of packages and
detects the event of a delivery package falling.

Table 4. Summary of reviewed works in visual inspection and machinery fault diagnosis.

Work Application Sensors Datasets Main Computer Vi-
sion Tasks Publication Type

[79] (2011)
Sensor characteriza-
tion in machine vi-
sion

DVS n.a. - (raw data analysis) Conference (IEEE
SIGMAP)

[81] (2011) Particle tracking DVS, ultra high-
speed camera n.a. Tracking Journal (Springer Ex-

periments in Fluids)

[80] (2012) Particle tracking DVS, frame-based
camera n.a. Detection, tracking Journal (Wiley, Jour-

nal of microscopy)

[82] (2022) Magnetic materials
analysis DVS, microscopy n.a. - (raw data analysis) Journal (AIP Ad-

vances)

[83] (2022) Corn grain counting DVS n.a. Tracking arXiv preprint

[89] (2022) Fault detection in in-
dustrial pipeline DAVIS n.a. Detection, classifica-

tion
Journal (Frontiers in
Neurorobotics)

[84] (2023) Machine fault detec-
tion DVS n.a. Classification

Journal (IEEE Trans-
actions on Industrial
Informatics)

[85] (2023) Rotational speed esti-
mation DAVIS n.a. Segmentation

Journal (IEEE Trans-
actions on Mobile
Computing)

[88] (2023) Schlieren imaging DVS, frame-based
camera Released [91] - (trajectory estima-

tion by optical flow)
Journal (IEEE-
TPAMI)

[87] (2024) Optical disdrometers DAVIS n.a. - (raw data analysis)

Journal (Copernicus
Publications, Atmo-
spheric Measure-
ment Techniques)

6.4. Space Imaging and Space Situational Awareness

Works in this field tend to exploit event cameras to obtain space situational awareness
(SSA); i.e. the discipline that keeps track of objects in orbit and predicts their position over
time. Indeed, the advantages of lower bandwidth and power requirements make them
suitable for use in remote locations and space-based platforms.

The work of [92] was the first attempt to employ event cameras in SSA applications.
The authors modified a robotic electro-optic telescope to support the event-based sensors
and pre-existing equipment simultaneously, to develop and test object detection algorithms.
Several trials were conducted, tracking and detecting objects in low earth orbit and in
geosynchronous orbit, proving the viability of event-based sensing for space situational
awareness. The work in [93] instead proposed a feature-based detection and tracking
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method for SSA applications implemented via a cascade of increasingly selective event
filters, to isolate events associated with space objects without losing the high temporal
resolution of the sensors. Moreover, the authors presented a dataset composed of multiple
event sensor data in both daytime and nighttime recordings and containing 572 labeled
targets with a wide range of sizes, trajectories, and signal-to-noise ratios.

A star tracker is a vision system with an image processing algorithm used to estimate
the attitude of a spacecraft by recognizing star patterns. In [94], the authors used an
event camera instead of frame-based imaging devices to build a star tracker. A simple
heuristic selected the best event images for star identification, generating a set of rotation
estimations. Furthermore, relative rotations were estimated from the event images, and
the different measurements were fused in an optimization step with rotation averaging
and a final bundle adjustment, showing the feasibility of implementing a star tracker with
event cameras. In [95], the possibility of using event cameras for spaceflight and the effects
of neutron radiation on camera performance were investigated. An event-based sensor
was irradiated under wide-spectrum neutrons and its effects were classified. The authors
analyzed radiation-induced damage to the sensor under wide-spectrum neutrons and the
radiative effect on the signal-to-noise ratio of the output at different angles of incidence
from the beam source. The results showed fast recovery during radiation and a high
correlation of noise event bursts with respect to source macro-pulses. Significant differences
were found in the spatial structure of noise events at different angles. Finally, the Event-
based Radiation-Induced Noise Simulation Environment (Event-RINSE), a simulation
environment based on the noise modeling presented in the manuscript and capable of
simulating the effects of radiation-induced noise from the collected data on any stream of
events, was introduced. The work in [96] dealt with the problem of calibration of event
cameras for reliable and accurate measurement acquisition. The authors produced a star
mapping and source-finding algorithm to generate resolved images of event sources at
varying speeds to calibrate the event camera, finding relationships to project the events’
pixel coordinates to coordinates in a target resident space object reference frame. In [97],
SSA was obtained using event cameras to detect, localize, and track resident space objects.
A computationally efficient estimation with sub-pixel detection using an unsupervised
tracking-by-detection algorithm was achieved.

Table 5. Summary of reviewed works in space imaging and space situational awareness.

Work Application Sensors Datasets Main Computer Vi-
sion Tasks Publication Type

[92] (2019) Space imaging ATIS, DAVIS, tele-
scope n.a. Detection

Journal (Springer,
The Journal of
the Astronautical
Sciences)

[94] (2019) Star tracker DAVIS Released [98] - (modeling, parame-
ter estimation)

Conference
(IEEE/CVF CVPRW)

[93](2020) Space imaging ATIS, DAVIS, tele-
scope Released [99] Detection, tracking Journal (IEEE Sen-

sors Journal)

[95] (2021)
Sensor characteriza-
tion for space appli-
cations

DVS n.a. - (signal processing
techniques)

Journal (IEEE Ac-
cess)

[97] (2022) Resident space ob-
jects analysis Simulated data Released [100] Detection, tracking Journal (Frontiers in

neuroscience)

[96] (2023) Calibration for space
imaging DVS, telescope Released [101] Tracking Journal (Springer As-

trodynamics)
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6.5. Eye Tracking, Gaze Estimation, and Driver Monitoring Systems

In this section, we group together eye tracking and gaze estimation with driver
monitoring systems (DMS), i.e., the in-cabin safety system that detects a driver’s dangerous
driving behaviors. Such systems, in general, analyze the driver’s physical and cognitive
state to reveal fatigue, distraction, and other dangerous driving conditions, warning the
driver to correct his/her behavior. This grouping is motivated by the fact that the event
of driver distraction is detected by direct analysis of visual facial cues like slow eyelid
movement, blinking, narrowed eyes, yawning, gaze, head pose, etc. [102].

The automatic detection of eye positions, their temporal consistency, and their map-
ping into a line of sight in the real world have become a hot topic in the field of computer
vision during the last decades, and different sensors, from expensive ad hoc devices to
low-cost consumer cameras, from visible to near-infrared (NIR), from invasive to uncon-
strained devices, have been experimented on and tested over the years [103]. Different
works considering the unique features of event cameras have also been presented. In [104],
event camera simulated data were used to improve the eye segmentation step of a gaze
estimation algorithm designed for infrared cameras; in particular, to extract temporal corre-
lation across frames that, in turn, guided a lightweight deep neural network that predicted
the region of interest in the actual frame and a predictive algorithm that decided whether
the current eye frame required going through a full-fledged segmentation algorithm or
could be extrapolated from the previous segmentation map. In [105], simulated event
camera data were used for dataset creation, in order to train a neural network based on the
YOLOv3-tiny architecture [106], to detect and track faces and eyes. To exploit the natural
sparsity of events, the architecture was modified to integrate a fully convolutional gated
recurrent unit (GRU) layer, defining a gated recurrent YOLO (GR-YOLO). The performance
was then evaluated on real event camera data. Moreover, blinking was detected, having a
direct application to driver attention monitoring systems.

In [107], event camera data were simulated to improve eye tracking detection from
color images using an image domain translation. A cross-modal neural network was then
employed using both RGB and simulated event data and then tested with a real DAVIS
camera. A hybrid system of frame and event camera was proposed in [108]. An online
2D pupil fitting method updated a parametric model for each event or a few grouped
events, while the final point of gaze was estimated in real time with a polynomial regressor.
A classic camera anchored the pupil tracking system with traditional pupil detection
algorithms, while the events allowed it to update the location of the pupil at a very high
speed, equivalent to 10,000 Hz of a frame-based camera. A dataset composed of event and
image data from 24 subjects watching a video stimulus, with their saccadic motions and
smooth pursuits, was also created. The dataset was recorded by mounting two DAVIS
sensors with NIR lenses and a NIR illumination source close to the user’s head. Moreover,
in [109], event camera images were paired with grayscale frames, although coming from
the same DAVIS device. An event-to-image encoding technique captured event data in
temporal bins of 33 milliseconds, fusing events with the nearest corresponding grayscale
frames. A neural network performed temporal fusion of the information of grayscale
and event images, taking as input two consecutive temporally encoded frames to predict
gaze centroids. The authors introduced the Gaze-FELL dataset, recorded with a low-light
setup and made with five subjects wearing a head-mounted display with a DVS and a
frame-based camera, to store eye patches while watching a video stimulus. In [110], instead,
IR LEDs were combined with event camera data to implement eye tracking. In particular,
coded differential lighting, a novel dual-LED design to enhance event camera data, while
suppressing non-specular background events, was introduced. The events triggered by the
flashing lights were filtered to calculate glint locations at high frequency. Since glints have
a unique binary sequence of pulses, the correspondence of each calculated glint with the
illumination sequence was used to infer the position of the corneal sphere with respect to
the camera.
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A system that fully employs event cameras was proposed in [111]. A real-time pipeline
to extract pupil features in the form of ellipses and a recurrent neural network accurately
estimated gaze from a pupil feature sequence. The network was trained with the same
dataset as [108], but only using the event cameras data and opportunely adding event
labels. In [112], instead, an event-based eye-tracking system that extracts pupil features
was proposed. It takes data from an event camera on top of a head-mounted display and
only uses event data. The events triggered by eye motion are converted into three-channel
frames with an event-to-frame conversion method, where each channel represents positive
events, negative events, and their combination. Events representing the pupil are classified
by a CNN; a tracker is finally employed to reduce the amount of CNN inference.

A system that extracts several visual cues with applications in driving monitoring
systems was proposed in [113]. Here, a network trained on synthetic event camera data
estimated head pose, eye gaze, and the presence of facial occlusions. An event integration
method was capable of handling both short- and long-term temporal dependencies to
compensate for global head motion. Regarding driver monitoring systems not directly
based on gaze analysis, the work in [114] extracted the events of yawns and seat belts
(fastening or unfastening). A neural network designed for both tasks combined a CNN
backbone with a self-attention module and a recurrent head, and it was trained on synthetic
data derived from RGB and NIR video from both private and public datasets.

In [115], the problem of driver face detection was addressed by first constructing an
event representation by making the time domain discrete and presenting a lightweight
translation-invariant backbone to extract multi-scale features. The authors introduced a
shift feature pyramid network and shift context modules to take into account the feature
extraction step with limited computational cost. In [116], a dataset recorded with DAVIS
and a depth sensor for driving monitoring systems was proposed and tested with some
state-of-the-art architectures. The dataset contained data for driver drowsiness detection,
driver gaze-zone recognition, and driver hand-gesture recognition. Before the testing phase,
three popular event-encoding methods used to convert asynchronous event slices to event
frames were presented. In [117], event cameras were augmented by submanifold sparse
neural network models (SSNN) and integrated into a DMS, with the particular use case
of driver distraction monitoring. An SSNN model was trained with synthetic event data
generated from driver monitoring public datasets.

Table 6. Summary of reviewed works in eye tracking, gaze estimation, and driver monitoring
systems.

Work Application Sensors Datasets Main Computer Vi-
sion Tasks Publication Type

[116] (2020) DMS DAVIS, RGBD, IR Released [118] Detection, classifica-
tion

Journal (IEEE Trans-
actions on Intelligent
Transportation Sys-
tems)

[105] (2021) DMS Simulated data n.a. Detection, tracking Journal (Elsevier
Neural Networks)

[108] (2021) Gaze estimation
DAVIS with NIR
lenses, video stimu-
lus

Released [119] Detection, tracking

Journal (IEEE Trans-
actions on Visualiza-
tion and Computer
Graphics)

[104] (2022) Gaze estimation Simulated data OpenEDS [120],
TEyeD [121] Segmentation Conference (IEEE

VR)

[110] (2022) Eye tracking DVS n.a. Tracking Conference
(IEEE/CVF WACV)
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Table 6. Cont.

