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Abstract: In the field of Information Retrieval, biomedical question answering is a specialized task
that focuses on answering questions related to medical and healthcare domains. The goal is to
provide accurate and relevant answers to the posed queries related to medical conditions, treatments,
procedures, medications, and other healthcare-related topics. Well-designed models should efficiently
retrieve relevant passages. Early retrieval models can quickly retrieve passages but often with low
precision. In contrast, recently developed Large Language Models can retrieve documents with
high precision but at a slower pace. To tackle this issue, we propose a two-stage retrieval approach
that initially utilizes BM25 for a preliminary search to identify potential candidate documents;
subsequently, a Large Language Model is fine-tuned to evaluate the relevance of query–document
pairs. Experimental results indicate that our approach achieves comparative performances on the
BioASQ and the TREC-COVID datasets.

Keywords: biomedical question answering; large language models; BM25

1. Introduction

Question Answering (QA) is the basis for advanced tools such as chatbots [1–4], search
engines [5], and virtual assistants [6–8]. As a downstream task, Question Answering suffers
from pipeline errors because it often depends on the quality of multiple upstream tasks,
such as co-reference resolution [9], anaphora resolution [4], named entity recognition [10],
Information Retrieval [11], and tokenization [12]. As a result, the QA systems are driving
substantial research focused on enhancing Natural Language Processing methods [13], QA
datasets [14,15], and Information Retrieval techniques [11,16,17]. These advancements have
enabled the field to progress from simple keyword matching to sophisticated contextual
and semantic retrieval systems [5]. However, most of these technologies are concentrated
in open-domain applications [18], and the specific challenges faced by the biomedical field
remain largely unresolved.

In the biomedical field, one of the primary challenges in addressing complex questions
is the precise formulation of medical queries. Not only does this type of query require
in-depth medical expertise and precise knowledge of terminology, but it also requires
exceptional accuracy in question formulation. Even slight variations in phrasing can lead
to vastly different answers. Furthermore, as medical questions typically require thorough
research and validation by medical experts, the process can be quite time-consuming,
with each question potentially taking up to four hours to answer [19]. This high complexity
and time requirement underscore the unique need for high-quality QA systems in the
biomedical domain, systems that must handle intricate and rigorous medical queries.

Meanwhile, developing high-quality QA systems for the biomedical field is not an easy
task. The foremost challenge is the extreme scarcity of high-quality datasets. This scarcity
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is primarily due to the necessity for deep professional knowledge in creating these datasets.
Additionally, the confidentiality and ethical constraints surrounding medical data limit
its scale and availability. The high costs associated with data collection and annotation by
domain experts further reduce the availability of these datasets. Consequently, techniques
commonly used in open-domain QA, which rely on abundant data, may not be applicable
in the biomedical context. These challenges collectively constitute the major obstacles in
developing biomedical QA systems.

In order to enhance system performance, researchers have employed various methods.
Traditional sparse retrievers like BM25 [20,21] rely on lexical matching, whereas dense
retrievers like DPR [22] utilize deep learning models to extract features from both questions
and documents, enabling a deeper semantic understanding. Sparse retrievers, while
cost-effective and practical, often fall short in semantic matching due to the vocabulary
mismatch problem [23,24]; dense retrievers, although superior in semantic matching [25,26],
require substantial data and computational resources during training and inference. Thus,
term-based sparse retrieval still has a place in document retrieval [27,28].

To address these limitations, we propose a BM25-LLMs biomedical question retrieval
system that combines the classical BM25 [20] algorithm with Large Language Models
(LLMs). First, BM25 [20] is used to rank the potentially relevant documents, and then
the query and candidate documents are re-ranked based on the knowledge of the LLMs.
The final step is to calculate and return the exact document similarity score. Our compar-
ative experiments indicate that the proposed BM25-LLMs system demonstrates superior
performance over several existing retrieval models. The system achieved competitive
results across the evaluated datasets, suggesting notable improvements in retrieval effec-
tiveness. The experiments carried out on the two datasets, the BioASQ [29] dataset and the
TREC-COVID [30] dataset search tasks, proved the effectiveness of our method.

2. Related Work

In this section, we begin by discussing the representatives of biomedical Question
Answering systems. Next, we detail the related work on text re-ranking. Following that,
we present the representative retrieval models.

2.1. Biomedical Question Answering Systems

This section explores several key biomedical Question Answering systems, highlight-
ing their functionalities and limitations within the domain.

2.1.1. MedQA: A Medical Quality Assurance System

Researchers [31] have developed the MedQA medical quality assurance system, com-
prising five key components: (1) question classification, (2) query generation, (3) document
retrieval, (4) answer extraction, and (5) text summarization. Although the MedQA system
provides concise summaries that may address medical inquiries, its current functionality is
constrained: it can solely respond to definitional queries.

2.1.2. HONQA: Quality Assurance via Certified Websites

Cruchet et al. [32] introduced HONQA, a biomedical quality assurance system de-
signed to retrieve phrases from HON-certified websites and present them as responses to
biomedical queries. However, its current functionality falls short in providing accurate
replies to question types such as yes/no inquiries and factoids.

2.1.3. EAGLi: Extracting Answers from MEDLINE Records

Additionally, Gobeill et al. [33] developed EAGLi, another biomedical QA system
aimed at extracting solutions to biological queries from MEDLINE records. However, its
scope is limited to definitional and factoid inquiries, thus constraining EAGLi’s ability to
effectively handle Wh-type queries.
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2.1.4. AskHERMES: Clinical QA with Concise Summaries

Cao et al. [34] introduced AskHERMES, a clinical QA system that provides concise
summaries in response to ad hoc clinical queries. However, the system is limited in its
response capabilities, as it only offers a single answer type in the form of multi-sentence
passages across all question types.

2.1.5. SemBT: Biomedical QA via Semantic Relations

Hristovski et al. [35] presented SemBT, a biomedical QA system that relies on semantic
relations extracted from biomedical literature.

2.2. Text Re-Ranking

In the context of machine learning, text ranking is predominantly achieved through
supervised learning to rank [36]. This approach involves designing a feature-based ranking
function, utilizing hand-crafted features as input, and training the ranking function using
relevance judgments. Despite its flexibility, the learning-to-rank method still depends on
human efforts in feature engineering.

With the introduction of pre-trained language models with context, researchers have
moved away from the manual specification of text features for similarity modeling, revolu-
tionizing the field. Notably, MonoBERT [37], which employs a cross-encoder architecture,
was the first to use pre-trained models for text ranking, demonstrating its effectiveness as a
re-ranking method and representing the next generation of interactive ranking methods.
In contrast to the extensive research on dense retrieval, studies on cross-encoders have
remained relatively stagnant, partly due to the efficiency and speed of retrieval models
in identifying relevant documents from large-scale texts; however, re-ranking models re-
main crucial as even the best retrieval model outputs can be enhanced through re-ranking,
with optimal results achieved on popular text ordering benchmark datasets when an
effective first-stage retrieval is combined with multi-stage re-ranking [38].

2.3. Retrieval Models

The early retrieval models were primarily vector space models such as TF-IDF [39],
probabilistic models such as BM25 [20], and statistic language models such as N-gram [40].
These models typically construct representations of queries and documents based on the
Bag of Words assumption, which treats each text as a set of words without considering
grammatical structure or word order.

Recently, Large Language Models that can capture substantial syntactic and semantic
information have led to the development of more sophisticated text retrieval models. These
LLMs, applied in the text retrieval area, can usually be classified as sparse retrieval and
dense retrieval. Sparse retrieval encompasses a range of techniques, including neural
weighting schemes and sparse representation learning. The fundamental approach to
neural weighting is to develop a neural model based on semantics, rather than predefined
heuristic algorithms, to predict the weight of terms. This can be achieved through tech-
niques such as DeepTR [41] and DeepCT [42]. In addition to predicting the weight of terms,
another method is to utilize a Seq2Seq model to enrich documents with additional terms.
This can be exemplified by DocTTTTTQuery [43] and SparTerm [44]. DeepImpact [45]
integrates both approaches. It employs Doc2Query to enrich documents and then utilizes a
pre-trained language model with context to estimate the importance of words in the docu-
ment. Sparse representation learning is centered on the construction of sparse vectors for
queries and documents, thereby capturing the semantics of each input text, such as UHD
BERT [46]. In contrast to sparse retrieval, dense retrieval transforms sparse representations
into dense representations, thereby enhancing the ability to capture semantics. Dense re-
trieval typically employs a dual-encoder architecture, which utilizes independent network
structures to learn the representations of queries and texts separately. The matching layer
is frequently implemented using a straightforward similarity function. To facilitate online
services, a neighborhood algorithm is typically employed to index and search the learned
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vector representations [47]. Based on the learned document representation, dense retrieval
can be classified into two categories: term-level representation learning and document-level
representation learning. Examples of term-level representation learning include DESM [48],
COIL [49], and ColBERT [25]. Examples of document-level representation learning include
DSSM [50], ARC-I [51], and DPR [22].

3. Methodology

This section presents the methodologies and techniques employed in the development
of a QA system, which is specifically designed for use in the biomedical field.

3.1. Two-Stage Retrieval

A two-stage re-ranking process is proposed, as illustrated in Figure 1.

query

BM25

Document

relevant 

document

Irrelevant 

document

query

LLM Sorted 

docuement

Figure 1. An overview of the proposed two-stage BM25-LLMs retrieval model. The first stage employs
BM25 for sparse search, and the second stage utilizes a Large Language Model for accurate re-ranking.

In the initial stage, the BM25 [20] algorithm is employed. BM25 is a probabilistic
retrieval model known for its efficiency and effectiveness in identifying documents that
match the query terms. The primary objective of this stage is to maximize the retrieval rate,
ensuring that the candidate document set contains as many relevant documents as possible.

In the second stage, we select results from the first-stage search results at various
intervals. These selected results are then expanded to the top 1000 documents to enhance
coverage. As depicted in Figure 2, the efficiency of the search process does not exhibit a
significant increase when the search range surpasses 100 documents. Therefore, we select
100 documents as the result of the first stage.

Figure 2. Evaluation metrics at various top-k values, illustrating the Mean Average Precision (MAP),
Recall, and Accuracy for varying sizes of the document retrieval set in this experiment. It demon-
strates that a top-100 retrieval set is the k-value beyond which increases in the retrieval set size do
not result in proportional improvements in accuracy.

Subsequently, the top 100 documents retrieved are processed by a Large Language
Model. This model generates a normalized probability of “Yes” based on its logits output
sequence. The resulting probability serves as the relevance score for each document.
Consequently, the candidate documents are reordered according to these relevance scores.
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We utilized the BAAI General Embedding (BGE) model [52,53], which utilizes the
Gemma model [54] as its initial model, and during the pre-training stage it performs two
pre-training tasks that are well-suited for global semantic representation: Embedding-
Based Auto-Encoding (EBAE) and Embedding-Based Auto-Regression (EBAR). EBAE is a
self-encoding task that employs text embeddings to predict the tokens of the input sentence
itself. The objective is to enable the text embeddings to capture the global semantics of
the entire input text through the self-encoding process. EBAR is a self-regression task that
employs text embeddings to predict the next sentence of the input text, which facilitates
the establishment of a relationship between the query and the document.

3.2. Prompt Strategy

A query will serve as the input to the system, which will employ the BM25 algorithm to
retrieve a set of documents. These documents will be paired with the query and presented
with the following prompt: “Given a query A and a passage B, indicate whether the passage
contains an answer to the query by selecting either ‘Yes’ or ‘No’”, as shown in Figure 3.

Subsequently, enter the query–document pair into the model in the form “[Prompt]
A:query_text <space> B:passage_text” and identify the score corresponding to the token
‘Yes’ in the model output. Thereafter, use the Sigmoid function to map the score to the [0, 1]
interval and reorder the documents according to this score.

Prompt

Given a query A and a passage B, tell me 
if the passage contains an answer to the 
query by saying either "Yes" or "No."

A: query B: passage

LLM Yes
Logits

yes_no

Figure 3. The prompt instructs the model to decide if the passage answers the query by responding
with ‘Yes’ or ‘No’. The input consists of a query (A) and a passage (B), which are processed by a Large
Language Model. The value of the token ‘Yes’ is found in the logits generated by the model for use.

3.3. Hard Negative Mining and Data Preparation

To enhance the dataset for fine-tuning Large Language Models (LLMs), we imple-
mented hard negative mining techniques during the data preparation process. This ap-
proach significantly improved the model’s capacity to distinguish between relevant and
irrelevant paragraphs, thereby enhancing the accuracy of paragraph re-ranking.

Our process comprises several key steps to effectively implement hard negative mining.
Initially, for each query we retrieve the top 200 documents based on their BM25 score. These
documents are then encoded using the bge-reranker [53], with the instruction “Generate
a representation of this sentence for use in retrieving related articles” appended to each
document. This encoding process yields a 768-dimensional vector for each document.
To facilitate efficient retrieval, we employ FAISS [55] to create an index and store these
vectors. Subsequently, utilizing this FAISS index, we retrieve the k-nearest neighbors
for each query. In this selection process, we consider the first retrieved document as a
positive sample, while the subsequent k-1 documents are treated as negative samples. This
approach allows us to create a diverse and challenging set of training examples, enhancing
the model’s ability to discriminate between relevant and irrelevant paragraphs in the
context of our re-ranking task.

As illustrated in Figure 4, each sentence is converted into an embedding vector, which
represents the semantic features of the sentence in a high-dimensional space. A similarity
of 1 indicates that the sentences are identical. A similarity of 0.3 signifies that the text
embeddings for “A group is playing basketball” and “A child is reading a book” are
markedly disparate, whereas a similarity of 0.8 indicates that the text embeddings for “A



Information 2024, 15, 494 6 of 19

group is playing basketball” and “A group is watching a basketball” are slightly similar,
although the meaning differs in the real content.

In-batch Samples

A group is playing basketball.

A child is reading a book

A group is watching a basketball

e1

𝑒𝑒2

𝑒𝑒3

𝑒𝑒1

𝑒𝑒2

𝑒𝑒3

Similarity

1.0

0.3

0.8

Figure 4. In-batch hard negative mining. The figure illustrates the process of in-batch hard negative
mining, where the negative samples are selected from the same batch as the positive samples. Solid
arrows represent positive sample pairs with high similarity (1.0), while dashed arrows indicate
negative sample pairs with lower similarity.

4. Datasets Analysis
4.1. BioASQ

BioASQ [29] is an EU-funded biomedical semantic indexing and Question Answering
challenge that provides accumulated sets of biomedical questions and gold standard answer
data. Questions within the BioASQ data are associated with scientific articles from PubMed
(https://pubmed.ncbi.nlm.nih.gov, accessed on 15 August 2024) and GoPubMed [56],
which are journals for publishing scientific research.

To investigate the distribution of query lengths in the BioASQ 11b dataset, we analyzed
the histogram of query lengths and the Q–Q plot of log-transformed frequencies. Figure 5
shows the histogram of query lengths with a fitted log-normal distribution. The observed
data generally follows the shape of the log-normal curve, with some deviations, particularly
at the tails. Figure 6 presents the Q–Q plot of log-transformed frequencies. While there
are some deviations from the theoretical line, especially at the extremes, the overall trend
suggests that the log-normal distribution provides a reasonable approximation for the
query length distribution. Table 1 presents examples from the BioASQ dataset.

Table 1. BioASQ dataset entry example.

Question Answer

1 What is CHARMS with respect to medi-
cal review of predictive modeling?

Checklist for critical Appraisal and data
extraction for systematic Reviews of pre-
dictive Modelling Studies (CHARMS)

2 What is AUROC in the context of predic-
tive modeling?

Area under the receiver operator charac-
teristics curve

3 Is casimersen effective for the treatment
of Duchenne muscular dystrophy? Yes

Following this idea [34], we extract the cleaned text segment from the PubMed articles.
This step involves the removal of tables, diagrams, boxes, and lists. The BioASQ Task11
B question–answer dataset, comprising approximately 4700 question–answer pairs for
training purposes, was utilized. Each question is accompanied by relevant documents,
segments, concepts, RDF triples, and exact and ideal answers. RDF, or Resource Description
Framework, is a standard model for data interchange on the Web, particularly useful for

https://pubmed.ncbi.nlm.nih.gov
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representing linked data. In the context of BioASQ, RDF triples provide a structured way to
represent biomedical knowledge, allowing for efficient querying and integration of complex
information. Each RDF triple consists of a subject, predicate, and object, which together
express a specific fact or relationship within the biomedical domain. Since some questions
in the dataset lack exact answers, and each question has an ideal answer, the ideal answer
was employed as the label data.

5 10 15 20 25 30
Query Length (words)
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Query Lengths with Fitted Log-normal Distribution
Fitted log-normal distribution
Observed data

Figure 5. Distribution of query lengths with fitted log-normal curve. Observed data (blue) shows
raw frequencies; fitted log-normal distribution (red) indicates approximate log-normal behavior with
modal length around 5 words.

Figure 6. Q–Q plot of log-transformed frequencies. Points roughly follow a straight line, suggesting
reasonable agreement with a normal distribution.

Consistent with preceding versions, this edition examines four distinct categories
of inquiries: ‘yes/no’, ‘factoid’, ‘list’, and ‘summary’ questions [29], as shown in Table 2:
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(1) