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Abstract: Post-operative early recurrence (ER) of hepatocellular carcinoma (HCC) is a major cause of
mortality. Predicting ER before treatment can guide treatment and follow-up protocols. Deep learning
frameworks, known for their superior performance, are widely used in medical imaging. However,
they face challenges due to limited annotated data. We propose a multi-task pre-training method
using self-supervised learning with medical images for predicting the ER of HCC. This method
involves two pretext tasks: phase shuffle, focusing on intra-image feature representation, and case
discrimination, focusing on inter-image feature representation. The effectiveness and generalization
of the proposed method are validated through two different experiments. In addition to predicting
early recurrence, we also apply the proposed method to the classification of focal liver lesions. Both
experiments show that the multi-task pre-training model outperforms existing pre-training (transfer
learning) methods with natural images, single-task self-supervised pre-training, and DINOv2.

Keywords: early recurrence (ER); hepatocellular carcinoma (HCC); multi-task pre-training; deep
neural network; self-supervised learning; phase shuffle prediction; multi-phase CT image

1. Introduction

Hepatocellular carcinoma (HCC) is a primary liver cancer with a high mortality rate.
It is a prevalent malignancy, particularly in regions such as Asia, Africa, and Southern
Europe, which have a high incidence of chronic hepatitis B and C virus infections [1,2]. The
accurate differentiation of focal liver lesions (FLLs) is a crucial task for the diagnosis of
liver cancers. On the other hand, as a main treatment option for HCC, surgical resection is
the most commonly used method [3,4]. Patients with stage 1 HCC who undergo surgical
treatment generally have the longest 5-year survival rate compared to other treatment
options. However, the recurrence rate of HCC can reach 70–80% after surgical resection,
leading to disease progression and reduced survival rates [5]. Despite advances in surgical
techniques and other curative therapies, postoperative recurrence of HCC (intrahepatic or
extrahepatic) remains a leading cause of patient mortality [6]. The peak time for hepatocel-
lular carcinoma (HCC) recurrence after resection is typically within the first year, which is
defined as “early recurrence” (ER) [7]. Time to recurrence is an independent survival factor
in patients with HCC. ER is associated with a worse prognosis and lower overall survival
(OS) rates compared to late recurrence [7,8]. Preoperative prediction of ER for patients with
liver cancer can help physicians to select appropriate treatment modalities and optimize
postoperative monitoring and surveillance. Therefore, alongside differentiating FLLs, early
recurrence prediction for patients with HCC before radical surgical resection is also crucial
for improving patient outcomes and survival rates.
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Medical imaging plays a crucial role in the standard care of patients with FLLs and
has evolved into a significant non-invasive technique for detecting and characterizing the
malignancy of HCC [9,10]. In 2012, Lambin introduced the concept of radiomics, which
uses machine learning techniques to extract numerous features from medical images to
analyze disease and prognosis [11]. Radiomics enables personalized medicine via non-
invasive tools, improving treatment and enabling patient-specific care [12,13]. Currently,
challenges such as the absence of standardization and adequate validation of radiomics
models are impeding the clinical implementation of radiomics-based technologies [14].
Furthermore, previous studies have relied on manually designed low- or mid-level image
features for feature extraction, which may not capture the full range of information relevant
to early recurrence. The manual tuning of these models can also introduce human bias.

In recent years, deep learning has been applied to the computer-aided diagnosis of
various cancers [15,16], including the differentiation (or classification) of FLLs [17–19] and
the prediction of ER in HCC [20,21]. Deep learning uses convolutional neural networks
(CNNs) that can directly perform feature extraction and feature analysis on image inputs.
Deep learning has an end-to-end model structure that can automatically extract relevant
features from images, eliminating human bias and surpassing manually defined feature
extraction to extract high-level semantic features. Although deep learning has demonstrated
superior performance compared to radiomics approaches in various areas, the data-hungry
nature of deep learning frameworks presents a significant challenge for medical image
analysis, mainly due to the limited availability of annotated data samples.

Wang et al. have demonstrated that pre-trained deep learning models using ImageNet
can significantly improve computer-aided diagnosis performance [19–21]. The enhance-
ments will be constrained by the domain gap between natural images and medical images.
Self-supervised learning has recently been proposed as a solution to address the domain gap
problem in pre-training using ImageNet. Instance discrimination [22] and MOCO [23] used
contrast learning to learn the difference between each instance to obtain a representation of
the similarity among instances. In preliminary studies of this work, we proposed two multi-
phase CT image-specific self-supervised pre-training methods for the classification of FLLs:
case discrimination [24] and phase shuffle prediction [25]. The case discrimination method
leverages the properties of 3D volumetric medical images for the classification of FLLs by
focusing on feature representation between different CT images. Phase shuffle prediction
involves shuffling the phase order of unannotated multi-phase CT images and predicting
the sequence. This method aims to enhance the classification of FLLs by concentrating on
the feature representation within the multi-phase CT images. The effectiveness of our two
multi-phase CT image-specific self-supervised pre-training methods (case discrimination
and phase shuffle prediction) has been demonstrated in the classification of FLLs, and the
results have been presented at two international conferences [24,25].

In this paper, we propose a multi-task pre-training framework by combining case
discrimination [24] and phase shuffle prediction [25] for future improvements in computer-
aided diagnosis performance. Multi-task pre-training aims to learn both feature representa-
tions within and between medical images, allowing for the extraction of comprehensive
information relevant to FLLs.

The main contributions are summarized below:

(1) We propose a simple but effective self-supervised learning method, which is called
Phase Shuffle Prediction. The proposed phase shuffle prediction focuses on feature
representation within multi-phase CT images.

(2) To further enhance the pre-training performance of deep learning, we propose a
novel self-supervised feature learning approach based on multi-tasking by combin-
ing the newly proposed phase shuffle prediction with our previously proposed case
discrimination [24], focusing on the feature representation of different CT images.
Through these two pretext tasks, it is possible to obtain a representation that encom-
passes information from both within and between images, allowing the extraction of
comprehensive information relevant to liver cancers.
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(3) The effectiveness of our proposed method is demonstrated not only in the classification
of FLLs, but also in the prediction of ER of HCC. To the best of our knowledge, this is
the first application of self-supervised learning for predicting the ER of HCC using
multi-phase CT imaging.

This paper involves methodological and experimental extensions and validations. We
validated the effectiveness of the proposed method not only in the prediction of ER in HCC,
but also in the classification of FLLs.

This paper is organized into four sections. Section 2 gives a brief review of related
work. The proposed approach is described in detail in Section 3. The experiments and
results are shown in Section 4. The last section includes our conclusions.

2. Related Work
2.1. Pre-Trained ImageNet Model

Transfer learning is a powerful technique for training a model with limited annotated
data for a specific task. It reuses a pre-trained model, which is pre-trained on ImageNet
datasets, for other image classification tasks. Typically, the network’s weights are updated
using the limited annotated target datasets available while retaining their original structure.
The shape of the Fully Connected (FC) layer, which serves as the classifier, is modified
to suit the target task classes and updated from scratch using the target dataset, whereas
in some other fine-tuning approaches, the weights of deeper layers are updated using
the target dataset while keeping the weights of some shallower layers frozen. Wang et al.
demonstrated that the pre-trained ImageNet model can improve the prediction performance
of ER [20,21]. However, pre-trained ImageNet models have limited representation for
medical images due to the differences in domains, which may hinder their effectiveness for
downstream tasks.

2.2. Self-Supervised Learning

Self-supervised learning is a novel approach to unsupervised learning that involves
pre-training models using a target dataset with a predefined pretext task. This differs
from pre-trained ImageNet models that are pre-trained on a different domain dataset. The
pipeline of self-supervised learning has two steps:

(1) Pre-training a deep neural network model on a pretext task with an unannotated
target dataset.