Work Application Sensors Datasets Main Computer Vi-
sion Tasks Publication Type

[115] (2022) Face detection for
DMS DAVIS NeuroIV [116] Detection Conference (IEEE

ICARM)

[107] (2023) Pupil localization Simulated data WIDER FACE [122] Detection Journal (IEEE Ac-
cess)

[112] (2023) Eye tracking DAVIS Angelopoulos et al.
[108] Detection Conference (IEEE

AICAS)

[113](2023) DMS Synthetic data BIWI [123] Detection, tracking Journal (IEEE Ac-
cess)

[114] (2023) DMS DVS YawDD [124] Classification Journal (IEEE Ac-
cess)

[117] (2023) DMS DVS n.a. Classification
Journal (IEEE Open
Journal of Vehicular
Technology)

[109] (2024) Gaze estimation DAVIS, video stimu-
lus Available on request Detection arXiv preprint

[111] (2024) Gaze estimation DAVIS Angelopoulos et al.
[108]

Segmentation, Detec-
tion

Journal (IEEE
TPAMI)

6.6. Gesture, Action Recognition, and Human Pose Estimation

The ability to capture moving object dynamics as events makes neuromorphic cameras
an emerging sensor type for human and/or human body part pose and shape estimation.
A first complete solution to estimate 2D human pose was proposed in [125]. The system
employed a combination of event cameras and a bio-inspired software architecture. First,
size and position invariant line features were extracted and organized into vectorial seg-
ments. The extracted line segments were used to measure the similarity with a known set
of posture libraries; the classification was based on a modified line segment Hausdorff-
distance scheme. To achieve size and position invariance, event-cluster-based methods
computed from individual pixel events were used. Subsequently, several works have been
proposed over the years, often exploiting the emerging outcomes of deep learning.

Two-dimensional shape from event cameras was estimated using a single CNN
in [126]. Here, a benchmark dataset of human body movements, made using data from
four synchronized DVS cameras with a resolution of 346 × 260 was introduced. A total
of 33 movements of 17 subjects were recorded in total. Conversely, 3D human motion
was estimated with the help of grayscale information in [127]. The method combined
model-based optimization with CNN-based human pose detection. The method relied on a
pre-processing step to reconstruct a template mesh; the skeleton parameters of the template
were optimized to match data from the event camera. A three-step tracking algorithm takes
in the input intensity, events, and a textured mesh to obtain the final pose.

The work in [128] presented a two-stage system for estimating human poses: firstly, a
modified version of the U-Net [129] mask prediction network was employed to eliminate
moving backgrounds; then, to facilitate information flow between frames, a deep learning
architecture was used. A time-ordered recent event volume representation was used to
construct denser and more informative input tensors. The paper also addressed the problem
of upper body motion with a stationary lower body. In addition, in [130], human pose was
estimated with event cameras: here, the key idea was the usage of a lightweight image-like
event representation; in this way, the system can deal with the disappearance of static body
parts; moreover, it allows using the higher quantity of data available with frame-based
datasets in the pre-training step, followed by fine-tuning with event camera datasets.
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Similarly as for body pose, gesture recognition has been investigated for more than a
decade. Since works like [131,132] where, respectively, event camera-based detection of
rock, paper, and scissors, and finger tracking and hand swipe direction motion detection,
were proposed, more works on gesture recognition have been proposed. In [133], a complete
software/hardware system that used a neurosynaptic processor and an event camera to
recognize 11 different hand gestures was proposed. The core algorithm consisted of a CNN
trained offline. The resulting stream of instantaneous classification outputs was filtered
using a sliding window.

In [134], event data were modeled as a set of 3D points in space-time. This representa-
tion was used to adapt PointNet [135] and PointNet++ [136], neural network architectures
designed for 3D point cloud matching and recognition. In this way, the gesture recognition
problem was modeled and solved with 3D object recognition. Similarly, in [137], a stream was
represented as spatio-temporal 3D event clouds, but a dynamic graph CNN (DGCNN) [138], a
neural network architecture designed for classification and segmentation tasks with point
clouds, was adapted. The difference with PointNet or PointNet++ is that DGCNN incorpo-
rates the information of neighbors of each point during the feature embedding computation
phase, making full usage of the local structure, capturing geometric features with high
resolution. In [139], DVS was integrated with a wearable glove with five high-frequency
active LED markers, to reduce global latency and enhance the robustness of the recog-
nition performance. A restricted spatio-temporal particle filter was used to estimate the
trajectories of the markers. The work in [140] introduced a dataset and three classification
methods, implementing SNN architectures to test performance on the dataset for the prob-
lem of sign language gesture recognition. Similarly, in [141], the authors proposed a system
to detect sign language gestures based on SNN with spatio-temporal back propagation
training methods and a specific dataset composed of frame-based and event data for the
experimental evaluation.

Recently, human action recognition exploiting neuromorphic vision has also shown
promising results. In [142], a compressed event tensor was used to represent event data. This
representation projected the quantization of events into a fine voxel grid structure with a
high temporal resolution, to address low temporal resolution and blurring. Moreover, a
framework called branched event net was introduced to deal with both static and dynamic
scenes. The system also works for object detection tasks. Another example of specific
event data representation can be found in [143]. Here, the introduced representation is
named Compact Event Image and it was generated using a module based on self-attention in
a learnable way. This module summarizes the long-term dynamics and temporal patterns
of the events into a frame set, and this is combined with backbone architectures to achieve
end-to-end action recognition.

The video transformer network [144], a transformer-based architecture, was used to
acquire spatial embedding from events using a temporal self-attention mechanism in the
work presented in [145]. Spatial and temporal operations are separated to obtain a more
computationally efficient architecture. A specific loss function that contrasts temporally
misaligned frames is used to learn fine-grained spatial cues in the spatial backbone network.
This approach was tested on actions from both egocentric vision and from hand/arm
gestures (with DVS data).
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Table 7. Summary of reviewed works in gesture, action recognition, and human pose estimation.

