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Abstract: The bit error rate (BER) in relation to the signal-to-noise ratio (SNR) serves as a widely
recognized metric for assessing the performance of communication systems. The concept of SNR is
so integral that many existing studies presume its definition to be understood, often omitting the
specifics of its calculation in their simulations. Notably, the computation of SNR from the perspective
of the transmitter yields distinct behaviors and outcomes compared to that from the receiver’s
side, particularly when the channel encompasses more than mere noise. Typically, research papers
utilize the transmitter-side (or ensemble-average) SNR to benchmark the BER performance across
various methodologies. Conversely, the receiver-side (or short-term) SNR becomes pertinent when
prioritizing the receiver’s performance. In the context of simulating the long-term evolution (LTE)
downlink, applying both SNR calculation approaches reveals that the receiver-side SNR not only
produces a significantly lower BER compared to the transmitter-side SNR but also alters the relative
BER performance rankings among the channel models tested. It is deduced that while the transmitter-
side SNR is apt for broad performance comparisons, it falls short in thoroughly examining the BER
behavior of a receiver across varying SNR scenarios. Therefore, the transmitter-side SNR is useful
when comparing the performance of the simulated system with other studies. Conversely, if the
primary concern is the actual BER performance of the receiver, the receiver-side SNR could provide a
more accurate performance assessment.

Keywords: long-term evolution; signal-to-noise ratio; ergodic channel

1. Introduction

Nowadays, nearly all communication engineers depend on computer simulations
to assess the performance of digital communication systems. One of the fundamental
parameters used in these simulations is the signal-to-noise ratio (SNR) [1]. SNR, which is
the ratio of signal power to noise power, is so commonly understood that many technical
papers do not fully explain how this value is derived during simulations.

Consider the following simple example in Figure 1. It consists of a transmitter, a
channel model, a noise source, and a receiver. To calculate the SNR used in the experiments,
it is typically assumed that the mean effective gain of antennas [2] is known. For instance,
unity for a single-input single-output (SISO) system. During simulations of a SISO system,
even though the gain of the antenna is unity, the simulated channel also incurs a gain,
known as channel (power) gain [3]. Please refer to Section 2 for details. In the following,
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we will use a unity (average) channel gain in the discussion. Under this assumption, the
SNR is computed as the ratio of transmitted signal power to noise power (please refer to
Section 2 for more details).
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However, in a standard simulation procedure, the simulated channel is generated
multiple times, such as 50 times (trials) [4]. Each time, the generated channel exhibits
different behavior, resulting in varying channel gains from one trial to another (see Section 2
for details). Although the channel gain is no longer unity for each trial, the average channel
gain remains close to one, provided a sufficient number of trials are conducted. From the
perspective of communication theory, performing averaging over various realizations in
a random process is an ensemble average. In this case, the calculation of SNR remains
the ratio of transmitted signal power to noise power. This is the standard method for
computing SNR in almost all research papers.

As mentioned previously, the channel gain varies across different trials. In some trials,
the channel gain can significantly deviate from unity, such as 0.8 or 1.2. In this situation,
there are two possible ways to compute the SNR. The first method is the conventional one,
which uses the transmitted signal power as the denominator in the SNR calculation. This
method computes the SNR from the viewpoint of the transmitter side, essentially using the
ensemble average of received signal power as a basis. The second method uses the average
power of the received signal for that specific trial as the denominator, computing the SNR
from the receiver’s perspective over a short period.

Theoretically, if the channel is ergodic [5], then after averaging over a very long period,
both SNR values should be equal. Unfortunately, as we will demonstrate through simula-
tions, many orthogonal frequency-division multiplexing (OFDM)-based communication
systems [6] do not have sufficiently long codewords for the time average to approach the
ensemble average. In the following discussion, we will refer to the transmitter-side SNR as
the ensemble-average SNR and the receiver-side SNR as the short-term SNR. Please refer
to Section 2 for a complete description.

