
Citation: Nasim, M.; Mumtaz, R.;

Ahmad, M.; Ali, A. Fabric Defect

Detection in Real World

Manufacturing Using Deep Learning.

Information 2024, 15, 476. https://

doi.org/10.3390/info15080476

Academic Editor: Vincenzo Moscato

Received: 11 June 2024

Revised: 27 July 2024

Accepted: 9 August 2024

Published: 11 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Fabric Defect Detection in Real World Manufacturing Using
Deep Learning
Mariam Nasim 1 , Rafia Mumtaz 1,2,* , Muneer Ahmad 3,* and Arshad Ali 4

1 School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and
Technology (NUST), H-12, Islamabad 44000, Pakistan; mnasim.msds22seecs@seecs.edu.pk

2 Center for Computational Science and Mathematical Modelling, Coventry University, Priory Street,
Coventry CV1 5FB, UK

3 Department of Computer Science, University of Roehampton, Roehampton Lane, London SW15 5PH, UK
4 Software Productivity Strategists, Inc. (SPS), 2400 Research Blvd, Suite 115, Rockville, MD 20850, USA;

arshad.ali@spsnet.com
* Correspondence: rafia.mumtaz@seecs.edu.pk (R.M.); muneer.ahmad@roehampton.ac.uk (M.A.)

Abstract: Defect detection is very important for guaranteeing the quality and pricing of fabric.
A considerable amount of fabric is discarded as waste because of defects, leading to substantial
annual losses. While manual inspection has traditionally been the norm for detection, adopting
an automatic defect detection scheme based on a deep learning model offers a timely and efficient
solution for assessing fabric quality. In real-time manufacturing scenarios, datasets lack high-quality,
precisely positioned images. Moreover, both plain and printed fabrics are being manufactured in
industries simultaneously; therefore, a single model should be capable of detecting defects in all
kinds of fabric. So training a robust deep learning model that detects defects in fabric datasets
generated during production with high accuracy and lower computational costs is required. This
study uses an indigenous dataset directly sourced from Chenab Textiles, providing authentic and
diverse images representative of actual manufacturing conditions. The dataset is used to train a
computationally faster but lighter state-of-the-art network, i.e., YOLOv8. For comparison, YOLOv5
and MobileNetV2-SSD FPN-Lite models are also trained on the same dataset. YOLOv8n achieved
the highest performance, with a mAP of 84.8%, precision of 0.818, and recall of 0.839 across seven
different defect classes.

Keywords: fabric defect detection; deep learning; YOLOV8; object detection

1. Introduction

Fabric is lost as waste due to various defects that occur during manufacturing. This
results in monetary losses for textile producers in Pakistan. Mostly, the cause of these
defects is machine failure. To check whether the fabric produced is up to the standards of
the market, an inspection has to be performed. In developing countries, human labor is
involved in this process. A good quantity of skilled workers is required for this manual
inspection. The process is physically very time-consuming, and errors can occur due to
human fatigue. Therefore, an automated system is required for this task. Recently, along
with the development of hardware devices, deep learning-based detection methods have
become popular. They are now being applied to different real-world scenarios. One of
those scenarios is fabric defect detection.

Although significant research has been conducted for fabric defect detection, it predom-
inantly relies on datasets featuring well-positioned fabric images taken under controlled
conditions. However, in real-time manufacturing scenarios, datasets exhibit a variety of
challenges. Images are not high-quality and precisely positioned. Moreover, variations in
backlight intensity, noise, and blurriness can also significantly impact visual perception.
Secondly, the literature on this problem can be segregated into two broad categories, i.e.,

Information 2024, 15, 476. https://doi.org/10.3390/info15080476 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15080476
https://doi.org/10.3390/info15080476
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0009-0003-7336-1018
https://orcid.org/0000-0002-0966-3957
https://orcid.org/0000-0001-5047-1108
https://doi.org/10.3390/info15080476
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15080476?type=check_update&version=2

Information 2024, 15, 476 2 of 19

the detection of defects in plain fabrics and the detection of defects in printed fabrics. For
printed fabrics, further division can be carried out for regularly printed and irregularly
printed fabrics. This is because a huge variety of prints makes it difficult to segregate the
pattern from the defect. Therefore, different methodologies have to be applied in all cases.
There is very limited exploration of models that can simultaneously detect defects in plain,
regularly printed, and irregularly printed fabrics.

Therefore, addressing these limitations, this study hypothesizes that a single object
detection model like YOLOv8 can detect all kinds of plain, regularly printed, and irregularly
printed fabric defects simultaneously in samples taken in real-world scenarios.

In this study,

• An indigenous dataset taken from Chenab Textile is used. It contains printed and
plain fabric images captured in various manufacturing conditions.

• Object detection model YOLOv8, which is computationally faster and requires fewer
resources, is trained. For comparison, YOLOv5 and mobilenetv2 SSD FPN lite, which
are also deployable on low-resource devices, are trained.

• YOLOv8n produced the best results with a mAP of 84.8%. Followed by YOLOv5n
with 84.5% and mobilenetSSD-FPNLite with 77.09%.

The remaining paper is structured as follows: In Section 2, an overview of the existing
literature in this field has been provided. Section 3 explains the models along with the
dataset. Results have been provided in Section 4, and finally, Section 5 concludes the paper
and provides suggestions for further improvement.

2. Related Work

Fabric defect detection is a task that has been focused on a lot in research. Research
has been carried out for many years in this field. Algorithms for fabric defect detection can
be mainly classified into statistical, spectral, model, and deep learning-based algorithms.
Statistical algorithms include methods such as co-occurrence matrix [1] and morphology [2].
They identify the defect by comparing the gray values of the pixels with their surround-
ing pixels. The detection results for such approaches depend on the size of the window.
Moreover, smaller defects are difficult to detect by such methods.

Spectral-based algorithms convert the test image into the frequency domain. Then, for
detecting defects, the difference is computed among the spectral coefficients. It includes
the Fourier transform method [3], the wavelet transform method [4], and the Gabor trans-
formation [5]. The effectiveness of these methods depends heavily on the choice of filter
banks and involves high computation complexities.

Model-based algorithms initially characterize the texture features of non-defective
samples using different parameter estimation methods. Subsequently, a defect is detected
by determining whether the test image aligns with the established normal texture model.
These models, like statistical models, exhibit significant computation complexities and are
less effective for detecting small defects. The autoregression model [6] is an example.

Convolutional neural networks have demonstrated exceptional capabilities for rep-
resenting features in computer vision-related tasks. However, the storage of such large
convolutional models and their computational costs are to be simplified. The literature that
contains the implementation of various deep learning models for detecting fabric defects
can be divided into two main categories: printed fabrics and plain fabrics.