Work Application Sensors Datasets Main Computer Vi-
sion Tasks Publication Type

[125] (2011) Gesture recognition DVS n.a. Classification Journal (IEEE-
TPAMI)

[131] (2011) Gesture recognition DVS n.a. Classification Conference (IEEE
CIMSIVP)

[132] (2012) Hand gesture UI DVS n.a. Classification Conference (IEEE
ICIP)

[133] (2017) Gesture recognition DVS Released [146] Classification Conference
(IEEE/CVF CVPR)

[126] (2019) Pose estimation DAVIS, motion cap-
ture Released [147] Pose estimation

Conference
(IEEE/CVF
CVPRW)

[134] (2019) Gesture recognition DVS DVS128 Gesture
[133] Classification Conference

(IEEE/CVF WACV)

[137] (2020) Gesture recognition DVS DVS128 Gesture
[133], DHP19 [126] Classification Conference (IEEE IS-

CAS)

[127] (2020) Pose estimation DAVIS n.a. Pose estimation,
tracking

Conference
(IEEE/CVF CVPR)

[139] (2021) Gesture recognition DAVIS n.a. Classification, track-
ing

Journal (IEEE Trans-
actions on Automa-
tion Science and En-
gineering)

[142] (2022) Action recognition DAVIS

DVS128 Gesture
[133], N-Caltech101
[148], DVSAction
[149], NeuroVI [116]

Classification Journal (IEEE access)

[140] (2022) Sign language DVS Released [150] Classification
Journal (Springer,
Pattern Analysis and
Applications)

[143] (2022) Action recognition DVS

DVS128 Gesture
[133], UCF101-DVS
[151], HMDB51-DVS
[151]

Classification Conference (IEEE
CRC)

[128] (2023) Pose estimation for
dancing

DAVIS, RGB (HD),
motion capture Released Pose estimation Journal (Elsevier

Neurocomputing)

[130] (2023) Pose estimation DVS DHP19 [126], Hu-
man3.6m [152] Pose estimation Conference

(IEEE/CVF CVPR)

[141] (2023) Sign language DAVIS Released [153] Classification Journal (MDPI Elec-
tronics)

[145] (2023) Action recognition Synthetic data N-EPIC-Kitchens
[154] Classification Conference (IEEE

IROS)

6.7. Medicine and Healthcare

The work of [155] proposed an event camera-based system to detect accidental falls in
elderly home care applications. The implemented algorithm estimates the instantaneous
motion vector and reports fall events. Fall events are distinguished from walking, crouching
down, and sitting down. The work in [156] employed a DAVIS sensor to detect falls. First, a
set of temporal range proposals relevant to the event of a fall were extracted. Each temporal
proposal was processed by a feature extraction backbone network, and the candidate
proposal was classified together with a phase of temporal boundary refinement.
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In [157], event cameras were used to capture subtle changes in the surface of the skin
caused by the pulsatile flow of blood in the wrist and to estimate the patient’s heart rate.
The authors used a colored dot on the patient’s wrist in order to compute, on 5 × 5 pixel
regions of the area of interest, the dominant frequency from a periodogram, which is an
estimate of power spectral density, to estimate the final pulse rate. In [158], a lightweight
wearable to support visually impaired people with navigation and obstacle avoidance
tasks was proposed. Two event cameras were used to extract depth information in real
time, which was translated into acoustic signals. Spatial auditory signals were simulated
at the computed origin of visual events. A device that can be used as a visual-to-auditory
sensory substitution device, as well as a component of a real-time retinal prosthesis or
vision augmentation system, was proposed in [159]. The sensory block is composed of
an event camera, and data are then processed in another system component that treats
events like post-synaptic potentials. A final block emulates the temporal contrast sensitive
retinal ganglion cells. Another medical application can be found in the doctoral thesis
in [160], which coupled event cameras with medical imaging devices to compute red
blood cell velocities and densities within capillaries, proposing a system that can estimate
deregulation of the micro-circulation within minutes.

Furthermore, in [161], an event camera was used to detect and localize molecules with
the single-molecule localization microscopy technique. An optical setup was prepared to
detect and localize single molecules, focusing on blinking labels. The response of the sensor
was characterized with respect to a fluorescent signal, and organic dyes for single-molecule
fluorescence imaging were then detected. The authors compared the results with frame-
based vision, demonstrating how event cameras are suited to the extraction of biological
dynamics, particularly for monitoring processes with a wide range of dynamic scales and
for blinking-based images.

Table 8. Summary of reviewed works in medicine and healthcare.

Work Application Sensors Datasets Main Computer Vi-
sion Tasks Publication Type

[155] (2008) Fall detection DVS n.a. Classification

Journal (IEEE Trans-
actions on Biomedi-
cal Circuits and Sys-
tems)

[158] (2016) Assisting device DVS n.a. Detection Conference (IEEE
Healthcom)

[159] (2016) Assisting device DVS n.a. - (raw data analysis) Conference (IEEE
BioCAS)

[160] (2018) Cellular analysis ATIS, Frame-based
camera n.a. Detection, tracking PhD Thesis

[156] (2022) Fall detection DAVIS n.a. Classification
Journal (IEEE Trans-
actions on Cybernet-
ics)

[157] (2023) Hearth rate detec-
tion DVS n.a. - (raw data analysis) Conference (IEEE

ISM)

[161] (2023) Cellular analysis
(SMLM) DVS, microscope Released [162] Detection Journal (Nature Pho-

tonics)

6.8. Intelligent Transportation Systems

In this section, we analyze the field of scene analysis for intelligent vehicles; i.e.,
vehicles that can detect the scene and send the proper outcomes to the driver (in terms of
dashboard/audio messages), as well as an autonomous driving system. This industrial
sector necessarily overlaps with the autonomous navigation pursued in many robotics
applications (see Section 6.9), as well as some scene analysis work previously introduced
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in Section 6.2; regarding the first point, to keep the focus on computer vision, only works
related to scene understanding are reviewed in this part; regarding the second, we consider
the final application scenario proposed by the authors, although the underlying challenges
are often shared by both domains. In [163], a vehicle detection and tracking system was
proposed. The authors compared three different classical clustering methods and four
tracking approaches. A dataset recorded by a DAVIS sensor mounted on a highway bridge
was used to test the system. The results showed the possibility of detecting and tracking
multiple vehicles at a high frame rate. In [164], the same problem was addressed by
using an SNN trained on synthetic data from roadside-event-based cameras with multiple
weather conditions.