It seems reasonable to assume that using either ensemble-average SNR or short-term
SNR would not significantly alter the observed performance. Consequently, most existing
literature does not explicitly explain how the SNR is calculated. We initially shared this
belief. However, during our simulations on the bit error rate (BER) performance of long-
term evolution (LTE) downlink (DL) transmission [7–11] over three widely used channel
models—the Extended Pedestrian A model (EPA), Extended Vehicular A model (EVA), and
Extended Typical Urban model (ETU) [12], defined by the European Telecommunications
Standards Institute (ETSI) to represent short, medium, and long delay spread environ-
ments, respectively—we discovered some intriguing results. Our simulations revealed
that the performance ranking of the three channels would be reversed when switching
from ensemble-average SNR to short-term SNR. After an in-depth study, we found that the
method used to calculate the SNR value significantly affects the BER performance in the
mentioned ETSI channel models. Previously, a portion of the results was published in [4]. In
this paper, we aim to share our newest findings on this issue and provide recommendations
on the use of SNR in simulations.

The rest of the paper is organized as follows: Section 2 introduces the channel models
and the two different definitions of SNR, namely ensemble-average SNR and short-term
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SNR. Section 3 describes the LTE DL physical layer. Section 4 outlines the simulation
method that uses ensemble-average SNR as the basis for comparison and analyzes the
distributions of channel frequency responses. Section 5 details the simulation method
that uses short-term SNR as the basis for comparison and discusses the differences in BER
performances based on the two SNR calculation methods. Finally, Section 6 summarizes
the conclusions.

2. SNR Definition and Channel Models

Referring to Figure 1, the transmitter-side SNR for a particular channel realization is
defined as

SNR = 10log
Psignal

PN
(1)

where Psignal is the power of x[n] and PN is the power of w[n]. On the other hand, the
receiver-side SNR is defined as

SNR = 10log
Pr

PN
(2)

where Pr is the signal power of r[n]. Further details on the calculation of Psignal, Pr, and PN
will be provided later in this section.

As previously stated, (1) equals (2) if the channel power gain in Figure 1 is one. To gain
more insights into the channel gain, we need to describe the characteristics of a simulation
channel. The multipath fading phenomenon in a mobile wireless channel is typically
modeled as a tapped delay line [13,14] with a constant delay for each tap. Specifically, the
channel impulse response is modeled as:

h(t) =
L−1

∑
l=0

hlδ(t − τl) (3)

where L is the number of paths in the channel, and hl and τl are the complex gain and
the delay of path l, respectively. Each τl is a constant, and each hl is an outcome of a
complex-valued random variable hl . Since uncorrelated scattering among paths is usually
assumed in channel simulation, all hl are independent random variables. This model is
also implemented as the wireless channel in simulations.

As mentioned previously, ETSI defined three channel models—EPA, EVA, and ETU—
for LTE DL simulations. The power-delay profiles of these models are listed in Table 1 [12].
It is observed that the EPA model has a much shorter delay spread than the EVA and
ETU models. Additionally, the sum of average powers over all taps is not 0 dB. During
simulations, however, a normalization procedure is carried out to ensure that the expected
value of the channel power gain is one. Specifically, let Pl denote the power of the lth tap
listed in the table. The normalized power for each tap is given by

∼
pl =

Pl

∑L−1
l=0 Pl

(4)

To generate a channel, the complex gains hl , l = 0, 1, . . . , L − 1, are obtained as
outcomes from independent complex Gaussian random variables hl. Each of these complex
random variables has independent and identically distributed (i.i.d.) Gaussian random
variables in real and imaginary parts, with a mean of zero and a variance of

∼
pl/2. For

example,
∼
p0 ≈ 1/(1 + 0.794 + 0.631 + 0.501 + 0.158 + 0.019 + 0.08) = 0.314 for tap 1 in

the EPA channel. Note that the values in the denominator are converted from dB (power).
When applying (3) to the EPA model, τ0 = 0, τ1 = 30 ns, etc., and E[h0h∗

0 ] =
∼
p0 = 0.314

for tap 1, E[h1h∗
1 ] =

∼
p1 = 0.249 for tap 2, etc., where E[·] denotes the expectation operation

and * denotes a complex conjugation.
To conduct a simulated experiment, the trial is repeatedly carried out to produce

different sets of hl . In the following, we refer to a set of hl produced in one probability trial
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as one realization of the channel impulse response. In the simulations, unless otherwise
specified, we set the speed to 0.01 km/h so that the channel impulse response remains
almost unchanged within the duration of the transmitted signal.