(2) Fine-tuning the pre-trained model for the main task with an annotated target dataset.

The design of the pretext task is a critical factor in self-supervised learning. For this
task, several self-supervised learning methods with different pretext tasks have been pro-
posed, such as solving jigsaw puzzles [26], rotation prediction [27], and phase shuffle predic-
tion [25]. This kind of self-supervised learning can mine the internal features of each image.
In addition to this, several other self-supervised methods, such as case discrimination [24],
Moco [23], and SimCLR [28], based on contrastive learning, are also proposed. This kind of
self-supervised learning can capture apparent visual similarity among categories. In our
prior research, we have shown that the methods of phase shuffle prediction [25] and case
discrimination [24] were effective in capturing either intra-image or inter-image features. In
this paper, we propose a multi-phase CT image-specific self-supervised learning approach
that fuses two kinds of pretext tasks (phase shuffle prediction [25] and case discrimina-
tion [24]) in order to achieve a representation both within and between images. We called it
the multi-task pre-training model.

3. Methods
3.1. Overview of the Proposed Method

An overview of the proposed method is shown in Figure 1. It can be divided into two
steps. The first step is the pre-training step using a pre-defined pretext task (Figure 1a).
The second step is a fine-tuning step using the target task (i.e., ER prediction of HCC)
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(Figure 1b). The main network is a CNN encoder, which is used for high-level semantic
feature extraction. After pre-training (first step), the weights of the pre-trained model (CNN
encoder) are used as initialization parameters and are fine-tuned using the original multi-
phase CT images and their labels for the target task (i.e., the prediction of early recurrence)
(second step). We use ResNet18 [29] as the CNN encoder, which has been widely used to
perform image classification tasks in various previous works [30]. The network architecture
is shown in Figure 2. In the pre-training step (Figure 1a), simple fully connected layers
(FCs) are used as classifiers, while we use a Multi-layer Perceptron (MLP) as a classifier for
the target task (Figure 1b). In this research, we propose a multi-task (dual-task) pre-training
approach. Thus, there are two FCs in the pre-training step (Figure 1a). The encoder and
two FCs are trained in the pre-training step using the pretext tasks. In the fine-tuning
step (Figure 1b), the pre-trained encoder and the MLP ae trained using the target task
(fine-tuning).
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3.2. Multi-Task Pre-Training

In this paper, we propose a multi-phase CT image-specific self-supervised learning
approach that fuses two kinds of pretext tasks (phase shuffle prediction [25] and case
discrimination [24]) to achieve a representation both within and between images.

3.2.1. Phase Shuffle Prediction Task

The first pretext task is the phase shuffle prediction task [25], the goal of which is to
predict the order of the shuffled phase of multi-phase CT images. The aim is to learn the
representation within images (intra-image). The phase order of multi-phase CT images is
randomly shuffled as shown in Figure 1a. The original order is NC, ART, and PV. In the
case of Figure 1a, the phase order is shuffled to NC, PV, and ART. The possible number
of the phase order is K!, where K represents the number of phases (K = 3 in this research).
In the kind of self-supervised learning that captures inter-image features, the goal of the
pretext task is to predict the order of phases, which is a six-class classification problem (i.e.,
class 1: NC, ART, PV; class 2: NC, PV, ART; class 3: ART, NC, PV; class 4: ART, PV, NC;
class 5: PV, NC, ART; class 6: PV, ART, NC) [25].
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Figure 2. The architecture of the ResNet18 network. Different colors are used to mark the five stages
of convolutional layers in ResNet18.

These shuffled images of three different CT phases are treated as a color image and
are fed into the convolutional neural network (CNN) for feature extraction. The input size
is 3 × 224 × 224 and the feature size is 512 × 1. The classifier of FC1 is used to predict
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the order of the shuffled phases (i.e., six-class classification). The output layer of FC_1 has
6 neurons.