Neuromorphic cameras were used to collect the point cloud data of moving targets
and detect motor/non-motor vehicles and pedestrians using the geometrical, quantitative,
and Gaussian projection characteristics of the captured point clouds in [165]. The system
also implemented a shadow removal step based on feature similarity, again based on point
cloud distribution characteristics.

A dataset for lane extraction composed of event frames (with a total of labeled 17103
lane instances) was released and tested with state-of-the-art semantic and instance segmen-
tation methods in [166]. In [167], a CNN with a feature attention gate component (FAGC)
for vehicle detection was introduced. The system integrated grayscale and event features
fed into the FAGC to generate pixel-level attention feature coefficients that improved the
performance.

In [168], YOLO was tested with different representations of event data and with a
deep learning-based video frame reconstruction technique to detect traffic signs. Similarly,
a system of visible light positioning that used event cameras to localize their position based
on multiple flickering LEDs was proposed in [169]. The authors employed an LED detector
when flickering was visible and a Gaussian mixture probability hypothesis density filter for
tracking, without requiring data association. LED flickering frequency and position were
detected.

Table 9. Summary of reviewed works in intelligent transportation systems.

Work Application Sensors Datasets Main Computer Vi-
sion Tasks Publication Type

[163] (2018) Vehicle detection DAVIS n.a. Detection, tracking
Journal (Hindawi,
Journal of advanced
transportation)

[164] (2023) Vehicle detection Simulated data n.a. Detection Conference (IEEE
IV)

[165] (2021) Vehicle detection DVS n.a. Detection, classifica-
tion

Journal (IEEE Sen-
sors Journal)

[166] (2019) Lane detection DVS Released [170] Classification, seg-
mentation

Conference
(IEEE/CVF
CVPRW)

[167] (2021)
Vehicle detection for
autonomous naviga-
tion

DVS, Grayscale DDT-17 [171] Detection Journal (IEEE Sen-
sors Journal)

[168] (2022) Traffic sign detection DVS
The 1 Megapixel Au-
tomotive Detection
Dataset [172]

Detection Conference (IEEE
SPA)

[169] (2020) Light positioning
system DAVIS n.a. - (image processing

techniques)
Journal (IEEE Sen-
sors Journal)
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6.9. Robotics

The possibility of providing robots with event cameras can allow solving robotic tasks
that range from situational awareness to vision-based control, and from object grasping to
terrain reconstruction. Considering the quantity of computer vision tasks that are connected
with the field of robotics, as well as the availability of surveys that directly focus on robotic
applications [11,27,30], this section illustrates recent advancements directly focusing, as
done up to now, on the final application. Before doing that, it is important to highlight how
one of the most investigated components for event camera-based processing in robotics
is situational awareness, which is a key element in the success of autonomous tasks. For
example, in [173], an event camera was used to obtain obstacle avoidance in UAV systems.
The work used this data source to distinguish between static and dynamic objects and
presented a fast strategy to generate the motor commands necessary to avoid obstacles.
The proposed system was able to avoid multiple obstacles of different sizes and shapes
during navigation at relative speeds of up to 10 m/s. The UAV could operate in both indoor
and outdoor scenarios. A SLAM system for ground robots that exploited a single event
camera was proposed in [174]. The authors introduced a method that applied optimization
over motion and structure: in particular, the representation image of warped events was
extended with contrast maximization for the 3D case. In this way, the robot could perceive
non-planar environments under arbitrary motion.

Multiple robot detection and trajectory tracking methods (with experimental results
for up to 4 robots operating at the same time) were proposed in [175]. The task of detecting
robots in an indoor arena was achieved. The DBSCAN algorithm [176] was used to detect
the robots, with a single k-dimensional tree to track them. RGB data were used to provide
the ground truth. The authors explored the performance of the camera in the case of
different event accumulation times and light conditions in the indoor arena. The work in
[177] introduced a grasping framework for multiple known and unknown objects based
on an event camera (with a model-based and model-free approach, respectively). For
the known objects, the camera was used to localize them in the scene, while point cloud
processing detected and registered them. In the case of unknown objects, event-based
object segmentation was proposed to localize the objects, as well as visual servoing with
grasp planning to localize, align, and grasp the targeting object. Tests were performed with
a system composed of a UR10 robot, a neuromorphic camera, and a Barrett hand gripper.

In [178], a UAV with a cable-suspended load employed an event camera to achieve
a robust and fast estimation of the state of the cable during transportation. The authors
achieved a faster estimation when compared with frame-based cameras, a fundamental
requirement for a controller for feedback on the state of a cable. A point cloud represen-
tation was used to model event data, and the respective measurements were fitted to a
Bézier curve to estimate the cable angle and angular velocity. The work in [179] proposed
visual tracking of beacons made of LEDs as an optical camera communication system
based on neuromorphic cameras for robotic applications. High-frequency visual intensity
signals from visual beacons were captured by an event camera, and a robust demodu-
lation algorithm to decode the transmitted data was presented. Detection was achieved
by conventional blob detection and tracking methods, taking advantage of the nature of
event data.

Very recently, in [180], event cameras were used to implement an LED-based commu-
nication system for multi-agent robots, proposing an alternative to fiducial markers with
frame-based cameras. The implemented multi-agent system verified the system functional-
ity with experiments using physical robots. In [181], the first study to fuse frame-based and
event-based data with a deep learning approach to estimate the instantaneous human steer-
ing wheel angle in driving scenarios was presented. To achieve this, the authors introduced
a dataset of both data sources captured with a DAVIS camera and that integrated human
control data, for a total of 51 hours of driving on 4000 km of highway and urban driving,
with different illumination conditions. In [182], a prototype using a pulsed line laser and a
DVS was designed for fast terrain reconstruction. Temporal histograms were used at each
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laser pulse instance to adapt a scoring function. The score of each event was calculated and
mapped on the score maps. Afterwards, the maps were averaged and the laser stripe was
extracted by selecting the maximum scoring pixel for each column when above a threshold.