Table 1. Channel profiles.

EPA Model EVA Model ETU Model

Tap l τl (ns) Pl (dB) τl (ns) Pl (dB) τl (ns) Pl (dB)

1 0 0.0 0 0.0 0 −1.0
2 30 −1.0 30 −1.5 50 −1.0
3 70 −2.0 150 −1.4 120 −1.0
4 90 −3.0 310 −3.6 200 0.0
5 110 −8.0 370 −0.6 230 0.0
6 190 −17.2 710 −9.1 500 0.0
7 410 −20.8 1090 −7.1 1600 −3.0
8 N/A N/A 1730 −12.0 2300 −5.0
9 N/A N/A 2510 −16.9 5000 −7.0

Referring to Figure 1, if the cyclic prefix (CP) is longer than the maximum delay of the
multipath channel, the received signal within an OFDM symbol can be expressed as:

y[m] = x[m]
⊗

h[m] + w[m] (5)

where
⊗

denotes the circular convolution, x[m] and h[m] are the sampled versions of the
transmitted OFDM signal and channel impulse response, respectively, and w[m] is the
complex-valued additive white Gaussian noise (AWGN) with mean zero and variance
N0/2. By applying discrete Fourier transformation (DFT) to y[m], the frequency-domain
representation of the received signal at OFDM symbol n and subcarrier k is given by

Y[n, k] = X[n, k]H[n, k] + W[n, k] (6)

where Y[n, k], X[n, k], H[n, k], and W[n, k] are transformed results of y[m], x[m], h[m], and
w[m], respectively. In this paper, we assume that perfect side information, such as channel
impulse response, signal power, and noise power, is available to the receiver.

The transmitted signal power in Figure 1 is calculated as

Psignal = lim
M→∞

1
2M + 1

M

∑
m=−M

|x[m]|2. (7)

For finite-length signals, the limiting process is omitted. The transmitter-side SNR can
then be computed as the ratio of the transmitted signal power Psignal to the noise power, as
shown in (1), assuming the channel gain is unity. However, since the mentioned channel
models are probabilistic, the channel power gain

L−1

∑
l=0

hlhl
∗ (8)

varies from one channel realization to another. Only by averaging over an infinite number
of channel realizations can the channel gain be normalized to unity, as per the procedure
in (4). In typical simulation scenarios, with a large number of trials (e.g., 50 trials), the
averaged channel power gain approaches one. Thus, the SNR is usually calculated under
the assumption of a unity channel gain [11,15,16]. It has been demonstrated that the
resulting experimental BER performance aligns with the analytical predictions well [15,16].
Since this SNR is calculated based on the ensemble average of the channel gain, it is
appropriately referred to as the ensemble-average SNR.
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It is also possible to use the individual channel gain of each realization to compute the
receiver-side SNR. First, we compute the signal power r[m] at the receiver side (referring to
Figure 1) as:

Pr =
1

|M| ∑
m∈M

|x[m]
⊗

h[m]|2 (9)

where M is the set of sample indexes in a codeword, and |M| is its cardinality. The SNR
is then computed as the ratio of Pr to the noise power, as shown in (2). Since this SNR is
calculated based on a specific channel realization, and typically the codewords are short,
we refer to it as short-term SNR.

It is important to note that in an experiment, if we aim to generate channel realizations
based on a given short-term SNR value and a fixed noise power (and thus a fixed Pr), hL−1
will depend on h0, h1,. . ., hL−2, which violates the assumption of uncorrelated scattering in
the channel model. Additionally, the theoretical BER analysis developed in [15,16] cannot
be directly applied in this case.

In terms of user experience, the short-term SNR is a more accurate indicator as it
determines the short-term BER at the user’s device. A technique known as effective
exponential SNR mapping (EESM) [17,18] has been proposed to convert the instantaneous
SNR values on subcarriers to an equivalent SNR in an AWGN environment, from which
the packet error rate can be derived. This technique can serve as a link-to-system level
interface for simulations [19]. The rationale behind using the EESM method, which employs
instantaneous SNR (similar to our short-term SNR), is that it provides a more realistic
performance indicator for the receiver.