3.2.2. Case-Level Discrimination Task

The second pretext task is the case-level discrimination task [24], the goal of which is
to learn the difference between each case (3D volume) to obtain a representation between
cases (inter-image). In the traditional instance-level discrimination task [22], each image
(instance) has its own pseudo-label. Suppose we have M images; the pretext task involves
M-class classification. The model will be pre-trained using one-positive and M−1 negative
samples. On the other hand, medical images from CT or MRI scanners capture 3D volumes
of the body, which are usually reconstructed into a series of 2D images, each representing a
thin slice of the body. Typically, a case of one patient consists of multiple such slices but
with one single lesion. A tumor that spreads across multiple slices often shares similar
features such as curves and edges. To capture the similarities within a case, these slices
can be merged into the same pseudo-label using self-supervised learning [24]. Thus, the
pretext task is called case-level classification, which was proposed in our previous work [24].
Suppose the number of cases used for pre-training is M (M = 167 in this research); then, the
case-level discrimination task is an M-class classification. The classifier of FC_2 in Figure 1a
is used for the case-level discrimination task.

3.2.3. Loss Function for Pre-Training

We pre-train a deep neural network model on fusing these two kinds of self-supervised
methods together in order to explore a robust representation both within and between images.

The proposed fusion model incorporates a softmax layer in both the phase shuffle
prediction and case-level classification paths, with cross-entropy serving as the loss function.
Given the multi-task nature of the model, two losses are obtained, as depicted in Figure 1.
Accordingly, we formulate the loss function of the overall model as follows:

L = α × Lcase + (1 − α)× Lphase
= α × Cross Entropy(C(Ij)) + (1 − α)× Cross Entropy(P(Ij))

(1)

where Lcase is the loss from case discrimination and Lphase is the loss from phase shuffle
prediction. Ij represents the jth CT image input data. C(Ij) and P(Ij) are the outputs of the
two pathways.

α is a weight used to balance two tasks, which is a hyper-parameter. After conducting
the experiment, we observed that the training difficulty for case discrimination was slightly
higher compared to the phase shuffle prediction. In this study, the optimum value of α was
found to be 0.6.

3.3. Target Task (Fine-Tuning)

In the fine-tuning stage, non-linear MLP with one hidden layer (h-Dimension) is used
instead of an FC layer in the classifier, as shown in Figure 1b. After pre-training, the weights
of the pre-trained model (CNN encoder) are used as the initialization parameters and are
fine-tuned using original multi-phase CT images and their labels for the target task (i.e.,
prediction of ER). The MLP is also trained together with the pre-trained CNN encoder
using the target task in an end-to-end manner. Each sample has a label of ER or NER, which
are provided by doctors. Thus, the target task (i.e., the prediction of ER) is a two-class
classification problem. The MLP has an output layer with two neurons. Cross-entropy is
used as the loss function for the target task (fine-tuning).

4. Experiment

In order to validate the effectiveness of the proposed method, we first apply the
proposed method to the prediction of the ER of HCC (Task 1). Then, we also apply the
proposed method to the classification of focal liver lesions (FLLs) (Task 2) to validate the



Information 2024, 15, 493 7 of 14

generalization of the proposed method. To this end, our experiments are organized into
two parts.

4.1. Task 1: Prediction of Early Recurrence

In this section, we focused on a challenging task, predicting the ER of HCC, examining
whether the proposed method can work well for prediction tasks. We used ResNet18 as
our backbone network to validate the effectiveness of our proposed method for the task of
prediction.