Table 10. Summary of reviewed works in robotics.

Work Application Sensors Datasets Computer Vision
Tasks Publication Type

[182] (2014) Terrain reconstruc-
tion DVS, laser scanner n.a. - (raw data analysis) Journal (Frontiers in

neuroscience)

[173] (2020) Obstacle avoidance DVS n.a. Segmentation Journal (Science
Robotics)

[181] (2020) Steering prediction DAVIS Released [183]
- (raw data and steer-
ing angles predic-
tion)

Conference (IEEE
ITSC)

[175] (2021) Robot detection DVS n.a. Tracking Journal (IEEE Ac-
cess)

[174] (2022) Visual Odometry DVS KITTI [184], ORB-
SLAM2 [185] SLAM Journal (MDPI Sen-

sors)

[177] (2022) Robot grasping DAVIS n.a. Segmentation
Journal (Springer,
Journal of Intelligent
Manufacturing)

[178] (2023) Load transportation
with UAVs DAVIS n.a. Segmentation

Journal (IEEE
Robotics and Au-
tomation Letters)

[180] (2024) LED-based commu-
nication system DVS n.a. Detection Conference (ACM

AAMAS)

7. Discussion

From the analysis of the state of the art in the different application fields, it is possible
to derive findings that are application-domain-dependent, as well as observations that
are directly related to the technology under examination. Before stating the conclusions
related to the different application fields, it is important to analyze common challenges and
opportunities.

First of all, initial consideration must be given to low- and high-level tasks. We already
highlighted how a low-level component addresses a simple task that can be leveraged
for downstream applications. In this survey, we did not focus on tasks, because of the
wide availability in the literature, moving the center of attention to the application domain
instead. It is useful anyway to link computer vision tasks with the final application. A
diagram showing this association, limited to the works introduced in Section 6, is reported
in Figure 9. It is possible to observe how, apart from very specific tasks like pose estimation
in the context of human pose analysis, single tasks serve as building components that
transcend multiple application domains, illustrating the principle that a core computational
function can be both pivotal and ubiquitous across analyzed application domains. As for
traditional imaging, this interconnectivity highlights the integral role of computer vision
tasks in advancing the capabilities of technological systems.

Generally speaking, a critical analysis of the progress made by the research community
in neuromorphic computer vision in single lower-level tasks makes it possible to state how
the application of event cameras in both research and industry can only grow with time,
considering that the field of application of such sensors will, in practice, depend only on the
creativity in combining approaches or adapting a research outcome from a specific context
to a different application field. Thus, integrating the application-driven analysis and the
specific application outcomes from this work with other surveys that showed tasks and/or
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the internal tasks associated with a single application domain is crucial to obtaining a deep
understanding of challenges and opportunities.

Figure 9. The association between computer vision tasks and application domains for the works
analyzed in Section 6.

The computer vision tasks required for the applications summed up in Figure 9 also
pose the interesting question of how the analyzed state of the art compares with tradi-
tional imaging systems. A quantitative comparison with traditional sensors has often been
regarded as unfair in the literature [11,26], due to the different time scales over which
these tasks have been investigated by the neuromorphic engineering community and the
traditional computer vision community, and the consequent different maturity level of the
respective solutions. In addition, the advantages of event cameras make neuromorphic
sensors more or less suitable depending on the working conditions, so it is essential to
consider the final application context and environment. Apart from these considerations,
some qualitative observations can still be made. For instance, for detection and classifica-
tion, traditional imaging algorithms applied in conventional full scene acquisition tend
to perform better, due to a richer information content. In contrast, in the case of tracking,
event cameras can offer advantages due to their high temporal resolution and low latency,
and this becomes particularly true in high-speed or high-dynamic-range scenarios. As for
segmentation, the performance can be highly dependent on the specific context. Finally, for
SLAM (but very often this is also valid for the other aforementioned tasks), the best out-
comes can be achieved when event cameras and traditional cameras are integrated together
or as part of multi-sensor solutions (e.g., LiDAR, GPS, etc.), leveraging the strengths of both
technologies. In all the cases, however, the application requirements, e.g., the acquisition
conditions, such as low-dynamic-range scenarios or the necessity to acquire data at very
high frame rates, are fundamental to deciding on the most suitable sensor. To conclude,
generally speaking, frame-based solutions currently lead in terms of algorithm maturity
and performance in many computer vision tasks. Hence, there is the need to develop new
algorithms and analysis methods to fully exploit the potential of event-based acquisitions.
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On the other hand, application-domain-based analysis alone lets us observe how
each application tries to exploit the different advantages of switching to the event-based
paradigm. It is not easy to make a systematic comparison with other sensors, since they
have been investigated for decades, while the off-the-shelf availability of event cameras is
very recent in comparison. Moreover, it is possible to observe the absence of an outstanding
neuromorphic sensor technology: the best option to employ from the different families of
neuromorphic sensors strongly depends on the application specifications and constraints,
without any privileged choice. The introduced paradigm shift has led to several ways
to represent events and to model them in a machine-efficient way. As such, it is quite
evident that there is no best representation, and very often the best choice depends on the
specific application, as extensively analyzed in [11,186,187]. More research is necessary,
to investigate new event stacking models and encoding schemes that can use existing
solutions and architecture to process event data, achieving a better performance. The
biggest bottleneck in this field is possibly the lack of a comprehensive theoretical framework
to formally describe and analyze event-based sensing and algorithms [49]. As for event
representation, this gap makes the translation of traditional machine learning algorithms
difficult and, as a consequence, deep learning architectures must be adapted and modified
to efficiently process events. Nevertheless, these sensors introduce a set of trade-offs,
such as the optimal balance between latency and power consumption, and present several
parameters that can suddenly change the acquired data. We think that these issues cannot
be mitigated without an eye to the application domain, working conditions, and specific
priorities, e.g., processing time vs. accuracy.