Conceptually, if the fading process is ergodic, the long-term average of SNR converges
to the ensemble-average SNR. However, the codeword length for the LTE physical down-
link shared channel (PDSCH) is too short to capture the ergodic nature of the channel
models (see Section 3 for a description of LTE DL). Consequently, in simulations, we often
observe a significant difference between the ensemble-average SNR and the short-term SNR
calculated over a codeword, leading to a substantial disparity in the BER performances
based on the two different SNR definitions. Therefore, we examine the differences between
these two SNR definitions in greater detail in Sections 4 and 5.

3. LTE DL Physical Layer

The LTE system operates using 10 ms radio frames, with each frame containing
10 subframes of 1 ms duration [20]. Each subframe is divided into two equal-length slots,
with each slot comprising seven OFDM symbols, labeled symbol 0 to symbol 6, when a
normal CP is used. The time-frequency representation of a DL subframe is depicted in
Figure 2, where each small cell represents one subcarrier in one OFDM symbol period.
Pilots, indicated by green cells, are inserted in the first and third last OFDM symbols of
each slot with a frequency domain spacing of six subcarriers. There is no power boosting
in pilot subcarriers. The basic unit for resource allocation is the physical resource block
(PRB), which consists of 12 consecutive subcarriers in one slot. This paper considers an LTE
system with a 10 MHz bandwidth/50 PRBs, comprising 600 subcarriers (excluding DC).

In DL transmission, data are carried in the PDSCH in units of transport blocks. Each
transport block is first segmented into code blocks if its size exceeds 6144 bits. Each
code block is then encoded with a rate-1/3 symmetric turbo code, which is the parallel
concatenation of two identical 8-state (1, 15/13) constituent codes. Finally, the coded
sequence of each code block is processed by a rate-matching module, which adjusts the
total number of coded bits in a transport block to match the number of bits supported
by the assigned PRBs. In the following simulation experiments, a subframe, comprising
50 PRBs/600 subcarriers in both slots, is assigned to one transport block of length 1408 bits
(transmitted using one codeword). Note that the resources available to the PDSCH do
not include the pilots and the first three OFDM symbols in each subframe, as shown in
Figure 2, since these symbols are occupied by the control channel. Finally, the coded bits
are modulated using the QPSK scheme and then transmitted using OFDM with system
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parameters listed in Table 2. The resulting code rate is 0.11175, which is close to the lowest
rate supported by the LTE standard.
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Table 2. System parameters.

Parameter Value

Channel bandwidth 10 MHz

Carrier frequency 1.8 GHz

Subcarrier spacing 15 KHz

Sampling frequency 30.72 M

FFT size 2048

CP duration (NORMAL CP) 160 samples for symbol 0
144 samples for symbols 1–6

OFDM symbol duration 66.6 µs

TX/RX antenna SISO

Modulation scheme for PDSCH QPSK

Code rate 0.11175

To conduct the experiments, we use MATLAB to implement both the transmitter and
the receiver. A simple receiver diagram is shown in Figure 3. The incoming OFDM signal
contains a cyclic prefix (CP), which needs to be removed. Then, a fast Fourier transform
(FFT) is performed to obtain the subcarriers. To mitigate the impact of the wireless channel,
we use perfect channel estimation and compensation in the experiments. This is followed
by a resource element demapper, which constructs resource blocks. Next, a soft demapper
is used. In the experiments, QPSK modulation is employed, making the demapping process
straightforward. The subsequent step is derate matching, which includes debit selection
and pruning, bit separation, and subblock deinterleaving. The final component is a turbo
decoder, used for error correction decoding.
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4. Experiments with Ensemble-Average SNR

We now describe the procedure for performing simulations with a given ensemble-
average SNR value. Essentially, an experiment for a specified SNR value consists of at least
50 trials. In each trial, a new realization of the specified channel model is generated. The
noise power is calculated based on the average signal power in (7), the given SNR value,
and the assumption of unity channel gain. The reported BER is computed by averaging the
BER over all trials.