4.1.1. Data

The medical images used in this study were collected from Run Run Shaw Hospital,
Zhejiang University, China. This retrospective study initially included 331 consecutive HCC
patients who underwent hepatectomy between 2012 and 2016. The patient selection process
followed the following criteria: (1) confirmation of postoperative HCC; (2) availability
of a contrast-enhanced CT scan taken within one month prior to surgery; (3) follow-up
for at least one year postoperatively; (4) no history of preoperative HCC treatment; and
(5) negative surgical margins indicating complete tumor resection. The peak time for HCC
recurrence was found to be 1 year after the resection, which was referred to as “early
recurrence” (ER) [7]. A total of 167 HCC patients (140 men and 27 women) were included
in this study. Out of the 167 included HCC patients, 65 patients (38.9%) were classified
as early recurrence (ER), while the remaining 102 patients (61.1%) did not experience any
recurrence, and were thus classified as non-early recurrence (NER). Therefore, the patients
were categorized into two groups: ER and NER.

The number of CT slices containing tumors varied across patients due to differences
in tumor sizes and locations. For our datasets, we selected the central slice (with the largest
tumor cross-section) as well as its adjacent slices. A total of 765 labeled slices were used in
our experiments, with slice thickness ranging from 5 to 7 mm and an in-plane resolution
of 0.57–0.59 mm. Each CT image had three phases (i.e., NC, ART, PV) with a pixel size
of 512 × 512. The region of interest (ROI) for each lesion was manually annotated by
experienced radiologists. For the experiments, we utilized 2D region of interest (ROI) slice
images, which were resized to 224 × 224. The three phase images were treated as a color
image with three channels. Thus, the input image size was 3 × 224 × 224.

Different stages of the tumor and liver may exhibit different characteristics, indicating
that multi-phase CT could provide more information. An example of a contrast-enhanced
CT scan of a patient before surgery is shown in Figure 3.
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We used 10-fold cross-validation as our evaluation method. The accuracy and the area
under the curve (AUC) for the receiver operating characteristics were calculated to evaluate
the prediction performance of the model. We randomly divided 167 patients into 10 groups;
each group contained 6 or 7 ERs and 10 or 11 NERs. During the 10-fold cross-validation,
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we selected one group as the test dataset and the remaining nine groups were used as the
training dataset. The mean value was calculated for the results obtained from the ten sets
of experiments. This mean value was used as the final score of the model. The number
of CT slices containing a tumor varied among patients due to differences in tumor size
and location. For our dataset, we selected the central slice (which has the largest tumor
cross-section) along with its adjacent slices. In total, 765 labeled slices were utilized in our
experiments. Table 1 summarizes the number of training images and test images (CT slice
images) for each experiment. The numbers in brackets indicate the number of cases (3D
CT volumes).

Table 1. Data distribution for 10-fold cross-validation.

Experiment E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Training 695 (150) 681 (150) 683 (150) 691 (150) 694 (150) 676 (150) 700 (150) 694 (151) 680 (151) 691 (151)
Testing 70 (17) 84 (17) 82 (17) 74 (17) 71 (17) 89 (17) 65 (17) 71 (16) 85 (16) 74 (16)
Total 765 (167) 765 (167) 765 (167) 765 (167) 765 (167) 765 (167) 765 (167) 765 (167) 765 (167) 765 (167)

4.1.2. Implementations

For the pre-training, we trained our network for 1000 epochs using a batch size of 256.
We use Adam as our optimizer with a learning rate of 0.05. For the training of the target
task, we fine-tune our network for 200 epochs using a batch size of 256. The learning rate
was also 0.05. The training setup is shown in Table 2.

Table 2. Computation environment.