Liu, Zhoufeng, et al. [7] in 2019 used YOLO, a lightweight neural network structure for
defecting fabric defects. The basic idea behind this research was to reduce computational
costs so that the model could be applied to real-world use cases on embedded devices.
Though the accuracy of deep CNNs has exceptionally increased, this has come at the cost
of computational expenses and storage provisions. This is a potential barrier to their use
in environments with very limited resources, such as mobile phones or other embedded
devices. Therefore, the paper proposes 1 × 1 and 3 × 3, i.e., small-size convolution layers
that reduce dimensionality and fuse features. To increase the model’s capability to detect
various sizes of defects, multi-scale feature extraction was used. For finding the optimum

Information 2024, 15, 476 3 of 19

size of anchor boxes for YOLO detection, K-means clustering was applied to the fabric
defect image dataset. An accuracy of 97.2 was achieved on a fabric image benchmark
dataset with 3000 samples and five classes.

Hu, Guanghua, et al. [8] in the same year, 2019 proposed an unsupervised learning
approach for the detection of fabric defects, focusing on the challenge of the collection of
defective samples for this task. Annotating datasets manually is very time-consuming and
expensive. Therefore, this research proposed a deep convolutional generative adversarial
network. A standard DCGAN was used with an additional new encoder block, which
was used to reconstruct the query image without defects. The output of this encoder, i.e.,
the reconstructed image and the original image, were subtracted to form a residual map.
This map highlights the potential defect regions. A likelihood map is also produced by the
model for the image, where every pixel value indicates the chance of defects occurring at
that particular point. This likelihood and residual map were used to form a fusion map.
The resultant map standardizes gray levels in defect-free regions and displays deviations
for defected areas. The model achieved an FNR of 12.09, an accuracy of 51.62, and an FPR
of 49.91 on TILDA textile texture and local data samples. However, the drawback was that
the model yields noisy segmentation.

Peng, Zhengrui, et al. [9] in 2021 proposed an Attention mechanism and multitask
fusion module for fabric defect detection. The attention mechanism makes the networks
focus on defects. Whereas multi-task fusion helps the proposed architecture enhance
classification using feature concatenation. This fusion module fuses the attention map and
classification branches, hence improving classification results, particularly for small-sized
defects. The research says that the model is feasible for real-time industrial use cases. The
proposed model achieved an F1 score of 0.987, a recall of 0.994, and a precision of 0.98 on
the AITEX dataset. However, it has only been implemented for plain fabrics.

Chakraborty et al., in research conducted [10] in the same year, 2021, proposed a
deep convolutional neural network to categorize printed fabric defects using fabric images
gathered in real-time from industries. Two defect classes that were used are color spots and
print mismatches. Simple CNN was explored by experimenting with different hyperparam-
eters, looking for the best ones. The learning rate of 0.0003, batch size 16, and regularization
value, λ = 0.001, along with the ReLU activation function, were finalized. The research
also applied VGG-16 and VGG-19 architectures to the given dataset. The dataset contained
self-collected printed images with 2 classes, color spots, and misprints. VGG16 produced
the best results among all three architectures, with a recall of 0.71, precision of 0.70, and
accuracy of 72%.

In the same year 2021, Jing et al. [11] proposed TILDA RGBAAM AND IMAGE
PYRAMID to detect defects in regular patterned printed fabrics. The first step of this
process was to calculate the minimum period for the print of the fabric using RGBAAM.
Next, this minimum period was used as a sample template to construct a Gaussian pyramid
for the defected image and template image. After that, both the template and the defective
image were matched using a similarity measurement method. Lastly, the location of defects
in printed fabric was highlighted by using the technique of Laplacian pyramid restoration.
The paper states that the proposed model very accurately identifies the periodic unit for
print and the location of the defect. However, complex patterns take more time for the
model to execute.

Zhang, Jiaqi, et al. [12] in 2022 presented a lightweight MobileNetV2-SSDLite for
cloud-edge computing. The model incorporates channel attention and focal loss to address
the challenges of detecting small-sized defects and handling the balance between defective
and normal samples. Experiments were carried out with 4 different datasets. The proposed
approach achieved an accuracy of 84.39 on CF, 93.05 on GF, 71.18 on BPF, and 95.5 on the
DRF dataset.

Jia, Zhao, et al. [13] in 2022 implemented improved fasterRCNN for defect detection.
This model was presented to solve issues including low accuracy, convergence, and poor
results in the detection of tiny defects. The modifications that were made to the faster

Information 2024, 15, 476 4 of 19

RCNN included a ResNet50 backbone instead of VGG16. This solved the problem of
the gradient vanishing as the resnet has more depth and residual connections. Another
modification was adding an FPN for connecting low- and high-level features to accurately
locate and detect small target defects. ROI pooling was used instead of ROI alignment.
The benefit was that quantization was canceled, and therefore details were not ignored.
Moreover, transfer learning was also applied to decrease training time. The proposed
architecture was tested on self-collected yarn samples. Defects including ribbon yarn,
broken yarn, holes, stains, etc. were included. The model produced a mAp score of 94.73%
on the given dataset. However, the architecture was not deployed in actual production.

Sabeenian, R. S. et al. [14] in 2022 classified 5 different defects in fabrics using the
VGG network. The research focused on creating a preprocessing filter for the filtration of
nonlinear mixed noise from images and proposed a deep CNN architecture for classifying
defects. The proposed work has two stages. In the first step, a pseudo–convolutional
neural network, which has been referred to as P-CNN in the paper, is used for image
preprocessing. It is a tailored CNN network with three layers resembling traditional convo-
lutional networks. Initial feature extraction layers use weight initialized adaptive window
filters. These filter coefficients are initialized using a probabilistic distribution of noise. The
PCNN demonstrates outstanding capabilities in rejecting impulse noise in images. Stage
2 comprises a CNN for classifying and detecting defects. An accuracy of 93.92% and a
specificity of 92.51 were achieved on the self-collected dataset. However, the model was
not able to correctly classify printed fabrics with bands and real-time plain fabric samples
with noise.

Liu, Andong, et al. [15] in 2022 proposed a double sparse low-rank decomposition
method for detecting defects in printed fabrics with irregular patterns containing high
complexities. The proposed model has three sequential stages. Initially, prior information
was extracted, consisting of two types of data: the template prior and the defect prior. The
template prior was derived from the sparse components, serving as the printing template,
while the defect prior was determined by contrasting the defective printed fabric graph
with the template fabric graph. Following this, the double sparse low-rank decomposition
was carried out to separate the background from the print. Lastly, defect segmentation
was carried out by creating the defect mAp by binarizing the saliency mAp of the defects
using an optimal threshold segmentation technique. This approach facilitated the clear
identification and visualization of the detected defects. The model produces a TPR of 89.29
and an FPR of 0.85 on a self-collected 98 fabric drawings dataset. The model, however,
lacks robustness.

Zheng et al. [16] in 2022 proposed an SDANet, which was a siamese FPN for detect-
ing defects in fabrics that are printed. Here, the Siamese feature pyramid network was
employed to acquire multi-scale features from the input and standard/template image.
An attention module was introduced to detect discrepancies between input and template
features. To adjust the positioning error between the standard image and input image
features, a self-calibration unit was proposed. Two famous datasets, namely Tianchi Fabric
and Tianchi Tile Defect Detection, were used in this research. The model produced a mAp
of 47.1 and an accuracy of 83.3%. The main disadvantage of the model was that template
images were required for each pattern to detect defects.

Very recently, Li, Long, et al. [17] in 2023 worked on training a robust model on a
fabric dataset containing printed and plain fabrics. They implemented a cascade R-CNN on
a self-collected dataset with 19 different backgrounds and 9 classes, including stains, holes,
wrinkles, and thread ends. To improve the accuracy of the model, certain other techniques
were applied. One of them was the “block recognition and detection box merging algorithm”
to fully detect defects of small as well as medium size in images with high resolution. For
training purposes, large-size, high-resolution images were divided into smaller chunks.
Similarly, for inference, large, high-resolution image inputs were segmented into smaller
fragments and provided to the model. Later, the detection results of these small fragments
were combined to obtain final detection results for the original high-resolution image.

Information 2024, 15, 476 5 of 19

Moreover, a multi-morphology data augmentation method was also proposed and applied.
Initial steps involved mean filtering and dynamic thresholding for the extraction of defects
by setting the background as either white or black. Then, augmentation techniques like
scaling, mirroring, cropping, rotation, morphological processing, etc. were used to alter
the shape of defects. They obtained defects through this process, which were randomly
merged into fabric images in batches. The results showed mAp of 75.3%; however, only
defects present in the patterns available in the dataset were detected effectively.

The summary of the literature review for plain fabrics is presented in Table 1 and that
for printed fabrics in Table 2. Following this literature review, two significant research
gaps were identified. Firstly, there is a notable segregation in research efforts, with distinct
focuses on work related to printed and plain fabrics. Currently, there is an absence of a
unified and robust model capable of simultaneously addressing both fabric types with
high accuracy. Secondly, the prevailing research emphasis is on datasets that include
well-positioned fabric images captured under controlled conditions. However, real-time
manufacturing scenarios often lack datasets containing high-quality and precisely posi-
tioned images. Additionally, industries concurrently produce both plain and printed fabrics.
Therefore, there is a need to develop a robust model capable of accurately detecting defects
in fabric datasets generated during production, leveraging recent advancements in deep
learning technologies to bridge these identified gaps.

Table 1. Synthesis matrix for plain fabrics literature.

Paper
Reference Dataset Model Proposed Research Problem Solved Accuracy Limitations

[14] Self-collected with
5 defect types

Classification using
VGG network with
preprocessing with
Pseudo–Convolutional
Neural Network (P
CNN)

Filter out nonlinear noise in
fabric defect datasets

Accuracy:
93.92, Speci-
ficity: 92.51

Cannot classify
reality based noisy
plain defect samples
and banded fabric
samples.

[13] Self collected Yarn
samples

Improved faster-
RCNN

Poor detection effect for
small target defects. MAp 94.73% Not deployed in ac-

tual production

[12] CF, GF, BPF, DRF

MobileNetV2-
SSDLite based
on cloud-edge
computing

lightweight CNN for limited
resource environments

CF: 84.39 GF:
93.05 BPF:
71.18 DRF:
95.5

Different pat-
terned dataset
not considered

[9] AITEX
Attention mechanism
and multi-task fusion
module

Enhanced recognition effect
especially for Tiny shape
defects.

F1score: 0.987,
Recall: 0.994,
Precision: 0.98

Only implemented
for plain fabrics yet

[8] TILDA textile tex-
ture and local

Unsupervised—deep
convolutional gen-
erative adversarial
network (DCGAN)

Collection of defective exam-
ples. Manual data annotation
is very laborious

FNR: 12.09,
Accuracy:
51.62, FPR:
49.91

Yield noisy segmen-
tations.

[7]

Fabric benchmark
datasets along with
3000 samples for
five classes

YOLO, A lightweight
network structure.

High computational cost re-
duced for systems using em-
bedded devices.

Accuracy: 97.2 Industrial uses still
to be explored

Information 2024, 15, 476 6 of 19

Table 2. Synthesis matrix for printed fabrics literature.

Paper
Reference Dataset Model Proposed Research Problem Solved Accuracy Limitations

[17]
Self-collected
printed with 19 dif-
ferent backgrounds

Cascade-RCNN Printed fabrics defect detec-
tion mechanism proposed mAp: 75.3

Only patterns in the
dataset are detected
in a good manner

[16]
Tianchi Fabric and
Tianchi Tile Defect
Detection Datasets

A siamese FPN

Existing techniques depend
on extensive annotated
datasets and fail on new
encountered samples

mAp: 47.1, Ac-
curacy: 83.3

Template images are
required

[15] Self-collected 98
fabric drawings

Double sparse low-
rank decomposition
method (DSLRD)

Defect detection for irregu-
lar print fabrics with com-
plex patterns

TPR: 89.29,
FPR: 0.85 Weak robustness

[11] TILDA RGBAAM and IM-
AGE PYRAMID

Identify periodic unit for
printed fabric and locate
defect

Training time
twice less than
traditional
approaches

Model takes large
time for complex
patterns and actual
production pro-
cess needs further
optimization

[10] New dataset
proposed

Deep convolutional
neural network
(CNN)

Classify spot and print
mismatch

Recall: 0.71,
Precision: 0.70,
Accuracy: 72

Only 2 types of de-
fects catered

3. Materials and Methods

This section begins with details of the dataset including data collection and prepro-
cessing techniques. Later, the methodology for this study is explained along with details of
the model architectures.

3.1. Data Collection and Preprocessing

Currently, fabric defects occurring daily are manually logged in a paper register by
workers in the industry. After a manual inspection of the register and looking into the
defective sample images collected over five months, some defect classes were shortlisted.
This shortlisting was completed based on the frequency of occurrence of that particular
class of defect. For certain defects that occur very rarely, the number of data samples was
very low. For example, five to six image samples over four to five months. Therefore, such
classes were discarded. Seven classes, including baekra, color issues, contamination, cut,
gray stitch, selvet, and stain, are included in this study. Color issues include color spots
and discoloration defects. Examples of data samples for each class are shown in Figure 1.
It can be seen that the dataset includes samples of plain fabric, regularly printed fabric, and
irregularly printed fabric. Details of the defects, as provided by the industry, are presented
in Table 3.

The dataset was collected by the workers in the factory. The raw dataset was shared
using a drive link. Originally, the folders were sorted according to the dates, inside which
subfolders for different defect classes were present. During the data preprocessing phase,
individual folders were created for each class, and images from different dates were
manually added to the corresponding folders.

The dataset was then annotated using roboflow. As for most detection models, in-
cluding YOLO, we need square bounding boxes; therefore, square bounding boxes were
manually formed for all the defective samples. The dataset had a class imbalance prob-
lem. Samples for certain classes, like stain, were large as compared to other classes. To
solve that, firstly, for classes that contained fewer samples, more augmentation was per-
formed for them. Augmentation techniques, including image rotation and flipping, were
mainly applied.

Information 2024, 15, 476 7 of 19

Figure 1. Some images from Chenab dataset.

Table 3. Detailed description of defects.

Defect Type Description

Contamination During weaving, if another thread comes into contact with the original thread of the cloth, it leaves a
visible mark on the cloth in the shape of a line. This defect is known as contamination.

Selvet When rolling, if one layer of cloth folds slightly, the pressure from other layers keeps the fold in place,
leaving a folded mark. This defect is known as selvet.

Gray Stitch When one piece of cloth ends, or cloth is torn by the machine while connecting it to another cloth, we
use a stitch known as a joint connection, also referred to as a gray stitch.

Cut If there is any cut in the cloth caused by machines or any other reason, it falls under this category. Cuts
can also appear on the edges of clothes.

Baekra When the printing machine stops, it sometimes leaves marks in lines or causes major outages, destroy-
ing the design and resulting in no pattern. The defect is known as baekra.

Color Issues
1. Incomplete color coverage in print, results in areas where the color is lighter. 2. Printing defects that
appear as spots if color or any debris comes into contact with the cloth during printing. 3. When one
color mixes into another, it is called color mixing.

Stains Can be of various types, such as oil, dust, or rust stains. They can appear as spots or be spread out on
the cloth.

The dataset was split into the train, test, and valid folders and finally exported in
YOLOv5, YOLOv8, and tfrecord format from roboflow.

After initial training of the model, results showed that for certain classes, the mAp
values were not satisfactory. Therefore, for these classes, image samples from some publicly

Information 2024, 15, 476 8 of 19

available datasets present on roboflow were added to the dataset, and the model was
retrained. Images from thesis dataset [18], FabricDefectDet2 [19], and defect_1 [20] were
chosen and incorporated into the dataset. This choice was made because the samples in
these datasets exhibited properties similar to ours; most images were unflattened and had
varying orientations.

The final dataset contained around 2800 samples. Statistics showing the number of
samples for different classes in the dataset are shown in Table 4.

Table 4. Annotated data samples for each class.

Classes Train Valid Test

baekra 175 48 17

color issues 86 15 10

contamination 148 53 14

cut 272 75 41

gray stitch 228 63 33

selvet 218 64 30

stain 662 208 112

Dataset Innovation and Characteristics

The datasets mentioned in the literature section, e.g., TILDA [21], TIANCHI [22,23],
AITEX [24], all are extensive, contributing effectively to defect identification. However,
they often include images that are well-positioned and of high quality, focusing solely on
the defect area without background distractions. Our dataset captures images directly from
the production line without any manual positioning or enhancement. This “as-produced”
approach ensures the addition of natural imperfections and background elements encoun-
tered in the manufacturing process. Therefore, our dataset offers a more realistic training
and prediction environment for defect detection models.

The main characteristics of our dataset include:

• As-Produced Variability: Unlike many existing datasets, our dataset comprises im-
ages captured directly from an operational textile production environment at Chenab
Textile. The fabrics are captured as they are produced, unflattened, and unaltered,
which simulates a more realistic detection scenario.

• Variability in Orientation: Fabrics are captured at various angles and orientations,
simulating real production line conditions.

• Noise and Imperfections: Images include real-world imperfections such as noise
and blurriness.

• High Diversity of Defects: The dataset features a wide range of defect types, in-
cluding cuts, stains, gray stitches, and more, ensuring comprehensive coverage of
potential issues.

• Background Elements: Unlike datasets that focus solely on the defect area, our images
include background elements that are present in the production environment. This
adds to the complexity of the images and simulates the challenges faced in real-world
fabric defect detection.

• Mixed Fabric Types: Incorporating plain, regularly printed, and irregularly printed
fabrics ensures that models trained on our dataset can generalize well to different
fabric patterns and types.

Hence, we provide a resource that bridges the gap between controlled experimental
datasets and the variability seen in industrial settings. This makes our dataset particularly
valuable for developing robust fabric defect detection systems applicable in real-world
scenarios. The dataset can be accessed at the following link: https://tinyurl.com/488uhkhy.
(accessed on 26 July 2024).

https://tinyurl.com/488uhkhy

Information 2024, 15, 476 9 of 19

3.2. Methodology

A generalized overview of methodology is shown in Figure 2. The dataset collected
from Chenab textiles was augmented and annotated as mentioned in Section 3.1. Then
deep learning models were selected for this particular problem. This use case demanded
architectures that are computationally faster but can be deployed in less resource envi-
ronments. This is because the system is to be deployed in high-speed fabric production
environments where cameras are strategically positioned to scan continuously produced
fabric, ensuring the prompt detection of defects. After a detailed literature review, it was
seen that YOLO and mobilenetSSD FPN lite are the object detection algorithms suitable
for such scenarios. In MobilenetSSD FPN Lite, mobilenetv2 serves as the backbone. It is a
lightweight convolutional neural network that employs depthwise separable convolutions
and inverted residual blocks. These features make it suitable for real-time applications with
limited computational resources. As far as YOLO is concerned, it frames object detection as
a single regression problem. YOLO processes the entire image in one forward pass through
the network, unlike other models that process regions of interest separately, which is more
time-consuming. This approach reduces the computational overhead and latency.

Therefore, YOLOv8 is trained to detect defects. For comparative purposes, SSD-
mobilenetv2-FPNLite and YOLOv5 are also applied to the same dataset to get results. The
detailed architectures of these models have been explained in later sections. After training
the models, predictions were made for test data samples. Based on the mAPs, classes
showing lower accuracies were enhanced by incorporating images from publicly available
datasets, resulting in improved outcomes.

Figure 2. Overview of proposed methodology.

3.2.1. MobileNetV2 SSD FPN-Lite

MobileNetV2 SSD FPN-Lite is an architecture tailored for object detection tasks, par-
ticularly optimized for deployment on mobile and embedded devices. It combines the
lightweight MobileNetV2 backbone with the multi-scale feature representation of FPN to
enable efficient and accurate object detection on mobile and embedded platforms. Here is
an overview of its architectural details:

Backbone Network (MobileNetV2): MobileNet was introduced by Howard et al. in
2017 [25], and in 2018, Sandler et al. introduced MobileNet V2 [26]. MobileNet V2 demon-
strated superior accuracy relative to MobileNet V1, despite utilizing fewer parameters. In
this particular model, MobileNetV2 serves as the backbone network for feature extraction.
MobileNetV2 employs depthwise separable convolutions and inverted residual blocks
to balance model size, speed, and accuracy. These features make it suitable for real-time
applications with limited computational resources.

Feature Pyramid Network (FPN): FPN is integrated into the architecture to address
scale variation and enhance feature representation. FPN generates a hierarchical set of
feature maps at different spatial resolutions, allowing the model to detect objects at various
scales. This multi-scale representation is crucial for accurately detecting objects of different
sizes in the input image. Hence, different-sized fabric defects can be accurately detected.

Information 2024, 15, 476 10 of 19

SSD Head: The SSD head is responsible for predicting object bounding boxes and
class probabilities. It consists of a series of convolutional layers, followed by prediction
layers. These prediction layers generate class scores and bounding box offsets for prede-
fined anchor boxes across different feature maps. The SSD head enables efficient object
localization and classification at multiple scales.

Lite Optimization: The “Lite” version of MobileNetV2 SSD FPN incorporates op-
timizations to reduce computational complexity and memory usage while maintaining
reasonable detection performance. These optimizations may include techniques like chan-
nel pruning, quantization, and architectural modifications tailored for resource-constrained
environments. By leveraging these optimizations, MobileNetV2 SSD FPN-Lite achieves a
good balance between detection accuracy and efficiency, making it suitable for deployment
on devices with limited hardware resources.

3.2.2. YOLOv5

Among various object detection algorithms, the YOLO framework [27] has distin-
guished itself for achieving an impressive equilibrium between speed and accuracy.

The YOLOv5 architecture represents a significant advancement in the YOLO (You
Only Look Once) series, renowned for its real-time object detection capabilities. As men-
tioned in [28], YOLOv5 was released in 2020, a few months after YOLOv4. YOLOv5 is
designed with a streamlined and efficient architecture tailored for high-speed inference
while maintaining competitive accuracy. Here is a detailed overview of its architecture:

Backbone Network: YOLOv5 utilizes a modified version of the CSPDarknet53 back-
bone network, which is derived from the Darknet architecture. CSPDarknet53 incorporates
cross-stage partial connections (CSP) to facilitate efficient information flow across network
stages. These connections enhance feature representation and contribute to the model’s
ability to capture complex patterns in images effectively.

Feature Pyramid Network (FPN): YOLOv5 incorporates a path aggregation network,
an extension of a feature pyramid network (FPN). A FPN enables multi-scale feature extrac-
tion by combining features from different network layers. It achieves this by introducing
lateral connections that fuse low-level and high-level features, resulting in feature maps
with rich spatial information at multiple scales. This capability is crucial for detecting
objects of various sizes and scales in images.

Detection Head: The detection head of YOLOv5 processes the multi-scale features
extracted by the backbone and FPN networks to generate bounding box predictions, confi-
dence scores, and class probabilities. It consists of a series of convolutional layers followed
by detection-specific operations, such as anchor box assignment and non-maximum sup-
pression (NMS). YOLOv5 predicts bounding boxes using anchor boxes, which are prede-
fined boxes of different aspect ratios and scales, to accurately localize objects in images.

Training and Inference: YOLOv5 is typically trained using large-scale labeled datasets,
such as COCO (common objects in context) or VOC (Visual Object Classes), with techniques
like stochastic gradient descent (SGD) with momentum and weight decay. The model is
optimized using loss functions tailored for object detection tasks, including binary cross-
entropy for objectness prediction and mean squared error for bounding box regression.
Additionally, techniques like focal loss may be employed to address class imbalances
and improve training stability. Once trained, YOLOv5 is capable of performing real-time
object detection on images or videos with remarkable speed and accuracy. The model
can be deployed on various platforms, including CPUs, GPUs, and specialized hardware
accelerators, making it suitable for a wide range of applications, such as autonomous
vehicles, surveillance systems, and robotics.

Ultralytics offers five versions of the model: nano, small, medium, large, and extra-
large, each with a different convolution module width and depth to cater to specific use
cases and hardware requirements.

Information 2024, 15, 476 11 of 19

3.2.3. Yolov8

Ultralytics, the creators of YOLOv5, introduced YOLOv8 [29] in January 2023. The
YOLOv8 architecture represents an evolution of the YOLO series, introducing several en-
hancements and modifications compared to YOLOv5. While maintaining the core principles
of real-time object detection and high accuracy, YOLOv8 incorporates unique features and
improvements. Architectural details, as mentioned in [28], are provided in the following
paragraphs.

Backbone Network: YOLOv8 adopts a backbone similar to YOLOv5, incorporating
alterations in the CSPLayer, now known as the C2f module. This C2f module (cross-stage
partial bottleneck with two convolutions) merges high-level features with contextual infor-
mation, enhancing detection accuracy. Employing an anchor-free model and a decoupled
head, YOLOv8 processes objectness, classification, and regression tasks independently,
allowing each branch to focus on its specific task, thus refining the overall model accuracy.

Output Layer: In the output layer, YOLOv8 applies the sigmoid function as the activa-
tion for objectness scores, indicating the likelihood of an object within the bounding box,
while the class probabilities utilize the softmax function, representing object probabilities
across potential classes.

Segmentation Model: Additionally, YOLOv8 introduces a semantic segmentation
model named YOLOv8-Seg, employing a CSPDarknet53 feature extractor as the backbone,
followed by a C2f module. YOLOv8-Seg showcases state-of-the-art results in various object
detection and semantic segmentation benchmarks, maintaining high speed and efficiency.
For loss functions, YOLOv8 utilizes DFL and CIoU for bounding-box loss and binary
cross-entropy for classification. This enhances performance, especially for smaller objects.

Hence, YOLOv8, having an improved backbone network and an anchor-free architec-
ture with multi-scale prediction capabilities, outperforms previous versions in terms of
accuracy and speed. Ref. [29] presents a detailed architecture of YOLOv8.

Ultralytics offers five versions for this model as well: nano, small, medium, large, and
extra-large, each with a different convolution module width and depth to cater to specific
use cases and hardware requirements.

3.3. Training

Training and inference were conducted using pytorch with the Ultralytics framework.
The dataset exported from roboflow in yolov8 format contains a “data.yaml” file with
details such as the total number of classes and paths to train, test, and validate directories.
The YOLOv8 package was installed using Ultralytics, and a “data.yaml” file was provided
to the model as a dataset for training with an image size set to 640 and the number of
epochs set to 500. Two variants of yolov8, i.e., nano and small, were trained. The final mAP
values were approximately the same for both variants; therefore, yolov8n was chosen to be
the final model, as it constitutes a smaller number of parameters as compared to yolov8s.

Different hyperparameter combinations were used to train different YOLOv8n models.
The default hyperparameter values for YOLOv8n with image size 640, epochs 500, and
batch size 16 were proven to produce the best results. This included an initial learning
rate and a final learning rate both set to 0.01, a momentum of 0.937, and a weight decay of
0.0005. A warm-up phase of 3.0 epochs was implemented to stabilize the training. Other
critical parameters, such as box and class loss weights tuned to 7.5 and 0.5 respectively, were
used. For the rest of the YOLO specific parameters, hsv_h = 0.015, hsv_s = 0.7, hsv_v = 0.4,
degrees = 0.0, translate = 0.1, scale = 0.5, shear = 0.0, perspective = 0.0, flipud = 0.0, fliplr = 0.5,
mosaic = 1.0, mixup = 0.0, copy_paste = 0.0 were taken. The albumentations library is also
integrated in YOLOv8 by Ultralytics, applying occasional blur, grayscale conversion, and
contrast limited adaptive histogram equalization to augment the dataset. The optimizer
employed is stochastic gradient descent with a learning rate of 0.01 and momentum of 0.9.
Training graphs produced during the training of this final model are shown in Figure 3.
The graphs show that with the increasing number of epochs, different losses drop and mAp

Information 2024, 15, 476 12 of 19

values increase, indicating an increase in accuracies. The results produced by this model
are explained in Section 4.

Figure 3. Graphs produced during training of YOLOv8.

Keeping learning rate and optimization the same, but changing YOLOv8 parameters
(box = 0.1 cls = 0.4 hsv_h = 0.01 hsv_s = 0.8 hsv_v = 0.5 degrees = 10.0 translate = 0.2
scale = 0.7 shear = 0.1 perspective = 0.05 flipud = 0.05 fliplr = 1.0 mosaic = 1.0 mixup = 0.3
copy_paste = 0.2) with image size set to 416, drastically dropped the accuracies(mAp).
Whereas keeping YOLOv8 parameters same but changing learning rate and optimization
values (lr0 = 0.005 lrf = 0.02 momentum = 0.95 weight_decay = 0.0001 warmup_epochs = 1.0
warmup_momentum = 0.9 warmup_bias_lr = 0.2) with image size set to 416, produced good
results, but they were still low as compared to the results obtained by default parameters.
Therefore, default hyperparameters were selected as final parameters, and later they were
used to train YOLOv5 as well for comparison purposes.

Similar was the case with yolov5. It was cloned using ultralytics. A “data.yaml”
file exported in YOLOv5 format from roboflow was provided to the model for training.
YOLOv5n and YOLOv5s were trained for 500 epochs and an image size of 640 with default
parameters to produce approximately similar results; hence, YOLOv8n was chosen as the
final model. The graphs produced during training of YOLOv5 indicating different losses
are displayed in Figure 4. Results produced by this model are explained in Section 4.

The ssd-mobilenet-v2-fpnlite model can be implemented by cloning it through [30]
and applying it to the dataset exported in tfrecord format using tensorflow. The model
was trained twice. For the first experiment with 6000 steps and batch size 16, a momen-
tum optimizer with learning_rate_base: 0.01 and warmup_learning_rate: 0.0026666 with
1000 warmup_steps was used. It produced an mAP@0.5 of 62.71% and mAP@0.5:0.95 of
27.5%. Another model trained for 20,000 steps with batch size 16 used momentum optimizer
with learning_rate_base: 0.08 and warmup_learning_rate: 0.026666 with 1000 warmup_steps.
It produced an mAP@0.5 of 77.09% and mAP@0.5:0.95 of 39.61%. Results for this second
model have been presented in detail in Section 4. The loss graphs produced during the
training of this model are displayed in Figure 5. The graph shows that with the increasing
number of steps, the classification loss and localization loss decrease, finally contributing
towards decreasing the overall loss.

Information 2024, 15, 476 13 of 19

Figure 4. Graphs produced during training of YOLOv5.

Figure 5. Loss graphs produced during training of the ssdmobilenet-fpnlite.

Information 2024, 15, 476 14 of 19

Recently, YOLOv10 was released and subsequently we trained it. We used the final
hyperparameter values selected for YOLOv8 and YOLOv5 to enable a direct comparison.
The trained model yielded a mAP50 of 82.6 and a mAP50-95 of 56.7 on the test dataset.

4. Results

Mean average precision, mostly written as mAp is used mainly as an evaluation
metric in this study. However, along with mAp, recall(R) and precision(P) have also been
displayed for YOLOv5 and YOLOv8.

Outcomes generated by MobileNetSSD indicate a comprehensive mean average preci-
sion (mAP) of up to 77.09% on the test set. Detailed results are presented in Table 5. It can
be seen from the table that mAp for contamination class is greatest, as the model learns
patterns for detecting it in the best manner. This is followed by baekra with 91.63% and
stain with 90.07%. Precision and recall values can also be viewed in the table. Precision
is highest for stain with a value of 0.671. Recall is highest for contamination with a value
of 1.0.

Table 5. Results for MobilenetSSD.

Classes mAP@0.5 mAP@0.5–0.95 Precision Recall

all 77.09% 39.61% 0.525 0.881

baekra 91.63% 61.82% 0.411 0.958

colorissues 56.85% 27.32% 0.429 0.714

contamination 92.43% 30.83% 0.515 1.000

cut 63.92% 34.35% 0.530 0.745

graystitch 70.18% 38.65% 0.424 0.875

selvet 74.57% 43.07% 0.432 0.879

stain 90.07% 41.20% 0.671 0.922

Table 6 provides details of results generated by YOLOv5 on training and test sets,
respectively. For training sets, the overall mAp is 83.3%. The individual class accuracy
shows remarkable results for contamination class with mAp of 99.5%, stain with mAp
92.2%, and cut with 87.3%. For the test set, the overall mAp is 84.5% with exceptional
results for contamination with mAp 99.5%, baekra and selvet with mAp 91.2%, and stain
with mAp 93.6%. The remaining values can be viewed in the table. It also lists precision
and recall values for all classes.

Table 6. Results for training and test datasets for YOLOv5.

Training Accuracies Test Accuracies

Classes mAP@0.5 mAP@0.5–0.95 Recall Precision mAP@0.5 mAP@0.5–0.95 Recall Precision

all 83.3% 51.1% 0.813 0.855 84.5% 52.5% 0.845 0.827

baekra 84.1% 59.2% 0.797 0.833 91.2% 58.6% 0.87 0.874

colorissues 65% 34.6% 0.7 0.8 72.2% 35.5% 0.798 0.677

contamination 99.5% 56.8% 1 0.992 99.5% 61.6% 1 0.968

cut 87.3% 55.4% 0.822 0.903 71.2% 46.9% 0.766 0.698

graystitch 74.2% 45.2% 0.667 0.746 72.9% 49.3% 0.667 0.778

selvet 81% 44.4% 0.793 0.801 91.2% 60.3% 0.867 0.893

stain 92.2% 62.4% 0.913 0.911 93.6% 55.2% 0.948 0.897

Information 2024, 15, 476 15 of 19

Table 7 provides details of results generated by YOLOv8 on training and test sets,
respectively. For training sets, the overall mAp is 83.8%. The individual class accuracy
shows remarkable results for contamination class with mAp of 99.5%, stain with mAp
91.3%, and baekra with 89%. For the test set, the overall mAp is 84.8% with exceptional
results for contamination with mAp 95.7%, baekra with mAp 94.5%, and stain with mAp
92.2%. The remaining values can be viewed in the table. It also lists precision and recall
values for all classes.

Table 7. Results for training and test datasets for YOLOv8.

Training Accuracies Test Accuracies

Classes mAP@0.5 mAP@0.5–0.95 Recall Precision mAP@0.5 mAP@0.5–0.95 Recall Precision

all 83.8% 55.9% 0.797 0.825 84.8% 57.5% 0.839 0.818

baekra 89% 68.4% 0.835 0.788 94.5% 72.5% 0.989 0.922

colorissues 68.2% 39.3 % 0.654 0.71 75.9% 39% 0.81 0.732

contamination 99.5% 61.4% 1 0.996 95.7% 63% 0.941 0.866

cut 84.5% 57.1% 0.81 0.892 70.2% 48.6% 0.696 0.671

graystitch 72% 52.3% 0.609 0.713 74.7% 55.4% 0.683 0.785

selvet 82% 50.3% 0.785 0.776 90.5% 65% 0.828 0.87

stain 91.3% 62.4% 0.883 0.902 92.2% 58.9% 0.928 0.879

Detection Speed

On 280 test data samples at shapes (32, 3, 640, 640), the detection speed for yolov8 was
around 11.5 ms per image. This includes 1.4 ms for preprocessing, 8.4 ms for inference, and
1.7 ms for postprocessing. For yolov5, it was around 15.9 ms, with 0.2 ms for pre-processing,
7.8 ms for inference, and 7.9 ms for postprocessing steps.

5. Discussion

To visualize the comparison of mAp values produced overall and for individual
classes, a column chart has been shown in Figure 6.

It can be seen that YOLOv8 produced better results with an overall mAP of 84.8%. If
we look into individual class mAP values, then results for ssd-mobilenet are low compared
to YOLO models. However, YOLOv5 and YOLOv8 produced approximately similar results,
with one exceeding the other in certain classes. For instance, in cases of contamination,
cut, selvet, and stains, YOLOv5 performed a certain percentage better than YOLOv8.
However, for baekra, color issues, and gray stitch, YOLOv8 outperformed YOLOv5 with
good percentages, producing the best results overall.

As for certain classes, YOLOv8 outperformed YOLOv5. While for others, YOLOv5
outperformed YOLOv8. Therefore, to improve accuracy, we tried using a class wise
based ensemble learning method. This technique improved accuracies for certain classes
like baekra, color issues, and contamination. However, for the other 4 classes, the mAp
dropped, dropping overall accuracy to 82%. This outcome highlights the complex nature
of ensemble methods, where performance gains in some areas may not always translate to
overall improvements.

Information 2024, 15, 476 16 of 19

Figure 6. Comparison of results produced by different models.

YOLOv10, though being latest produced mAp50 of 82.6 and mAp50–95 of 56.7 on the
test dataset. One of the reasons could be that the selected final hyperparameters may not be
optimal for this model in this specific use case. Therefore, to determine whether YOLOv10
outperforms YOLOv8 for this task, in the future, we can explore all the hyperparameter
combinations for YOLOv10 to ascertain whether they are optimal or if different settings
might yield better results.

Some of the predictions made by YOLOv8 on test images are shown in Figure 7. At
least one test sample for each class has been shown. It can be seen that defects have been
accurately detected, with bounding boxes covering the defect accurately and with good
confidence scores. The confidence score for the cut class in the shown test sample is very
high with a value of 0.90. Stains have also been accurately detected with a confidence value
of 0.87 for printed fabric and 0.80 for the plain fabric sample. The baekra defect has also
been detected with 0.86 confidence, followed by gray stitch with 0.85 and contamination
with 0.81. For color issues, the confidence score is low, with a value of 0.49.

Therefore, the latest state-of-the-art object detection model, i.e., YOLOv8, can detect
defects in plain and printed fabrics (with regular and irregular prints) simultaneously. As
we can see from the results, certain majorly occurring defects can be detected well. However,
the mAp for class “color issues” is quite low. To improve this, one of the approaches could
be to include more data samples for this particular class so that patterns for that class
are learned well. In addition, the current study encompasses a small number of broad
categories of defects commonly detected in the textile sector of Pakistan, and it solely
depends upon the data provided by a specific manufacturer. More variations can be added
to the dataset, which is useful for improvement.

Information 2024, 15, 476 17 of 19

Figure 7. Some results of YOLOv8 trained model on test images.

6. Conclusions and Future Work

Our approach involves training and testing an object detection model, YOLOv8, on
the Chenab Textile dataset. YOLO has been chosen as it is computationally faster, requires
fewer resources, and can be easily deployed in real time on low-resource hardware devices
for detecting defects. On samples provided for seven defect classes, including stains, cut,
contamination, baekra, gray stitch, color issues, and selvet, YOLOv8 produced a mAp of
about 84.8%. In comparison, YOLOv5 achieved 84.5% mAP, while MobilenetSSD FPNLite
attained mAP of 77.09% on the same dataset.

The subsequent pivotal phase in our work will focus on real-time testing of this
model in high-speed fabric production environments. To integrate this trained model
into existing manufacturing workflows, high-resolution cameras connected via high-speed
Ethernet cables will be installed above the rolling sheets, with bright LED lighting to
ensure optimal image quality. On the software side, the system will run on Ubuntu or
Windows with the deep learning framework PyTorch and Ultralytics installed to set up
the environment. Trained YOLOv8 model weights will be loaded and configured for real-
time inference. A database (e.g., MySQL or PostgreSQL) will also be required for storing
detection results. Additionally, a user interface can be developed using visualization
libraries like Matplotlib to display real-time detection results and defect data analysis,
ensuring the smooth operation of the system.

Information 2024, 15, 476 18 of 19

Author Contributions: Conceptualization, M.N., R.M., M.A., and A.A.; methodology, M.N., R.M.,
M.A., and A.A.; software, M.N., R.M., and A.A.; validation, M.N., R.M., and M.A.; investigation,
M.N., R.M., M.A., and A.A.; data curation, M.N., and R.M.; writing—original draft preparation, M.N.,
R.M., M.A., and A.A.; writing—review and editing, M.N., R.M., M.A., and A.A.; visualization, M.N.,
R.M., M.A., and A.A.; supervision, R.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data can be made available by requesting the authors through email.

Acknowledgments: The research work is conducted in the NUST-Coventry Internet of Things Lab
(NCIL) at NUST-SEECS, Islamabad, Pakistan. We thank Hashmat Malik, CEO of SPS (Software
Productivity Strategists, Rockville USA) for his unwavering support and invaluable assistance
throughout this research. The contributions of Malik and the entire SPS team, including their
provision of data and initial support, were paramount to the successful completion of this study.

Conflicts of Interest: Arshad Ali is employee of Software Productivity Strategists, Inc. (SPS) company.
The authors declare that they have no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CIoU Complete Intersection Over Union
dfl_loss Distribution Focal Loss
cls_loss Classification Loss
obj_loss Objectness Loss
box_loss Bounding Box Regression Loss
ms millisecond

References
1. Zhu, D.; Pan, R.; Gao, W.; Zhang, J. Yarn-dyed fabric defect detection based on autocorrelation function and GLCM. Autex Res. J.

2015, 15, 226–232. [CrossRef]
2. Mak, K.L.; Peng, P.; Yiu, K.F.C. Fabric defect detection using morphological filters. Image Vis. Comput. 2009, 27, 1585–1592.

[CrossRef]
3. Hu, G.; Wang, Q.; Zhang, G. Unsupervised defect detection in textiles based on Fourier analysis and wavelet shrinkage. Appl.

Opt. 2015, 54, 2963. [CrossRef] [PubMed]
4. Zhu, Q.; Wu, M.; Li, J.; Deng, D. Fabric defect detection via small scale over-complete basis set. Text. Res. J. 2014, 84, 1634–1649.

[CrossRef]
5. Jia, L.; Chen, C.; Liang, J.; Hou, Z. Fabric defect inspection based on lattice segmentation and Gabor filtering. Neurocomputing

2017, 238, 84–102. [CrossRef]
6. Cohen, F.S.; Fan, Z.; Attali, S. Automated inspection of textile fabrics using textural models. IEEE Trans. Pattern Anal. Mach. Intell.

1991, 13, 803–808. [CrossRef]
7. Liu, Z.; Cui, J.; Li, C.; Wei, M.; Yang, Y. Fabric defect detection based on lightweight neural network. In Proceedings of the Chinese

Conference on Pattern Recognition and Computer Vision (PRCV), Xi’an, China, 8–11 November 2019; pp. 528–539.
8. Hu, G.; Huang, J.; Wang, Q.; Li, J.; Xu, Z.; Huang, X. Unsupervised fabric defect detection based on a deep convolutional

generative adversarial network. Text. Res. J. 2020, 90, 247–270. [CrossRef]
9. Peng, Z.; Gong, X.; Lu, Z.; Xu, X.; Wei, B.; Prasad, M. A novel fabric defect detection network based on attention mechanism and

multi-task fusion. In Proceedings of the 2021 7th IEEE International Conference on Network Intelligence and Digital Content
(IC-NIDC), Beijing, China, 17–19 November 2021; pp. 484–488.

10. Chakraborty, S.; Moore, M.; Parrillo-Chapman, L. Automatic defect detection of print fabric using convolutional neural network.
arXiv 2021, arXiv:2101.00703.

11. Jing, J.; Ren, H. Defect detection of printed fabric based on RGBAAM and image pyramid. Autex Res. J. 2021, 21, 135–141.
[CrossRef]

12. Zhang, J.; Jing, J.; Lu, P.; Song, S. Improved MobileNetV2-SSDLite for automatic fabric defect detection system based on
cloud-edge computing. Measurement 2022, 201, 111665. [CrossRef]

13. Jia, Z.; Shi, Z.; Quan, Z.; Mei, S. Fabric defect detection based on transfer learning and improved Faster R-CNN. J. Eng. Fibers Fabr.
2022, 17, 15589250221086647. [CrossRef]

14. Sabeenian, R.S.; Paul, E.; Prakash, C. Fabric defect detection and classification using modified VGG network. J. Text. Inst. 2023,
114, 1032–1040. [CrossRef]

http://doi.org/10.1515/aut-2015-0001
http://dx.doi.org/10.1016/j.imavis.2009.03.007
http://dx.doi.org/10.1364/AO.54.002963
http://www.ncbi.nlm.nih.gov/pubmed/25967212
http://dx.doi.org/10.1177/0040517514525880
http://dx.doi.org/10.1016/j.neucom.2017.01.039
http://dx.doi.org/10.1109/34.85670
http://dx.doi.org/10.1177/0040517519862880
http://dx.doi.org/10.2478/aut-2020-0007
http://dx.doi.org/10.1016/j.measurement.2022.111665
http://dx.doi.org/10.1177/15589250221086647
http://dx.doi.org/10.1080/00405000.2022.2105112

Information 2024, 15, 476 19 of 19

15. Liu, A.; Yang, E.; Wu, J.; Teng, Y.; Yu, L. Double sparse low-rank decomposition for irregular printed fabric defect detection.
Neurocomputing 2022, 482, 287–297. [CrossRef]

16. Zheng, Y.; Cui, L. Defect detection on new samples with siamese defect-aware attention network. Appl. Intell. 2023, 53, 4563–4578.
[CrossRef]

17. Li, L.; Li, Q.; Liu, Z.; Xue, L. Effective Fabric Defect Detection Model for High-Resolution Images. Appl. Sci. 2023, 13, 10500.
[CrossRef]

18. Thesis. Thesis Dataset Dataset. Roboflow Universe. 2023. Available online: https://universe.roboflow.com/thesis-wy7ne/thesis-
dataset-wfmza (accessed on 26 January 2024).

19. Istanbul Technical University. FabricDefectDet2 Dataset. Roboflow Universe. 2023. Available online: https://universe.roboflow.
com/istanbul-technical-university-hygeg/fabricdefectdet2 (accessed on 26 January 2024).

20. os. defect_1 Dataset. Roboflow Universe. 2022. Available online: https://universe.roboflow.com/os-xda7q/defect_1-8gw3m
(accessed on 26 January 2024).

21. Workgroup on Texture Analysis of DFG’s. TILDA Textile Texture Database. 1996. Available online: http://lmb.informatik.uni-
freiburg.de/resources/datasets/tilda.en.html (accessed on 16 March 2019).

22. Tianchi: Smart Diagnosis of Cloth Flaw Dataset. 2020. Available online: https://tianchi.aliyun.com/dataset/dataDetail?dataId=
79336 (accessed on 15 April 2021).

23. Tianchi: Smart Diagnosis of Tile Flaw Dataset. 2020. Available online: https://tianchi.aliyun.com/dataset/dataDetail?dataId=11
0088 (accessed on 15 April 2021).

24. AITEX Fabric Image Database. Available online: https://www.aitex.es/afid/ (accessed on 15 April 2021).
25. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017. arXiv:1704.04861.
26. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.
Available online: https://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_
2018_paper.html (accessed on 18 February 2024).

27. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788. Available
online: https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.
html (accessed on 18 February 2024).

28. Terven, J.; Córdova-Esparza, D.-M.; Romero-González, J.-A. A Comprehensive Review of YOLO Architectures in Computer:
From YOLOv1 to YOLOv8 and YOLO-NAS. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [CrossRef]

29. YOLOv8 by MMYOLO. Available online: https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov8 (accessed on
26 January 2024) .

30. TensorFlow. SSD MobileNet V2 FPNLite 320x320 COCO17. Available online: http://download.tensorflow.org/models/object_
detection/tf2/20200711/ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.tar.gz (accessed on 18 February 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.neucom.2021.11.078
http://dx.doi.org/10.1007/s10489-022-03595-0
http://dx.doi.org/10.3390/app131810500
https://universe.roboflow.com/thesis-wy7ne/thesis-dataset-wfmza
https://universe.roboflow.com/thesis-wy7ne/thesis-dataset-wfmza
https://universe.roboflow.com/istanbul-technical-university-hygeg/fabricdefectdet2
https://universe.roboflow.com/istanbul-technical-university-hygeg/fabricdefectdet2
https://universe.roboflow.com/os-xda7q/defect_1-8gw3m
http://lmb.informatik.uni-freiburg.de/resources/datasets/tilda.en.html
http://lmb.informatik.uni-freiburg.de/resources/datasets/tilda.en.html
https://tianchi.aliyun.com/dataset/dataDetail?dataId=79336
https://tianchi.aliyun.com/dataset/dataDetail?dataId=79336
https://tianchi.aliyun.com/dataset/dataDetail?dataId=110088
https://tianchi.aliyun.com/dataset/dataDetail?dataId=110088
https://www.aitex.es/afid/
https://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.html
http://dx.doi.org/10.3390/make5040083
https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov8
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.tar.gz

	Introduction
	Related Work
	Materials and Methods
	Data Collection and Preprocessing
	Methodology
	MobileNetV2 SSD FPN-Lite
	YOLOv5
	Yolov8

	Training

	Results
	Discussion
	Conclusions and Future Work
	References