Following this procedure, we conducted an experiment with 10,000 trials, each cor-
responding to the duration of one DL frame. In the experiment, each value of |H[n, k]|,
for all n and k in all trials, is used as a realization of the magnitude of channel frequency
response to obtain the empirical probability density function (pdf) of |H[·, ·]|. Figure 4
shows the pdfs of the magnitude of the channel frequency response (i.e., |H[n, k]|), derived
from the 10,000 trials mentioned earlier, for the three studied channel models. Each pdf
plot is obtained from the contour of a histogram with a bin width of 0.01. Recall that perfect
side information is assumed to be available; therefore, no channel estimation is performed
in the experiments. For a more realistic evaluation, advanced channel estimation methods
could be utilized [21,22].

Information 2024, 15, x FOR PEER REVIEW 8 of 18 
 

 

where 𝐸௕  is the average energy of each coded bit. For example, if SNR = 0 dB, then 𝐸௕ 𝑁଴⁄ = ଶ଴ସ଼଺଴଴ ∙ ଵଶ = 1.71, where ଶ଴ସ଼଺଴଴  is the ratio of FFT size to active subcarriers. Therefore, 

BERQPSK, Rayleigh = ଵଶ ቆ1 − ට ଵ.଻ଵଵାଵ.଻ଵቇ = 0.10 . To be complete, the analytic results are also 

plotted in Figure 5. The high degree of agreement between theoretic and experimental 
results in Figures 4 and 5 confirms the correctness of the simulation program. Since |𝑯[𝑛, 𝑘]| has been proven to have a normalized Rayleigh distribution for all three channel 
models, the simulation BERs agree with the analytical BERs. 

Figures 4 and 5 illustrate that all three simulated channels exhibit the same probabil-
istic characteristics and demodulated BER, regardless of the channels’ delay profiles. Dif-
ferent results will be observed when applying the short-term SNR to repeat the same ex-
periment in Section 5. 

 
Figure 4. Theoretical and empirical pdfs of the magnitude of channel frequency response. 

 
Figure 5. Demodulated BERs using the ensemble-average SNR as a basis of comparison. 

Figure 4. Theoretical and empirical pdfs of the magnitude of channel frequency response.

From Figure 4, we observe that the three empirical pdfs are almost identical. Since
H[n, k] is the DFT of the sampled version of channel impulse response, H[n, k] is a linear
combination of path gains, hl, l = 0, 1, . . . , L − 1. Thus, it is straightforward to prove that
|H[n, k]| has a normalized Rayleigh distribution (with unity ensemble-average power gain)
for all three channel models, which is confirmed by the figure.
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Using the same experiment setup, we also obtained the BER performance after de-
modulation (referred to as the demodulated BER), and the results are plotted in Figure 5. It
is observed that all three channel models yield the same demodulated BER performance.
As the three models have the same statistical distribution for the magnitude of channel
frequency response, this result is predictable. It is known that the analytical BER of QPSK
modulation via a Rayleigh fading channel [23] is

BERQPSK, Rayleigh =
1
2
(1 −

√
Eb/N0

1 + Eb/N0
) (10)

where Eb is the average energy of each coded bit. For example, if SNR = 0 dB, then
Eb/N0 = 2048

600 · 1
2 = 1.71, where 2048

600 is the ratio of FFT size to active subcarriers. Therefore,

BERQPSK, Rayleigh = 1
2

(
1 −

√
1.71

1+1.71

)
= 0.10. To be complete, the analytic results are also

plotted in Figure 5. The high degree of agreement between theoretic and experimental
results in Figures 4 and 5 confirms the correctness of the simulation program. Since |H[n, k]|
has been proven to have a normalized Rayleigh distribution for all three channel models,
the simulation BERs agree with the analytical BERs.
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Figures 4 and 5 illustrate that all three simulated channels exhibit the same probabilistic
characteristics and demodulated BER, regardless of the channels’ delay profiles. Different
results will be observed when applying the short-term SNR to repeat the same experiment
in Section 5.

Using the MATLAB code that implements the receiver shown in Figure 3, we obtain
the BER performance after decoding (referred to as the decoded BER throughout this paper),
as presented in Figure 6. It is observed that the BERs for all three channels are different.
This outcome is counter-intuitive. Given that the three channel models produce identical
demodulated BER performance, one would expect similar decoded BER performances as
well (after six decoding iterations). However, Figure 6 shows significant variation among
the channels. Notably, the decoded BER for the EPA channel model is substantially higher
than those for the EVA and ETU models. Furthermore, if a particular channel model were
to result in a significantly higher decoded BER, one would expect it to be the ETU model,
due to its longer delay spread compared to the CP, which leads to inter-symbol interference
(ISI). It is worth mentioning that our previous research on Worldwide Interoperability for
Microwave Access (WiMAX) [15] also demonstrated that different channel models yield
similar decoded BER performances, within the bounds of experimental uncertainty.
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Upon conducting in-depth studies, we discovered that the disparity between the
demodulated and decoded BERs is caused by the collective distribution of |H[n, k]| across
channel realizations. To simplify the discussion, let H(i)[n, k] denote the realization of the
channel frequency response random process H[n, k] at the ith trial. By averaging the power
gains of all 2048 subcarriers in an OFDM symbol, we obtain

|H[n, ·]|2 =
1

2048

2047

∑
k=0

|H[n, k]|2. (11)

According to Parseval’s theorem [24]:

|H[n, ·]|2 =
L−1

∑
l=0

|hl|2 (12)

Since the magnitude of path gain |hl| is a Rayleigh random variable with parameter
σ2 =

∼
pl/2, the random variable Zl = |hl |2 is an exponential random variable with mean

∼
pl .

Thus, the moment generation function of |H[n, ·]|2 is given by

M(t) =
L−1

∏
l=0

1

1 − ∼
plt

(13)

From this, it follows that the mean and variance of |H[n, ·]|2 are

E[|H[n, ·]|2] =
L−1

∑
l=0

∼
pl = 1 (14)

and

Var[|H[n, ·]|2] =
L−1

∑
l=0

∼
pl

2
(15)

respectively. Recall that, following (4), we have
∼
p0 = 0.314 and

∼
p1 = 0.249 for the EPA

channel. Using (15), we have Var[|H[n, ·]|2] = 0.237. With further calculations, we obtain
variances approximately equal to 0.177 and 0.129 for the EVA and ETU channel models,
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respectively. According to (4) and (15), a channel with more evenly distributed power on

each tap has smaller Var[|H[n, ·]|2].
To validate our analysis, we plot the theoretical and empirical pdfs of |H[n, ·]|2 in

Figure 7 for the three channel models. The theoretical pdf of |H[n, ·]|2 is computed by
convolving pdfs of L exponential random variables Zl , l = 0, 1, . . . , L − 1. The empirical

pdf of |H[n, ·]|2 is obtained using

∣∣H(i)[n, ·]
∣∣2 =

1
K

K−1

∑
k=0

|H(i)[n, k]|2 (16)

in each trial i as a realization. In the figure, both K = 2048 and K = 600 are considered

for empirical pdf plots. In the K = 2048 case,
∣∣H(i)[n, ·]

∣∣2 in (16) is an average over all
subcarriers; in the K = 600 case, it is an average over the 600 subcarriers assigned to a
transport block. Note that the theoretical and empirical pdfs for 2048 subcarriers are very
close to each other, as predicted by (11) and (12).
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Figure 7 reveals that the EPA model exhibits the widest pdf shape around the mean,
while the ETU model has the narrowest shape, as corroborated by their variances. Although
we previously demonstrated that the pdfs of the magnitude of the channel frequency re-
sponse (and thus, the pdfs of subcarrier power gain) for all three channel models are nearly
identical (cf. Figure 4), Equation (12) indicates that in a given realization, such as H(i)[n, k],
the channel frequency responses of different subcarriers are correlated. Consequently, if
|H(i)[n, k0]|2 is small, it is highly probable that |H(i)[n, k1]|2 will also be small. As a result,
this realization is likely to have a smaller channel gain compared to other realizations.

The difference between the pdfs of |H[n, ·]|2 for the three channel models becomes
more pronounced when K = 600. Realizations with small channel gains exhibit low effec-
tive SNRs and, consequently, suffer from high decoded BERs. These realizations, therefore,
dominate the overall decoded BER performance in the experiment. This phenomenon is
more significant in the EPA model compared to the EVA and ETU models, as the EPA model

has a larger variance in |H[n, ·]|2. This larger variance results in more channel realizations
with very small channel gains (much less than one), as illustrated in Figure 7. This explains
the rationale behind the plots in Figure 6.
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In short, a channel with a larger variance, such as EPA in Figure 7, is more likely to
have a realization with a channel gain significantly less than one, or a much smaller Pr in
(2). Consequently, this channel realization would result in an extremely high decoded BER,
as illustrated in Figure 6.

To further illustrate this point, Figure 8 shows examples of |H[n, k]| against subcarriers
for the three channel models. It is evident from the figure that (sub)frame 1 is indeed
transmitted at much lower power than the other two in the EPA channel. Moreover,
in LTE DL transmission, each codeword must fit into a subframe, which is too short to
reflect the channel’s ergodic nature (if existing), as evidenced by the nonzero variance of

|H[n, ·]|2. Therefore, regardless of how large the ensemble-average SNR is, there is always
a nonnegligible probability that the system cannot achieve an arbitrarily small decoded
BER. Nevertheless, as the ETU channel has a larger fluctuation of |H[n, k]| over k due to
long delay spread, its average power has a higher probability of being close to one.
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This phenomenon has been previously observed from the perspective of capacity
in [25–27]. It was found that to achieve the Shannon (ergodic) capacity, the length of the
codebook must be sufficiently long for the fading channel to exhibit its ergodic nature. If a
short codebook is used instead, there is a nonnegligible probability that the actual trans-
mission rate, regardless of how small, will exceed the instantaneous mutual information.
This nonnegligible error probability corresponds to the event where some codewords are
transmitted at an SNR significantly lower than the ensemble-average SNR.

5. Experiments with Short-Term SNR

In Section 2, we delineated two distinct measurements of SNR: ensemble-average SNR
and short-term SNR. The ensemble-average SNR is predominantly utilized in simulations,
as it reflects the average performance across numerous channel realizations. However, in
practical scenarios, the instantaneous SNR over subcarriers significantly influences the BER
at the receiver. Consequently, this instantaneous SNR information, once converted, can be
transmitted to the base station to facilitate the adaptation of the modulation and coding
scheme (MCS) [17,18]. It is important to note that the short-term SNR discussed in this
paper is intrinsically linked to the instantaneous SNR over subcarriers.

We now elucidate the procedure for conducting simulations with a specified short-term
SNR value. Again, an experiment for a given SNR value encompasses a substantial number
of trials. In each trial, a new realization of the designated channel model is generated,
followed by the calculation of noise power based on the received signal power as described
in (9) and the given SNR value. The BER is then computed by averaging the BER across
all trials.

Using the aforementioned settings and experiments, we obtained the demodulated
BER in relation to short-term SNR, as shown in Figure 9. It is observed that the EPA model
yields a lower demodulated BER compared to the other two channel models. This is at-
tributed to the EPA model’s shorter delay spread, resulting in a smoother channel frequency
response. In the EPA model, the value |H(i)[n, k0]|2 in trial i consistently approximates the

average value
∣∣H(i)[n, ·]

∣∣2 of the same trial. Conversely, the EVA and ETU channel mod-

els occasionally produce significantly lower
∣∣∣H(i)[n, k0]

∣∣∣2 values compared to
∣∣H(i)[n, ·]

∣∣2,
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leading to an increased BER upon demodulation. To justify this claim, Figure 10 illustrates
the pdfs of the magnitude of the normalized channel frequency response