All the analyzed application domains certainly share the necessity of obtaining ad hoc
data to train and test neural network architectures. It can be observed how researchers
building event-based approaches often have to start from scratch and have to acquire their
own data due to a lack of available datasets. Very few task-oriented datasets are available
with full-frame sequences. Having common datasets is fundamental to comparing and
evaluating methods, as well as for implementing machine learning-based solutions, as
happens with traditional imaging. In many cases, we observed how the dataset was partic-
ularly associated with the specific goal of the paper, making it impossible to summarize the
datasets introduced in the analyzed literature. It is possible that the availability of such
sensors will favor the introduction of shared data that researchers will use to evaluate and
test their solutions. At the same time, many event camera simulators have been proposed
in the literature [188]. Simulators of event cameras based on data coming from frame-based
cameras work by imitating changes in intensity with respect to time from standard imaging
system data. However, upsampling strategies are usually employed to simulate the high
temporal resolution of event cameras when using traditional sensors working at lower
frame rates. Since continuous pixel visual signal data are not available, an interpolation
step is necessary to reconstruct a linear approximation of the continuous underlying visual
signal. Examples of simulators with available implementations can be found in [188–190].
To this end, creating synthetic datasets with event camera simulators represents a unique
opportunity that has a two-fold advantage. First of all, it leads to converting frame-camera
datasets, which are much more numerous than event datasets; in this way, it would be pos-
sible to obtain the relevant quantity of information necessary to use deep neural networks
or to use backbone networks pre-trained with (many) simulated data and fine-tuned with
(fewer) real data. On the other hand, simulators allow performing fruitful research, even in
the absence of such sensor availability. This does not detract from the fact that it is crucial
for the scientific community to propose and make available specific datasets based on event
data, to establish a common framework for algorithm evaluation, as well as in the light of
the limitations of simulators in terms of realism, event camera biases/noise modeling, and
how well neural networks trained on synthetic events generalize to real data.

Specific observations can instead be stated by separately analyzing the application
domains.
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For animal and environmental monitoring, it is possible to conclude that, although
cameras and inertial measurement units (IMUs) are fundamental for autonomous navi-
gation in GPS-denied conditions, it is still necessary to explore new sensors to deal with
problems like direct sunlight or darkness [191]. It is true that weight and cost are two ob-
stacles to the adoption of event cameras in scenarios like UAVs; however, considering how
recent advancements are moving such chips to sensor sizes comparable to smartphones, it
appears that exponential expansion in this application field is only a matter of time.

The principal challenges related to the adoption of event cameras, as well as with other
vision sensors for surveillance and security applications, are certainly related to privacy
issues. In fact, interconnected and ubiquitous data acquisition systems not only become
more powerful but also more vulnerable. If it is true that the increased adoption of AI
presents an opportunity to address various challenges, it is also true that AI models are
also vulnerable to advanced and sophisticated attacks, like evasion [192] or poisoning [193].
These vulnerabilities represent a challenge in the adoption of event cameras in security
systems. The usage of sensors that by design preserve the person’s identity could certainly
help to address these privacy-related constraints. One notable example shows how event
cameras can be adopted to achieve anonymized re-identification [194], because they can
better guarantee the anonymity of subjects, without having the privacy concerns of frame-
based cameras in public spaces. With traditional images, it is common to apply face blurring
or masking, as well as encryption techniques, but this far from ensures end-to-end privacy.
Moreover, research has shown that it is possible to reconstruct high-quality video frames
from the event streams produced by these cameras [195,196], and this might constrain
event-based privacy-preserving person re-identification. Apart from the aforementioned
weaknesses, if it is crucial to address these issues (e.g., protection from reconstruction
attacks [197]) before achieving robust privacy-preserving systems, neuromorphic computer
vision certainly represents a step towards privacy-oriented surveillance.

For industrial applications and machine vision, event cameras are a unique oppor-
tunity to obtain unprecedented quality control, even in complex lighting environments.
It is important to highlight how our analysis showed that the nature of the sensor alone,
although promising for such tasks, is not sufficient, and more complex algorithms are
required before having performance comparable to multi-sensor systems or industrial
ad hoc setups. Moreover, further research should address the monitoring of areas where
workers and machines cooperate, to achieve next-generation safety levels; in this case,
similar considerations as those previously stated for privacy issues are valid: the advantage
of event cameras in this application field is that they capture only a fraction of the visual
information compared to frame-based vision, naturally hiding sensitive visual details.

For space exploration and SSA, preliminary works have shown very promising results.
Undoubtedly, the key features for the adoption of neuromorphic computer vision for such
applications include lower bandwidth and power requirements, thus being suitable for
remote processing, e.g., space-based platforms. This often implies new challenges, such
as the necessity to modify electro-optic instruments to support the event-based sensors
and the pre-existing equipment simultaneously, and/or a specific calibration setup for the
different reference systems. The results are often very exploratory, showing that a lot of
research must still be performed; considering the unique characteristics of such cameras,
we can expect a growth in such applications in the next few years.

Eye tracking, gaze estimation, and driver monitoring systems are receiving growing
interest in the neuromorphic computer vision research community. In fact, the nature of
these problems related to the detection and tracking of specific features can certainly benefit
from event cameras. From the analysis of the state of the art, it emerged how, as this new
potential application is only in its initial stages, there is plenty of room for improvement;
moreover, it was observed how works are progressively switching from multi-sensor
systems to being purely event-driven. The future of such systems will also depend on the
final application scenario; for example, for eye segmentation or an unconstrained gaze
tracker, the brightness information that DAVIS sensors deliver can lead to single-sensor
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systems, while, when the objects of tracking are saccadic movements or the requirements
demand keeping the frame rate high, multi-sensor systems seem to be privileged. However,
both event and traditional camera solutions still have several gaps to fill. State-of-the-art
analysis shows that frame-based and event cameras can bring together the best of both
worlds and provide multiple modalities to deal with problems that appear to be better
addressed in this way, rather than in the single data-source domain alone.

Similar considerations are also valid for gesture, action recognition, and human pose
estimation. Moreover, it is interesting to observe how the core problem here is how to
learn spatio-temporal contextual information from events. In fact, using a predefined
accumulation interval may result in adverse effects like motion blur and a weak texture
[143]. While research outcomes are showing promising results, the problem of converting
event data into a proper representation remains an open issue, as widely observed.

An analysis of state-of-the-art works for medicine and healthcare showed the feasibility
of using neuromorphic sensors for elderly activity monitoring, and many works on fall
detection have been proposed. Furthermore, an active and growing research field is
investigating the usage of event cameras coupled with other data sources to realize assistive
devices, in particular for visual impairment. As already observed, when sensitive data are
transmitted, it is clear that realizing privacy-preserving systems is crucial for the adoption
of such sensors in real scenarios, as investigated in [198,199]. As a final note, the authors in
[157] stated how there are no established studies that have delved into the utilization of
event cameras for specific biomedical purposes. However, their work suggested how event
cameras possess attributes conducive to innovative applications in healthcare and medicine.
Together with our proposed analysis, we can conclude that, as for other application fields
with few works, an impressive growth in works in these domains can be expected.

The most investigated application field for neuromorphic cameras is certainly robotics
and, as a consequence, intelligent transportation systems, where the primary research
focus is on tasks associated with scene interpretation. Endowing robots with neuromor-
phic technologies represents a very promising solution for the creation of robots that
can be seamlessly integrated into many automated tasks. Neuromorphic cameras could
revolutionize the robot sensing landscape. In particular, these sensors are privileged be-
cause of their fast reaction time, which leads to low-latency algorithms for perception
and decision making. Nevertheless, the development of end-to-end systems that fully
integrate event-based processing from the perception step to the actuation step still needs
much research.

Future Directions

Event cameras hold significant potential in many scenarios, and their algorithms are
rapidly evolving. Nevertheless, the conventional frame-based vision has made unprece-
dented achievements, been investigated for a longer time, and is continuously improving.
The application-oriented analysis in previous paragraphs provided evidence of how the
field of event-based vision represents a vibrant area of ongoing research. Where this was
evident from the state-of-the-art analysis, future developments related to a specific applica-
tion field were reported. It is desirable to state some generic observations about the future
directions of neuromorphic cameras. The capacity to revolutionize both analyzed and new
application fields will necessarily depend on several factors. First of all, the adoption of
neuromorphic sensors will grow as the manufacturing costs of these cameras continue
to decrease. Secondly, as researchers delve deeper into their potential, more innovative
and successful uses will be identified. The future of event cameras also lies in addressing
the challenges of deep-learning-based computer vision techniques, a consequence of the
paradigm shift of dealing with streams of events. From these premises, the future of event
cameras looks encouraging, with steady development and potential mass production on
the horizon.

Moreover, to date, neuromorphic cameras have only implemented a small subset of
the principles of the biological vision system. For example, a complete understanding of all
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ganglion cells is still lacking [200]. New computational models and SNNs that can efficiently
process the spiking nature of output data have been proposed and represent a very active
research field. Implementing SNNs in conventional Von Neumann machines limits their
computing efficiency, due to an asynchronous network activity that leads to quasi-random
access of synaptic weights in time and space, as each spiking neuron should ideally be
its own processor, without a central clock [41], and because of their highly parallel nature
with amalgamated memory and computational units. Ongoing research in neuromorphic
hardware is targeted towards the optimization of the execution of SNNs, to close the gap
between the simulations of SNNs on Von Neumann machines and biological SNNs [201].
Eventually, neuromorphic cameras realized on silicon retina will face limitations due to
circuit complexity, large pixel area, low fill factors, and poor pixel response uniformity [12].
This shows how breakthroughs in neuroscience and neuromorphic research, from both
algorithm and hardware perspectives, remain crucial.

A report from Gartner© from 2020 estimated that ”by 2025, traditional computing tech-
nologies will hit a digital wall, forcing the shift to new computing paradigms such as neuromorphic
computing" [202]. In light of this, it can be cautiously stated that neuromorphic cameras
hold revolutionary potential for widespread application in fields requiring computer vision.
However, this prediction underscores the need for continued research from both industry
and academia.

8. Conclusions

In this work, a detailed analysis of the literature was given, discussing how neuromor-
phic vision sensors have impacted computer vision in the last few years. We tried to fill
gaps in other surveys with a critical analysis based on the different application domains,
instead of the set low- or high-level computer vision tasks themselves. In addition, our
comprehensive analysis of the existing literature revealed numerous surveys, which we
subsequently discussed and categorized. The presented discussion illustrated different
outcomes by application field. It also analyzed the problem of dataset availability: the lack
of available datasets can be partially addressed with event camera simulators, but specific
datasets are still often necessary to use such sensors in real-life applications.

An application-oriented approach was applied in the review process, in order to
illustrate the wider impact of neuromorphic cameras, not limited to the academy. From
the analysis of the state of the art, it emerged that event cameras have been applied in
practically all application fields of computer vision. Certain fields, like robotics, have a very
well-established literature, while new emerging fields like medicine or space exploration
have only seen recent application of event cameras, although the advantages of lower
bandwidth and power requirements are very appealing, and we can expect a growth in
proposed works in the next few years. As a general conclusion, it is possible to state that
neuromorphic cameras are a revolutionary technology with the potential to be applied in
any scenario where computer vision and image processing algorithms can be utilized. This
will be true as long as the production cost of event cameras continues to reduce. Their
unique ability to capture dynamic visual information makes them invaluable tools for a
wide range of applications, and as researchers continue to explore their capabilities, more
innovative applications are likely to be discovered for these versatile sensors.
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Abbreviations
The following abbreviations are used in this manuscript:

AER Address-event representation
APS Active pixel sensor
CNN Convolutional neural network
ATIS Asynchronous time-based image sensor
DAVIS Dynamic and active pixel vision sensor
DGCNN Dynamic graph CNN
DMS Driving monitoring systems
DVS Dynamic vision sensor
FAGC Feature attention gate component
MOKE Magneto-optic Kerr effect
n.a. Not available
NIR Near-infrared
SSA Space situational awareness
SLAM Simultanous localization and mapping
SSNN sparse neural network models
SNN Spiking neural Network
VLSI Very large-scale integration
UAV Unmanned aerial vehicle
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