GPU NVIDIA GeForce RTX 3090

CPU Intel® X® Platinum 8358P
OS Ubuntu 20.04

Deep learning Framework PyTorch2.0

4.1.3. Results

We conducted ablation experiments on our datasets for predicting the ER of HCC,
which demonstrated the effectiveness of each component in our proposed model. The
results of the ablation experiments are summarized in Table 3. To assess the predictive
performance of the model, we calculated both the accuracy and the AUC. ResNet18 without
pre-training was employed as the baseline (Model 1). When trained from scratch without
weight initialization using pre-trained models, the prediction accuracy was 67.44% ± 5.29,
with an AUC of 0.666 ± 0.06. Two self-supervised methods surpassed the performance
of training from scratch, reaffirming the effectiveness of self-supervised learning. We first
validated the effectiveness of case discrimination (Model 2), which led to an accuracy
improvement of around 4.5% and an AUC improvement of approximately 0.05 compared
to the baseline (Model 1). Subsequently, we evaluated the impact of phase shuffle (Model 3),
resulting in an accuracy improvement of roughly 3% and an AUC increase of about 0.03.
This indicates that self-supervised learning based on the two pretext tasks can effectively
learn features within and between images, resulting in better performance compared to
deep learning models trained from scratch. Finally, the proposed multi-tasking pre-training
model further improved the accuracy by approximately 7.2% and enhanced the AUC by
about 0.07 in comparison to the baseline (Model 1). The proposed multi-task pre-training
model also significantly surpassed the single pre-training models (either case discrimination
or phase shuffle prediction).



Information 2024, 15, 493 9 of 14

Table 3. Ablation study on predicting ER.

Model
Pre-Training

ACC
(%) AUCCase

Discrimination
Phase Shuffle

Prediction

Model 1 67.44% ± 5.29 0.666 ± 0.06
Model 2

√
71.98% ± 2.64 0.715 ± 0.03

Model 3
√

70.15% ± 3.71 0.694 ± 0.04
Proposed

√ √
74.65% ± 3.30 0.739 ± 0.04

Bold indicates the highest values.

We also compared the proposed method with other different existing pre-training
methods, including pre-training with ImageNet [21], self-supervised learning methods
with rotation prediction [27], phase shuffle prediction [25], instance modeling [22], case dis-
crimination [24], and DINOv2 [31]. Note that DINOv2 is a state-of-the-art self-supervision
method, which was proposed in 2023. The comparison results are summarized in Table 4.

Table 4. Comparison with other transfer learning methods for predicting early recurrence.

Models ER NER Average AUC

Fine-tuning (ImageNet) [21] 57.45% ± 11.35 80.45% ± 10.96 69.34% ± 3.43 0.695 ± 0.04

Self-supervised (rotation) [27] 60.15% ± 13.60 76.02% ± 9.29 68.53% ± 3.75 0.684 ± 0.05

Self-supervised
(phase shuffle prediction) [25] 55.22% ± 11.84 83.22% ± 13.98 70.15% ± 3.71 0.694 ± 0.04

Self-supervised
(instance-level) [22] 56.83% ± 18.53 79.68% ± 11.33 69.17% ± 4.02 0.683 ± 0.05

Self-supervised (case-level) [24] 59.88% ± 11.98 82.56% ± 10.01 71.98% ± 2.64 0.715 ± 0.03

Self-supervised (DINOv2) [31] 58.68% ± 11.73 83.31% ± 10.30 71.79% ± 2.86 0.711 ± 0.04

Self-supervised
multi-task pre-training model

(proposed)
65.64% ± 11.18 82.17% ± 9.89 74.65% ± 3.30 0.739 ± 0.04

Bold indicates the highest values.

As shown in Table 4, self-supervised learning methods using medical images achieved
better results than the pre-training model using ImageNet. For methods learning repre-
sentations within images, our proposed phase shuffle prediction method achieved better
results than the rotation prediction method. For the methods learning representations
between images, our proposed case-level discrimination achieved better results than the
instance-level discrimination. The proposed multi-task prediction model, which learns
both intra-image and inter-image representations, achieved superior results compared to
single-task models (i.e., phase shuffle prediction [25] and case-level discrimination [24]).
Compared with the currently proposed self-supervised method (i.e., DINOv2), our pro-
posed method still showed superior results. Compared to case-level discrimination [24],
which had the highest accuracy among the existing methods, the proposed method im-
proved both the accuracy and AUC by approximately 2.5%. The effectiveness of our
proposed method was demonstrated.

4.2. Task2: Classification of Focal Liver Lesions

We applied the proposed method to FLL classification to validate its generalization.
This section covers the dataset and implementation details, an ablation study to assess each
component’s effectiveness, and a comparative analysis with the baseline models.
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4.2.1. Data

The effectiveness of the proposed method was confirmed through the utilization of
our proprietary Multi-Phase CT dataset of Focal Liver Lesions (MPCT-FLLs) [24,25]. In our
experiments, we employed four distinct lesion types (Cyst, FNH, HCC, and HEM) that
were collected by Sir Run Run Shaw Hospital, Zhejiang University, spanning the years 2015
to 2017. In total, our dataset comprised 85 CT volumes, which included 489 slice images.
For each volume, a selection of slices centered on the lesion was made. The slice thickness
ranged from 5 to 7 mm, and the in-plane resolution was between 0.57 and 0.59 mm. The
size of the 2D slice image was 512 × 512. Each CT image consisted of three phases (i.e.,
NC, ART, and PV). Experienced radiologists annotated the region of interest (ROI) for each
lesion. The 2D ROI slice images were employed for the experiments, with each ROI resized
to 128 × 128. Treating the three-phase images as a color image with three channels, the
input image size was 3 × 128 × 128. Figure 4 illustrates the evolution patterns of FLLs as
observed in the multiphase CT scans (NC, ART, and PV).
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The dataset was partitioned into 5 groups for the purpose of conducting 5-fold cross-
validation. The data distribution is detailed in Table 5. For each fold, one group was
designated as the test dataset, while the remaining four groups were employed as the
training dataset.

Table 5. Data distribution for 5-fold cross-validation.

Type Cyst FNH HCC HEM Total

Group 1: case (slice) 5 (29) 4 (15) 4 (30) 4 (21) 17 (95)
Group 2: case (slice) 6 (31) 3 (17) 4 (29) 4 (33) 17 (110)
Group 3: case (slice) 6 (37) 3 (7) 4 (36) 4 (17) 17 (97)
Group 4: case (slice) 6 (24) 3 (17) 4 (35) 4 (19) 17 (95)
Group 5: case (slice) 7 (28) 3 (20) 3 (32) 4 (12) 17 (92)

Total: case (slice) 30 (149) 16 (76) 19 (162) 20 (102) 85 (489)

4.2.2. Implementations

For the pre-training phase, we conducted training for 1000 epochs with a batch size of
128. Stochastic Gradient Descent with momentum was employed as the optimizer, and the
learning rate was set to 0.01. Then, for the target task training, the network was fine-tuned
for 200 epochs with a batch size of 256, and the learning rate remained at 0.01. Details of
the development environment can be found in Table 2.
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4.2.3. Results

We conducted ablation experiments on our datasets for the classification of FLLs,
which demonstrated the effectiveness of each component in our proposed model. The
results of the ablation experiments are summarized in Table 6. To assess the predictive
performance of the model, we calculated both the accuracy and the AUC. ResNet18 without
pre-training was employed as the baseline (Model 1). When trained from scratch without
weight initialization using pre-trained models, the prediction accuracy was 80.84% ± 2.91,
with an AUC of 0.709 ± 0.07. Two self-supervised methods outperformed this baseline,
demonstrating their effectiveness. Case discrimination (Model 2) improved accuracy by
6.2% and the AUC by 0.05, while phase shuffle (Model 3) led to accuracy gains of 4% and an
AUC increase of 0.04. These results show that self-supervised learning with these pretext
tasks effectively captures features and outperforms models trained from scratch. The
multi-task pre-training model improved accuracy by 7.2% and the AUC by 0.08 compared
to the baseline (Model 1), significantly outperforming single pre-training models (case
discrimination or phase shuffle).

Table 6. Ablation study on classification of FLLs.

