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Abstract: Today, video analytics are becoming extremely popular due to the increasing need for
extracting valuable information from videos available in public sharing services through camera-
driven streams in IoT environments. To avoid data communication overheads, a common practice is
to have computation close to the data source rather than Cloud offloading. Typically, video analytics
are organized as separate tasks, each with different resource requirements (e.g., computational-
vs. memory-intensive tasks). The serverless computing paradigm forms a promising approach for
mapping such types of applications, enabling fine-grained deployment and management in a per-
function, and per-device manner. However, there is a tradeoff between QoS adherence and resource
efficiency. Performance variability due to function co-location and prevalent resource heterogeneity
make maintaining QoS challenging. At the same time, resource efficiency is essential to avoid waste,
such as unnecessary power consumption and CPU reservation. In this paper, we present Darly,
a QoS-, interference- and heterogeneity-aware Deep Reinforcement Learning-based Scheduler for
serverless video analytics deployments on top of distributed Edge nodes. The proposed framework
incorporates a DRL agent that exploits performance counters to identify the levels of interference
and the degree of heterogeneity in the underlying Edge infrastructure. It combines this information
along with user-defined QoS requirements to improve resource allocations by deciding the placement,
migration, or horizontal scaling of serverless functions. We evaluate Darly on a typical Edge cluster
with a real-world workflow composed of commonly used serverless video analytics functions and
show that our approach achieves efficient scheduling of the deployed functions by satisfying multiple
QoS requirements for up to 91.6% (Profile-based) of the total requests under dynamic conditions.

Keywords: edge computing; serverless computing; deep reinforcement learning; IoT video processing;
resource management

1. Introduction

The continuous advancements in data transmission speeds and network bandwidth
are pivotal in enabling the Internet of Things (IoT). Increasingly, societies are leveraging IoT
to address everyday needs effectively, enabling intelligence at the network’s edge [1]. The
IoT paradigm facilitates computation closer to the data source, resulting in cost reduction,
real-time response times, and improved energy efficiency, while ensuring greater data pri-
vacy. Video analytics stands out as a significant IoT application, wherein various domains
utilize camera data to derive valuable insights. These insights can be used for event-driven
responses [2] or for aggregating knowledge to support long-term strategic planning [3].
From the infrastructure operator’s point of view, the optimization goal for such applications
varies depending on the domain and the criticality of their requirements. Applications
like video analytics, mobile augmented reality (MAR) [4], autonomous vehicles, and smart
manufacturing [5], require rapid incident response and thus prioritize low-latency and
high-throughput. Conversely, less critical, latency-tolerant applications may prioritize
lower costs over immediate responsiveness.
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On the other hand, serverless computing [6] is an emerging paradigm based on the
Function-as-a-Service (FaaS) model. In a serverless architecture, decomposed services,
i.e., functions, are deployed only when requested, such as in response to events. With
serverless being initially designed for Cloud, several works [7,8] leverage its primitives
to implement video analytics frameworks that exploit the massive scale of distributed
functions for embarrassingly parallel computation. However, serverless at the Edge of
the network has recently gained traction in both industry [9] and academia [10–13]. Addi-
tionally, UAV-assisted MEC Systems [14] leverage serverless computing due to its align-
ment with the intermittent activity and fine-grained parallelism of edge tasks, eliminat-
ing the need for long-term resource reservations, while automating task scheduling and
stragglers mitigation.

In particular, video analytics services, which are a major use case for serverless com-
puting, are characterized by various types of constraints such as frame rate (throughput),
latency, reliability (uptime), and max power usage (for heat mitigation). In a serverless
architecture, the infrastructure provider manages resource provisioning, thus assuming
responsibility for meeting these requirements, while achieving efficient resource utilization
for cost reduction. Focusing on latency constraints, one of the main challenges in achieving
these constraints is the high degree of performance variability [15]. This variability can
be attributed to several factors: (i) The heterogeneity of hardware resources [16]; (ii) Inter-
ference phenomena in multi-tenant edge environments [17] where resource sharing and
contention can cause the execution of one workload to interfere with another; (iii) Un-
awareness of workload characteristics both in terms of individual functions and overall
workflow [8].

These challenges are compounded by the current management strategies for serverless
workloads. Today, serverless workloads are managed either by open-source runtimes
such as OpenFaaS [18] and OpenWhisk [19], which leverage container orchestrators like
Kubernetes [20] for scheduling and deployment at the application level, or by managed
services such as AWS Lambda [21]. While these workload orchestrators offer transparent
management of virtual nodes and the overall infrastructure, the resource management
decisions made by such platforms typically follow a traditional one-off approach. This
approach, also employed by the native Kubernetes scheduler, means that workload place-
ment is performed only once at the beginning of each job, neglecting future system states
or changes in quality of service (QoS) targets that fail to be preserved. Nonetheless, pre-
cisely satisfying the strict requirements of latency-critical applications in the presence of
heterogeneity and interference remains a significant challenge.

A common practice for meeting the expected QoS is resource overprovisioning, which
often leads to significant resource waste [22], a situation that can be particularly problematic
for resource-constrained edge platforms. State-of-the-art serverless frameworks apply
function placement and reactive scale-out, relying mostly on virtual resources, i.e., vCPUs
and memory allocation percentage, neglecting the variable impact of interference and
heterogeneity on end-to-end latency [23–26]. In addition, they are unaware of application
composition to apply heuristics for reducing intolerable delays. Artificial intelligence (AI),
and machine learning (ML)-based approaches, which are attracting much attention lately
in computer systems [27], can automatically discover complex patterns and relationships,
which renders them a good fit for environments that experience a high degree of variability,
uncertainty, and dynamicity. More specifically, deep reinforcement learning (DRL) forms a
very effective solution in modeling environmental variability [24,28] and can be leveraged
for integrating multi-layered awareness with a scheduling algorithm to derive orchestration
decisions for online serverless workflow management.

In this paper, we present Darly, a QoS-precise, DRL-based scheduling framework for
managing video analytics pipelines in serverless infrastructures, which in principle can
also be applied by design to serverless workflows from other domains. Darly addresses the
critical problem of regulating end-to-end latency while minimizing resource overprovision-
ing on heterogeneous hardware platforms. It effectively considers resource interference
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and dynamically changing QoS requirements, accommodating the diverse SLAs defined by
different users (e.g., enterprise clients may have stricter latency requirements compared
to other users). The framework is designed to handle the complexities of serverless work-
flows, including latency propagation effects and varying function behaviors, which further
complicate scheduling decisions.

Specifically, Darly exploits low-level performance system monitoring events to identify
interference on the underlying machines and combines this information with user-defined
QoS requirements to regulate end-to-end latency of video analytics pipelines, through
horizontal scaling and migration of functions. Our solution can orchestrate the deployed
functions dynamically under various runtime conditions, i.e., resource stress fluctuations
due to interference and/or dynamically changing QoS targets.

The key contributions of Darly are the following:

(i) We characterize a serverless video analytics workflow by demonstrating the impact
of interference and heterogeneity on its performance. This characterization involves
analyzing how resource interference and the presence of heterogeneous hardware
configurations affect the latency of serverless video analytics tasks.

(ii) We have designed a DRL agent capable of addressing different QoS requirements
under varying levels of resource interference on a distributed, multi-tenant, hetero-
geneous cluster of virtual machines (VMs). The DRL agent dynamically adjusts the
placement, migration, and scaling of serverless functions to regulate the workflow’s
end-to-end latency, keeping it as close as possible to the user-defined QoS targets.
By doing so, the agent minimizes resource waste, ensuring efficient utilization of
computational resources while maintaining the desired performance levels.

(iii) We have integrated the designed DRL agent into four distinct scheduler implementa-
tions to assess the efficacy of different levels of dependence on the DRL model. These
implementations include varying degrees of reliance on the DRL agent’s decisions,
from full control over function placement and migration to partial integration with
existing scheduling mechanisms like Kubernetes and OpenFaaS. This comparative
analysis helps in understanding the benefits and tradeoffs of using a DRL-based
approach vs. traditional scheduling methods.

(iv) Through extensive experimental evaluation, we demonstrate that Darly significantly
improves the management of serverless video analytics workloads. Specifically, Darly
achieves up to 11 times fewer QoS violations compared to the Kubernetes scheduler.

The rest of the paper is organized as follows. In Section 2, we present a comprehensive
overview of related works and identify the key differentiation points. In Section 3, we
analyze our video analytics workflow and explore the impact of heterogeneity and interfer-
ence on its performance. Finally, in Section 4, we present our proposed framework design,
while in Section 5, we compare the Kubernetes scheduling with four different exploitation
approaches based on Darly.

2. Related Work

The problems of application placement and runtime resource management have
been extensively studied in the literature. In this section, we categorize and present
related works that focus on the following: (i) Performance enhancement of serverless
workflows; (ii) Scheduling techniques for application placement; (iii) Runtime resource
tuning frameworks for QoS-aware serverless computing. Darly was developed with the
consideration of all these aspects, while primarily contributing to the latter.

(i) The criticality of enhancing the performance of serverless workflows has been dis-
cussed in various research works [29–34], which succeed in addressing the user-
defined latency requirements for a specific workload by decreasing the function’s
intercommunication; this accounts for a major performance bottleneck for naturally
stateless serverless functions [35]. Faastlane [29] executes functions of a workflow
instance on separate threads of a process to minimize function interaction latency.
However, heterogeneity or resource interference that may cause unpredictable perfor-
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mance variability is not considered. Respectively, in Sonic [30], it is thoroughly studied
in which ways inter-function data exchange could be implemented in terms of storage
technologies to save execution time and costs. Also, Pocket [32] focuses on efficient
data sharing, but it does not significantly consider the application’s computational
profile, a factor that can introduce stochasticity and performance variability.

(ii) Much research has been conducted regarding the placement of applications [16,17,26,36,37].
In [17,36], the authors design an interference-aware scheduler, focusing on batch
workloads. Paragon [16] uses collaborative filtering to classify and co-locate applica-
tions targeting interference minimization. Cometes [26] targets energy consumption
reduction on Edge devices, following a static approach that does not consider the
dynamicity of the runtime state. Cirrus [37] improves the performance of ML training
serverless workflows (time-to-accuracy) by employing several techniques to extend
AWS Lambda offerings at infrastructure-level, i.e., data-prefetching, data-streaming,
as well as in application-level, i.e., training algorithms redesign. Therefore, while it
achieves significant performance improvement, both developer effort (for custom
algorithm design) and domain-specific tuning knobs make it difficult to be generalized
for serverless workflows.

(iii) In [23], reinforcement learning (RL) is employed for defining the concurrency level,
i.e., the per-function concurrent request allowance before auto-scaling out. The paper
focuses on homogeneous cloud servers and targets single-function applications, con-
sidering only horizontal scaling as a viable action. Additionally, it neglects interference
due to co-location. Also, in [24], a reinforcement learning solution is introduced to ad-
dress the cold start problem with function auto-scaling. However, their work neither
considers dynamically changing QoS requirements, nor accounts for resource hetero-
geneity and interference. DVFaaS [38] and SequenceClock [39] employ proportional–
derivative–integral (PID) control for dynamic resource allocation. DVFaaS utilizes
dynamic voltage and frequency scaling (DVFS), focusing on power minimization [40],
while SequenceClock employs CPU quota scaling. However, neither of these works
considers function migration, nor hardware resource heterogeneity.

This paper combines DRL-based dynamic scheduling and scaling of functions for
serverless video analytics workflows to meet end-to-end latency constraints. We differ-
entiate from the most closely related prior art (iii) in the following key points: (a) We
utilize low-level system metrics monitoring to capture resource interference, which was
not considered in [23]; (b) We consider workflow composition and node heterogeneity as
model parameters, a case not studied in [23,24,29]; (c) Compared to [30,34,36], we also
adapt the decisions both to fluctuating system-level resource pressure, as well as to dynamically
changing QoS requirements; (d) We extend beyond vertical scaling [39,40] and horizontal
scaling [23], considering a broader range of actions, including stateless service migration.
This is a key feature, necessary for straggler mitigation on edge environments.

3. Target Serverless Infrastructure and Video Analytics Pipeline Characterization

In this section, we describe the experimental infrastructure utilized for the needs of
this work, and afterward, we describe and characterize the video analytics pipeline in
order to explore its performance variation due to interference applied to the underlying
heterogeneous cluster.

3.1. Target Serverless Infrastructure

To emulate heterogeneous Edge infrastructures, all of our experiments have been
performed on a cluster of four VMs deployed on top of an on-premise, heterogeneous
setup, as outlined in Table 1. Each VM included in our setup is provisioned with diverse
virtual resource capacity, and is deployed on heterogeneous x86 machines that are typically
used both for serverless [41], and at the Edge [42]. This setup exhibits several flavors of
heterogeneity across the environment. For example, as depicted in Table 1, w01 is composed
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of half the CPU cores (but they are more powerful) compared to w03 (8 to 16), while w01
has at its disposal double the size of L3 cache memory.

Relative heterogeneity characterizes the rest of the VMs as well, allowing us to study
its impact from various angles, i.e., number of CPU cores, CPU generation, RAM size, and
L3 cache size. To monitor low-level performance counters, we utilize Intel’s Performance
Counter Monitoring tool (PCM) [43]. We perform OS-level pinning of specific cores of
the physical machines to the VMs to be able to obtain core-level system metrics from the
hardware counters. We focus on specific performance counters that are discussed in detail
in Section 4. All the individual functions of our video analytics workflow (see Section 3.1)
have been containerized utilizing the Docker technology. To simulate a cloud environment,
we utilize Kubernetes for container orchestration and OpenFaaS as the serverless runtime,
where we set the number of Queue-Worker replicas to four, a practice that allows for
concurrent asynchronous requests to our target workflow functions [23].

Table 1. Technical characteristics of heterogeneous nodes.

VM vCPUs Memory Underlying CPU (Intel®

Xeon®) L3(MB)

worker-01 (w01) 8 15.6 GB Gold 5218R @ 2.10 GHz 28
worker-02 (w02) 8 15.6 GB Gold 6138 @ 2.00 GHz 28
worker-03 (w03) 16 31.4 GB Silver 4210 @ 2.00 GHz 14
worker-04 (w04) 4 15.6 GB E5-2658A @ 2.20 GHz 30

3.2. Target Video Analytics Pipeline

Video analytics are applications that automatically recognize temporal and spatial
events in videos, which can be used to identify persons, cars, or other objects in a video
stream. Video analytics are shifting from conventional “if/then” statements to more
intelligent approaches, where machine learning techniques are applied to detect or classify
objects in the frames of the video [44]. For this paper, we develop a video analytics
workflow, similar to [45], that performs computer vision inference in human faces or
objects detected in a video. The workflow highly reflects real-world pipelines of serverless
functions operating on video streams, commonly used in the cloud [35,45–49].

We break down the video analytics into individual functions in a per-task manner,
i.e., each function of the pipeline performs a distinct job of the overall workflow. The
investigation of a decomposed version of the workflow rather than a monolithic one
boosts the benefits of partial and on-demand execution of a workload that outweighs
the intercommunication overhead among the functions. The pipeline by design contains
both parallel (i.e., functions that support horizontal scaling) and sequential parts (i.e.,
functions that support only migration) for generating a more concrete and general artifact.
Specifically, our pipeline is represented as a directed acyclic graph (DAG), as shown in
Figure 1, and consists of five separate components:

1. Framer: The Framer parses the input mp4 video file and extracts a user-defined number
of frames (n). All frames are sequentially extracted from the video; thus, this function
does not support horizontal scaling. After the extraction of the last frame, all collected
frames are saved to MinIO remote storage [50].

2. Face-detector: The Face-detector uses Haar feature-based cascade classifier [51] to
perform an object-detection task in the extracted frames, i.e., examine if a frame
contains a human face. If yes, it forwards the frame to the Face-analyzer, otherwise, it
forwards it to the Object-recognition function.

3. Face-analyzer: The Face-analyzer utilizes a pre-trained ResNet50 DNN model [52]
and performs emotion recognition on the faces identified by the Face-detector.

4. Object-recognition: Using the Mobilenet convolutional neural network (CNN) [53],
Object-recognition classifies objects detected in the given image into ImageNet [54] classes.



Information 2024, 15, 480 6 of 19

5. Uploader: Last, the Uploader aggregates the inference results of (3) and (4) and
uploads them to remote storage.

face exists

Uploader
Face-

detector

Framer

Face-
analyzer

Object
recognition

Remote Storage

frame

Video-analytics
workflow

yes

no

Figure 1. Video analytics workflow.

3.3. Performance Characterization of Video Analytics Pipeline

Next, we present a performance analysis of our video analytics pipeline under different
deployment scenarios. Specifically, we analyze the execution profile of our video pipeline,
as well as quantify the impact of hardware heterogeneity and resource interference on the
performance of our workflow. To evaluate performance, we invoke the workflow instance
and measure the time elapsed for the Framer and the aggregated time for the ML-models,
i.e., Face-detector, Face-analyzer, and Object-recognition, with one instance each. We deactivate
the scale-to-zero functionality of OpenFaaS reserving zero cold starts at all iterations.

Pipeline’s Execution Profile: Figure 2 shows the performance of our pipeline for a
different number of frames extracted (n) and resource contention scenarios when deployed
on w01. First, we examine the performance of the pipeline under isolation (0% load). We
see that for a lesser amount of extracted frames, the total execution latency of the pipeline
is dominated by the execution time of the Framer function, which accounts for almost 85%
of the overall time. However, as the number of frames increases, the execution time of the
pipeline becomes balanced between the Framer and the rest of the functions due to the
increased workload performed by the ML models.

Impact of interference: We further examine the sensitivity of the functions to resource
interference. To do so, we spawn different amounts of cpu micro-benchmarks from the
iBench suite [55], which have been validated to increase the computational load of the
underlying VM almost linearly with their intensity. We break down CPU interference
applied to w01 into four levels: 0%, 25%, 50%, and 75% of the total available cores, as
portrayed in Figure 2. The pipeline exhibits significant performance variability, non-linearly
impacted by CPU interference. This interference leads to performance degradation of up
to 57.6% for the 16-frames input in the Framer case and up to 47.2% for the 32-frames
in the ML-models functions case. This is the worst performance compared to isolated
execution. Moreover, the imposed degradation does not present a linear relationship with
the interference load, with CPU pressure levels below 50% imposing minimal performance
degradation to all the functions.

Impact of heterogeneity: Figure 3 shows the performance variation of the examined
functions with respect to resource heterogeneity. Resource heterogeneity in our setup
includes combinations of varying core numbers, memory sizes, and diverse CPU architec-
tures, as described in Table 1. Functions allocate all available VM’s CPU cores at runtime,
meaning that a VM, (e.g., w04) with fewer cores provides less multi-threading capacity
to the hosted function, which results in poorer latency. For the Framer function, we find
deltas with a maximum value of 23% and a minimum of 10% performance variation in
the 16-frames and 65-frames deployments, respectively. Moreover, for the ML-models
functions, the measured deltas have a maximum value of 34% and a minimum of 5% varia-
tion, respectively. Overall, we observe that the impact of resource heterogeneity becomes
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more perceptible as the number of frames increases, due to the accumulated computational
burden of less powerful hardware resources. Also, despite the variation in the available
resources (vCPUs, memory) per VM, w01 and w02 provide the overall best performance,
due to the lack of vertical scaling mechanisms within the functions.
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Figure 2. Impact of interference on serverless functions.
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4. Darly: A Dynamic DRL-Based Scheduler

In modern cloud environments, the design of a dynamic scheduler that is aware of
node heterogeneity, resource interference from third-party applications, and is resistant to
fluctuations caused by unpredictable user demand forms a very challenging and complex
problem. Based on the observations made in Section 3.3, we leverage DRL to design Darly, a
Dynamic DRL-based Scheduler for one of the most widely adopted open-source serverless
platforms, OpenFaaS. We implement a scheduling strategy that adequately interprets the
state of a heterogeneous cluster while being aware of unpredictable interference applied by
co-existing third-party workloads. Our scheduler receives a request with a user-defined QoS
and after scanning the cluster state, orchestrates the workflow functions to the appropriate
nodes to optimize resource utilization and end-to-end latency while serving the request
successfully. The proposed framework, shown in Figure 4, consists of four components:
a System Monitor which monitors and collects metrics representing the system’s state,
a DRL-based agent which reads the system metrics and calculates the next action to be
performed on the deployed functions regarding the specified QoS, a Runtime Engine that,
given the functions’ current placement, is responsible for orchestrating the execution of a
workflow instance and a function Mapper which maps a function to a node according to the
scheduler’s latest decision.
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Figure 4. Framework overview.

4.1. System Monitor

The System Monitor is responsible for gathering the required data for system-related
state representation, e.g., low-level performance hardware events. It aggregates system-,
socket-, and core-level information from distributed PCM [43] monitoring agents (MA)
through a high-performance time series database (InfluxDB) [56]; hence, the current cluster
state is formulated. For the rest of this paper, we employ the following five performance
counters: Instructions Per Cycle (IPC), which is an approximate indicator of the performance
of the processor, providing valuable insight into the efficiency of the deployed functions.
In prior works, IPC has been used as a metric of interest to depict performance-related
behaviors [17,57]. Memory Reads/Writes that depict the access patterns from/to the DRAM
memory, which is considered a major bottleneck in modern server systems. The amount of
memory reads and writes performed in a time period could be a highly accurate indicator of
a system’s load. L3 Cache Misses lead to increased memory reads/writes; thus, it is critically
representative of performance. C-States (C0, C1): For energy-saving reasons during the
CPU’s idle state, the CPU could be forced to enter a low-power mode. Each core has three
scaled idle states: C0, C1, and C6. C0 is the normal CPU operating mode, where the CPU is
100% active. The higher the C index is, the less activated the CPU is, which differentiates
the utilization ratio.

4.2. Runtime Engine

The purpose of the Runtime Engine (RE) is to initiate asynchronous function requests,
monitor the activity and application-level performance by polling logs from OpenFaaS
components, and manage functions’ intercommunication. We develop a custom RE that
extends OpenFaaS and supports both synchronous and asynchronous function invocations
through the Queue-Worker modality. The Queue-Worker is used by OpenFaaS for process-
ing asynchronous requests to enable parallel execution of functions [58]. In a functions’
topology agnostic fashion, upon request, RE administers the execution of a workflow in-
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stance and monitors the end-to-end latency. RE utilizes any number of available OpenFaaS
Queue-Workers transparently, with no need for extra configurations.

4.3. DRL-Based Agent

DRL is employed for pattern discovery in scenarios that are hard to model by typical
techniques. The problem we investigate falls within this spectrum, as it involves high
dimensionality by considering low-level system metrics, multiple QoS levels, interference
levels, and various constraints. We employ Deep Q-Network (DQN), to solve the described
problem. Following the RL narrative, we consider the presence of an agent inside an
environment with which it interacts at discrete time steps t. Given a state St ∈ S, where S is
the set of all possible states of the environment, the agent can choose an action At among a
discrete set of available actions A and force the transition of the environment to a new state
St+1 while receiving a reward r ∈ R ⊂ R. Our scheduler, i.e., the DRL-based agent, aims to
maximize the cumulative reward received by its interactions with the environment over
time. We consider as policy π, a function that maps an action to be taken by the agent to a
probability distribution of available actions at a given state.

π : A × S → [0, 1] (1)

4.3.1. Policy Optimization

For the purposes of our scheduler, we use Q-learning, a widely adopted value function-
based RL algorithm that learns the value of the agent being present in a state, and based
on this state, selects a specific action, Q(s, a). A Q-function (Q) is used for learning the
transition probabilities across all available actions and states and can be represented as
a table of states and actions, with each entry Q(s, a) representing the estimated reward
for choosing action a in state s. In the case of DRL, the Q-function is modeled by a deep
neural network (explained later). Essentially, the DRL-based agent in each decision-making
step has to cope with a discrete set of actions, A ⊂ N. This is often modeled in literature
as a Markov decision process [59] (MDP). In this work, we model our MDP with tuples
(S, A, R, T , γ) that represent states that can be generated in our environment. Rewards R
and transitions probabilities T are unknown; thus, for solving the problem, the agent has
to calculate T (s′|s, a) and R(s′|s, a) of taking action At = a in the state St = s and moving
to state St+1 = s′. The objective is to discover an optimal policy π∗ that maximizes the
expected return G(t) of rewards over time. G(t) is defined as the sum of weighted rewards
received within a time period T:

G(t) =
T

∑
τ=0

γτrτ , γ ∈ [0, 1], (2)

where rτ ∽ R(s′|s, a) is the reward at time step t for taking action a and making a transition
to state s’ and γ is a weighted discount factor often used for the convergence of the Bellman
Equation [60], as it gradually reduces the importance of future rewards [61].

Bellman proved that if an agent’s decisions include the highest Q-values, then its
policy is optimal and leads to the maximum G(t) as well [60]. Once the Q-values are
estimated, the optimal policy could be extracted: π∗ = argmaxπQπ(s, a), for all s ∈ S and
a ∈ A. However, since our target environment is complex, i.e., continuous state space,
dynamic programming algorithms do not scale with enough efficacy for large combinations
of Q-values, Q(s, a); thus, we approximate them by utilizing a DQN, Q(s, a, ϕ) ≃ Q∗(s, a),
where ϕ stands for the parameters learned by the neural network (NN).

4.3.2. State Encoding

Our state representation S : ⟨IPC, L3m, C0, C6, La⟩ is modeled in a continuous fashion
and includes (i) low-level metrics that contribute to the agent’s interpretation of the sys-
tem’s current conditions and (ii) end-to-end execution latency La of the target workflow as
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performed in the previous chain invocation that indicates the computing capacity of the
topology in the previous state St−1 when deciding to modify it or not for state St.

4.3.3. Action Set

Darly considers that actions are applied in a per-function basis. The set of available
actions A include the following: (i) function horizontal scaling by tuning the number of
function replicas; (ii) function migration to different nodes; (iii) inactivity, i.e., preserving
the function topology as is. Notably, we avoid any service disruption during migration by
implementing a rolling-update strategy. Additionally, any latency overhead induced due
to function migration or horizontal scaling is reflected in the reward, allowing the agent
to consider it in its learning process. Recent studies [62] have shown that in production-
level environments, 95% of the serverless applications have at most 10 functions, which
in practice eliminates any scalability issues of Darly’s per-function action space encoding.
After performing the selected action, the system transitions to a new state St, according to a
probability distribution function. After each step, the agent receives a reward R based on
the reward function that is described in Equation (3).

4.3.4. Rewarding Strategy

The incentive behind the construction of the reward function (Equation (3)) is the
regulation of the execution latency by striving not to violate the latency threshold Lt set by
the user (QoS), similarly to [24]. The rewarding function can also be while we attempt to
minimize both the number of utilized servers sp (maximum of N) and the replica count r
for each function (maximum of Rs), parameters that depict the cost of resource reservations.
We consider a server utilized if at least one function is placed there. Moreover, it is possible
to deploy more than one function replica to accelerate the workflow execution, a policy that
inevitably allocates more cluster resources, thus increasing billing costs [63]. The higher
(lesser, respectively) the resource reservation for successfully serving a user’s request
(La ≤ Lt), the poorer (richer, respectively) the reward offered to the agent. Also, k1, k2, and
k3 are parameters that can be tuned accordingly, based on the acceptable tradeoff between
violation penalties and resource usage, depending on the situation.

R =

{
N
sp + Rs

r + La
Lt

× k1, if La ≤ Lt

max(−k2,−k3 − La
Lt
), otherwise

(3)

The DRL-based agent forms the decision-making component of Darly (Figure 4). It
accounts for (i) the fluctuations in system-state, caused by resource interference through the
System Monitor, (ii) the actual end-to-end latency achieved through the Runtime Engine,
and (iii) the dynamically changing user-specified QoS requirements. Finally, the DRL-based
agent selects the required action, e.g., move f unctioni from nodej to nodej+1, and forwards
it to the Mapper for reconfiguring, if necessary, the function topology among the cluster.

4.4. Mapper

Mapper is the component that carries out the decision of the DRL-based agent. It is
aware of the current topology of the workflow, and conducts the required set of operations
by interacting with the OpenFaaS API. As we will discuss in Section 5, the Mapper compo-
nent is capable of implementing any kind of scheduling mechanism that effectuates the
DRL-based agent’s decision.

4.5. Technical Implementation

We utilize the OpenAI Gym’s API [64] and Stable-Baselines-3 framework [65], lever-
aging the Deep-Q-Network reinforcement learning algorithm [66]. The pseudocode of
Darly is described in Algorithm 1. The NN parameters of the DRL agent are tuned by
training enough agents that converge in various ways to the desired result. The state is a
35-dimensional vector while the action vector ranges from 4 to 15 dimensions, depending on
the scheduling policy deployed on each scenario, as described in Section 5. The employed



Information 2024, 15, 480 11 of 19

NN consists of three hidden layers with 256, 128, and 64 features each. We set the minibatch
size to 32 and the target update interval to 60 for the target network. We use Adam as our
optimizer, with a learning rate α of 0.0025. Also, for keeping the agent’s horizon short in
our approach, we tune the discount factor gamma to 0.99 since the problem setup is quite
stochastic for investing more in long-term rewards. Last, but not least, ReLu is employed
as the activation function, along with a replay buffer of size 106 for simulating the agent’s
experience at a certain moment. Finally, we tune the reward hyper-parameters k1, k2, and
k3 of Equation (3) to 3, 6, and 4, respectively.

Algorithm 1 Darly Algorithm

1: Initialize replay memory D to capacity N
2: Initialize target update interval T
3: Initialize learning rate α
4: Initialize discount factor γ
5: Initialize exploration rate ϵ
6: Initialize action-value function Q with random weights
7: for episode = 1, M do
8: Initialize sequence s1 = x1 and pre-processed sequence ϕ1 = ϕ(s1)
9: for t = 1, T do

10: With probability ϵ select a random action at
otherwise select at = maxaQ∗(ϕ(st), a; θ)

11: Execute action at in emulator and observe reward rt and state st+1
12: Set st+1, a and pre-process ϕt+1 = ϕ(st+1)
13: Store transition (ϕt, at, rt, ϕt+1) in D
14: Sample random minibatch of transitions (ϕj, aj, rj, ϕj+1) from D
15: if ϕj+1 is terminal then
16: yj = rj
17: else
18: yj = rj + γ ∗ maxa′ Q(ϕj+1, a′; θ)
19: end if
20: end for
21: Perform a gradient descent step on (yj − Q(ϕj, aj; θ))2

22: end for
23: Return result

5. Results

Evaluation Criteria: We evaluate our proposed framework with respect to its ef-
ficiency to identify the appropriate set of actions (function migration and/or horizontal
scaling) to satisfy the pre-defined latency constraint while allocating the least amount of
cluster resources. Our desired metric of interest is the QoS quotient, which is the quotient of
the execution latency achieved divided by the target, user-specified latency requirement. A
quotient less than or equal to 1 implies a successful QoS serving, while a quotient greater
than 1 suggests a QoS violation. Furthermore, the closer to 1 a successful QoS serving
is, the more regulated the end-to-end execution latency is considered, i.e., the QoStarget is
achieved without over-allocating resources; thus, utilization optimization is fulfilled.

Experimental Conditions: We set two QoS levels, relying on the performance charac-
terization presented in Section 3.3, i.e., 35 and 26 s, which correspond to looser and stricter
constraints, respectively. Training on discrete levels of QoS is essential for exposing the
DRL-based agent to a wide enough spectrum of states to boost its ability to identify patterns
among (state, action) pairs. During the experiments, we dynamically change the underlying
interference on the cluster by randomly altering the number of cpu micro-benchmarks per
VM. Last, each pipeline invocation is set with a different amount of frames to be extracted
(n) from the video, a process that modifies the input data size and thus highly impacts the
workflow end-to-end latency.
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Examined Schedulers: We examine four different scheduling policies as part of the
Mapper component (Section 4.4) to determine the inter-relationship between the DRL
agent’s proposed actions and the employed scheduling mechanism. With this approach, we
aim to quantify the impact of (i) the scheduling granularity when migrating functions and
(ii) heterogeneity- and interference-awareness with our proposed framework. Specifically,
we developed four distinct schedulers with varying action spaces to assess the efficacy
of different levels of dependence on the DRL model. These include full dependence
(Fullmap-based), expert knowledge (Custom-based), zero dependence (Kubernetes-based), and
accumulated knowledge (Profile-based).

• Fullmap-based: Decides both the migration and the destination of a function (i.e., move
f unctioni from nodej to nodej+1), while having the freedom to relocate any function to
any node.

• Custom-based: Decides both the migration and the destination of the Framer and Face-
detector functions, but only the migration (if chosen to be performed) for the Face-
analyzer and Object-recognition functions since their destination node will always be
the least loaded node. In this way, we investigate whether giving the agent partial
or full freedom upon the landing node makes any difference to convergence speed
and quality.

• Kubernetes-based: While Kubernetes does not support migration, we consider a Kuber-
netes -based policy that decides the migration of a function (i.e., move f unctioni) and
afterward, the native Kubernetes scheduler is employed for determining the migrating
node based on its own scheduling policy. In this way, we examine the functionality
enhancement of the kube-scheduler that, by default, is unaware of the individual
performance characteristics of functions.

• Profile-based: Again, decides just the migration of a function but the destination node is
chosen by leveraging knowledge extracted from offline profiling that was performed
in Section 3.3, where each function’s performance is analyzed under various circum-
stances; therefore, we can make an accurate enough estimation of its latency before
deciding the landing node.

5.1. Comparative Evaluation of Schedulers during Training

First, we examine the ability of the DRL agent to learn the appropriate actions to
effectively adapt to dynamic interference conditions and QoS requirements during training.
For the first 300 training steps, we set a loose QoS value of 35 s, and for the other 200, a
stricter QoS of 26 s is set. We evaluate the four examined schedulers through three different
aspects: (a) QoS quotient; (b) Cumulative Reward; (c) QoS Violation Ratio. Figure 5 shows
the respective results.

QoS quotient: As depicted in Figure 5a, both the Profile-based and Custom-based
approaches demonstrate valuable stability in response to changes in resource stress levels
and the transition to a stricter QoS. They adapt relatively quickly while maintaining a value
close to 1, indicating precise adherence to QoS.

The stability of the Profile-based approach can be attributed to its use of historical data
from previous executions for action selection. In contrast, the Fullmap-based scheduler
shows similar but less stable behavior, and does not remain as close to 1. This is partly
due to its larger action space compared to the Custom-based approach, which has a reduced
action space by omitting some placement combinations, guided by observations from our
motivational analysis (Section 3.3). Last, the Kubernetes-based approach, even though it
seems to be expectantly adaptive at first, during the strict QoS period, it fails to adjust
its decisions to the occurring conditions. This is attributed to the best-fit heuristic that
Kubernetes scheduler uses, neglecting heterogeneity and interference.

Cumulative Reward: The reward achieved per scheduler reveals its effectiveness in
identifying a more efficient function topology in terms of resource utilization since our
proposed reward function is designed to maximize the reward with respect to resource
efficiency (Section 4.3). Figure 5b shows the received rewards per agent over time. Again, as



Information 2024, 15, 480 13 of 19

expected, the Profile-based approach is the most dominant, as it converges within 10 training
steps in any change of conditions and QoS. Hence, it achieves the goals formulated in the
Rewards function (Equation (3)). The Fullmap-based scheduler seems to secure a greater
amount of reward than the Custom-based, but the Custom-based approach presents a steeper
slope at the latest stages of training, which hints a better knowledge of the given task that
leads to better results in the future. Finally, the Kubernetes-based scheduler as highlighted
above because of its inability to adjust to the QoS change, achieved no convergence in
the stricter QoS level and thus failed to receive positive rewards in the second half of the
training period.
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Figure 5. Comparative evaluation of different schedulers during training of the DRL.

QoS Violation Ratio: Figure 5c shows the successful QoS servings and QoS violations
per scheduler. Fullmap-based and Custom-based prove that DRL has the ability to tackle the
dynamic scheduling problem since QoS successful servings outnumber the QoS violations.
The Profile-based agent serves most of the requests with great ease, sealing the ability of
DRL to collaborate with workload performance features, showing the criticality of a highly
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efficient scheduler. Last, but not least, the Kubernetes-based scheduler, as mentioned above,
seems to be the worst performer among all approaches.

5.2. Decision-Making Analysis of the DRL Agent

As shown previously, the final reward claimed by the DRL agent highly depends on
the integrated scheduling logic. So a question that arises is as follows: “Does the DRL agent
alter its decision based on the integrated scheduler?” To evaluate the “intelligence” of the DRL
for different schedulers, we freeze the parameters of the DQN and examine the action
space per scheduler during deployment. We explore different phases, where each one is
characterized by different interference and QoS levels. Figure 6 shows the respective results,
where the top figure reveals the interference pressure per VM and the middle and bottom
ones revealthe QoS Quotient and the actions made per scheduler, respectively. This figure
reveals three major insights: (i) The first phase is characterized by high diversity in the
action space, since none of the schedulers is able to satisfy the target QoS. (ii) In the second
phase, the Profile-based agent is the most capable of meeting the target QoS. Compared to
the rest of the schedulers that mostly migrate the Framer function, the Profile-based agent
satisfies the QoS by migrating the Face-Detector, even though the Framer accounts for the
greater part of the workflow’s latency (Section 3.3). (iii) Lastly, even in cases with minimal
interference (Phase 4) or with similar decision patterns with the Profile-based (Phase 5),
the Kubernetes-based agent is unable to satisfy the target QoS due to its unawareness both
regarding the interference of the underlying infrastructure and the functions’ performance
variability due to heterogeneity.
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Figure 6. Interference level, QoS Quotient, and decision-making of the DRL agent under different
scheduling policies.

Retraining Overhead: We note that the retraining overhead for any of the DRL-based
schedulers is also considered because of the need to broaden the knowledge repertoire of
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the agent for serving additional QoS levels. More precisely, a dedicated but sharp tuning
effort is required for this task. The user-defined QoS for a workflow request is one out of
the thirty-five features that form the input state vector. Thus, the agent, which has already
encoded performance tendencies and correlations for (state, action) pairs, needs relatively
little calibration for adding a new QoS level in the state vector.

Serving different workflows: Each scheduling logic integrated into all four scheduler
types presents a different approach to the granularity that characterizes the decision-making
contribution of RL in our problem. The Profile-based scheduler had the most efficient
convergence to the defined requests, but to obtain the offline knowledge for a different
workflow, one needs to profile the target application to be orchestrated offline, a constraint
that demands extra development effort. On the opposite side, the other schedulers do
not require extra work for serving different applications while their performance falls not
too far behind the Profile-based. Most notably, the Custom-based achieves up to 78.8%
compliance to system fluctuations (only 12.8% less than Profile-based) while featuring an
almost application-agnostic architecture.

5.3. DRL-Based vs. Native Kubernetes Scheduling

Lastly, we compare the four DRL-based schedulers with a straight-forward orchestra-
tion approach (typical in current deployments), where containers are orchestrated solely by
Kubernetes without any interaction with the DRL component in attempting to highlight
the need for a scheduling framework if serving user-constrained requests is the goal. We
deploy the video pipeline as separate containers sequentially with one replica per container,
and we run 500 iterations of the workflow with different QoS constraints and resource
interference. For the loose QoS constraint, Kubernetes manages to satisfy the target QoS
only 34% of the time, whereas for strict QoS, it fails to satisfy the constraint 100% of the
time. In contrast, the DRL achieves the target almost 95% of the time for loose and 75% for
strict QoS on average, respectively.

5.4. Darly’s Performance Overhead

Darly monitors low-level resource metrics, performs inference for decision-making,
and orchestrates the execution of a workflow instance, thus inevitably imposing an over-
head on the underlying system’s performance. Firstly, all framework components (i.e.,
System Monitor, DRL-based agent, Runtime Engine, Mapper) are deployed to the master
node of the cluster and hereby do not contribute any interference or resource contention
to the worker nodes, where the workflow computations are performed. For calculating
the execution overhead, we invoked the workflow for a fixed number of requests with
and without Darly and investigated the average time needed for producing the desired
output. Therefore, Darly’s overhead concerns solely the added latency for the end-to-end
execution, i.e., System Monitor’s delay for gathering PCM metrics from worker nodes,
DRL-based agent’s inference time for decision-making, and Mapper’s delay for performing
the action and their intercommunication costs. After 100 requests in both scenarios, we
observed an average performance overhead of 8.6% by Darly when workflow executions
were carried out in the same worker nodes at all times, with no third-party interference
applied to the cluster.

6. Benefits and Challenges of Integrating Darly into IoT/MEC Infrastructures

Notably, Darly was designed, trained, and evaluated on real hardware, ensuring that
both resource interference and noise were present during the evaluation experiments. It
was also deployed on widely used frameworks in the Cloud-Edge continuum, such as
Kubernetes for container orchestration, OpenFaaS for serverless function management,
and Docker for containerization. These frameworks facilitate interoperability across het-
erogeneous IoT/MEC infrastructures. Darly can potentially benefit MEC systems, e.g.,
UAC-assisted, by optimizing resource allocation in resource-limited environments, mit-
igating stragglers through task migration, and ensuring adherence to QoS requirements
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for diverse clients with varying SLAs. However, several considerations must be addressed
for successful deployment in real-world scenarios. The retraining and adaptation of the
DRL agent to specific environments, as well as challenges regarding scalability, such as
supporting many UAVs, need to be taken into account. Nonetheless, Darly’s potential
to enhance MEC system efficiency and performance makes it a promising addition to
real-world applications.

7. Conclusions

The management of latency-critical serverless workloads serving IoT applications at
the Edge can be significantly affected by resource interference and device heterogeneity.
Consequently, performance variability can undermine the QoS offered by infrastructure
providers. To address this challenge, we propose Darly, a DRL-based scheduling framework
designed for dynamic function scaling and scheduling of serverless video analytics. Our
solution employs an AI-driven solution, utilizing low-level system monitoring as part of the
RL state representation to capture interference phenomena. It adapts to resource pressure
fluctuations and considers hardware heterogeneity, achieving up to 91.6% adherence to
changing QoS targets, compared to just 34% with the native Kubernetes scheduler.
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