H′[n, k] =
H[n, k]√
|H[n, ·]|2

(17)

for the three channel models, corroborating our hypothesis. It is observed from Figure 10
that, when compared with the Rayleigh distribution, the pdf corresponding to the EPA chan-
nel has a smaller variation (or standard deviation). Therefore, there is a lower probability
of encountering significantly lower |H(i)[n, k0]|2 values.
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In terms of decoded BER (after six decoding iterations), a comparison between
Figures 6 and 11 reveals that the BER results derived from short-term SNR are signifi-
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cantly lower than those based on ensemble-average SNR. This discrepancy arises because,
in the short-term SNR scenario, no single codeword is transmitted through a channel
realization with substantially lower instantaneous (effective) SNR. Furthermore, given that
source data are transmitted at a very low code rate, the empirical distribution of |H(i)[n, k]|2

has only a minimal impact on the decoded BER, provided that
∣∣H(i)[n, ·]

∣∣2 remains constant.
Consequently, the decoded BER performances of the three channel models depicted in
Figure 11 are relatively similar. However, among these models, the BER performance
of the EPA model most closely approximates that of an AWGN channel due to its lower
variance, as illustrated in Figure 10. In contrast, the EPA channel exhibits significantly
worse BER performance in Figure 6. This disparity is solely due to the use of different
SNR calculations.
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In Figure 11, the convergence threshold of the same turbo code with a code rate of
1/9 for the AWGN channel is also given for comparison. The code rate of 1/9 closely
approximates the code rate of 0.11175 used in our experiments. The convergence threshold,
as predicted by the extrinsic information transfer (EXIT) chart, represents the minimum
SNR required for codewords of infinite length to achieve a very small BER after an infinite
number of decoding iterations [28]. Given that the LTE codewords in our experiments
have a finite length and the number of decoding iterations is limited to six, it is anticipated
that the SNR values corresponding to the waterfall region of the BER curve for the AWGN
channel in our experiment will be slightly higher than the convergence threshold, as
confirmed by the figure.

To further study the performance of mobile reception, we conducted experiments for
both types of SNR at low, medium, and high speeds (3 km/h, 42 km/h, and 180 km/h) with
Doppler shifts of 5 Hz, 70 Hz, and 300 Hz, respectively. Figures 12 and 13 illustrate the BER
results. It is evident that the ranking of BER performance in the two SNR definitions remains
unchanged across low, medium, and high car speeds. Additionally, Figure 12 once again
shows counter-intuitive results: the BER performance of the ETU channel at 180 km/h is
better than all three channels at lower car speeds. This phenomenon also signifies the need
for an alternative SNR definition. On the other hand, the BER performance based on the
short-term SNR, shown in Figure 13, behaves as expected: the ETU channel at 180 km/h
has the highest BER.
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6. Takeaways and Recommendations

In this paper, we examine the impact of different SNR calculation methods on the
simulated system performance for the EPA, EVA, and ETU channel models in the LTE
DL transmission. It is observed that an LTE subframe is insufficient to capture the long-
term ergodic properties (if existing) of these channel models. Specifically, the received
signal power averaged over a codeword can significantly differ from the power averaged
over an ensemble of channel realizations, a discrepancy that is particularly pronounced
in scenarios with small Doppler shifts. Consequently, when the ensemble-average SNR is
used in simulations, trials with low channel gain disproportionately influence the overall
decoded BER performance. This results in the EPA model, which has a shorter delay spread,
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exhibiting higher decoded BER than the EVA and ETU models, which have longer delay
spreads, an intuitively counter-intuitive outcome.

In addition to the conventional ensemble-average SNR, we also utilize the short-term
SNR to assess the BER performance of the receiver. Simulation results indicate that the
short-term SNR not only yields significantly lower decoded BER compared to the ensemble-
average SNR for the same channel model but also reverses the relative BER performance
rankings among the channel models, aligning with anticipated outcomes. These observa-
tions are consistent across low, medium, and high speeds. However, the application of the
short-term SNR has its limitations, including the violation of the uncorrelated scattering
property in the channel models and difficulties to perform theoretical BER analysis.

Although our experiments were based on LTE downlink simulations, we strongly
believe that similar scenarios would arise in other communication systems due to the
inherent nature of the SNR calculation. Considering these factors, we recommend using
the ensemble-average SNR when comparing the performance of the simulated system with
other studies, as this SNR definition is predominantly used in the literature. Conversely, if
the primary concern is the actual BER performance of the receiver, the short-term SNR could
provide a more accurate performance assessment and should therefore also be evaluated.
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