Model
Pre-Training

ACC
(%) AUCCase

Discrimination
Phase Shuffle

Prediction

Model 1 80.84% ± 2.91 0.709 ± 0.07
Model 2

√
87.04% ± 2.27 0.760 ± 0.05

Model 3
√

84.82% ± 1.99 0.746 ± 0.06
Proposed

√ √
88.06% ± 4.72 0.791 ± 0.04

Bold indicates the highest values.

We also compared the proposed method with other different existing pre-training
methods, including pre-training with ImageNet [21], self-supervised learning methods
with rotation prediction [27], phase shuffle prediction [25], instance modeling [22], and case
discrimination [24]. The comparison results are summarized in Table 7.

Table 7. Comparison with other transfer learning methods for classification of FLLs.

Models Cyst FNH HCC HEM Average AUC

Fine-tuning (ImageNet) [21] 95.56% ± 2.84 83.53% ± 13.62 80.99% ± 11.69 56.56 ± 32.61 81.26% ± 1.20 0.721 ± 0.06

Self-supervised (rotation) [27] 96.66% ± 2.89 88.44% ± 7.51 78.81% ± 13.81 60.30 ± 17.85 81.84% ± 1.72 0.713 ± 0.05

Self-supervised
(phase shuffle prediction) [25] 98.27% ± 1.42 86.22% ± 12.27 82.90% ± 5.84 63.72 ± 12.68 84.82% ± 1.99 0.746 ± 0.06

Self-supervised (instance-level) [22] 93.75% ± 1.56 87.46% ± 5.69 85.04% ± 5.58 69.05 ± 11.99 82.82% ± 3.98 0.759 ± 0.05

Self-supervised (case-level) [24] 90.29% ± 1.43 88.82% ± 7.21 88.74% ± 14.85 80.15 ± 16.28 87.04% ± 2.27 0.760 ± 0.05

Self-supervised multi-task
pre-training model (proposed) 97.21% ± 4.66 93.00% ± 7.80 90.55% ± 11.58 66.49 ± 8.21 88.06% ± 4.72 0.791 ± 0.04

Table 7 shows that self-supervised learning with medical images outperformed Ima-
geNet pre-training. Among the methods of learning representations within images, our
proposed phase shuffle prediction was more effective than rotation prediction. For represen-
tations between images, our proposed case-level discrimination surpassed instance-level
discrimination. The proposed multi-task prediction model, which learns both representa-
tions within and between images, achieved the best results. The classification accuracy was
88.06% ± 4.72 and the AUC was 0.791 ± 0.04. The effectiveness and generalization of our
proposed method are demonstrated.
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5. Conclusions

In this paper, we propose a multi-task prediction model for predicting the early
recurrence of hepatocellular carcinoma in multi-phase CT images before radical surgical
resection by combining two types of our previously proposed self-supervised methods:
phase shuffle prediction and case-level discrimination. The effectiveness and generalization
of the proposed method were validated through two different experiments (predicting early
recurrence and the classification of focal liver lesions). Both experiments demonstrated
that the multi-task pre-training model outperforms existing pre-training (transfer learning)
methods with natural images, single-task self-supervised pre-training, and DINOv2.

The strength of the proposed method is in its use of two multi-phase CT image-
specific tasks (phase shuffle prediction and case-level discrimination) for self-supervised
pre-training. Phase shuffle prediction is used to learn intra-image representations, and case-
level discrimination is used to learn inter-image representations. The proposed method
effectively learns both intra-image and inter-image feature representations simultaneously,
resulting in higher prediction performance. Note that our previous proposed phase shuffle
prediction and case-level discrimination can only learn intra-image or inter-image rep-
resentations separately. However, the proposed method has a limitation: it is specific
to multi-phase CT images and cannot be applied to non-multi-phase CT images, even
though multi-phase CT images are widely used for liver cancer diagnosis. Developing
self-supervised methods applicable to all medical images is part of our future work.
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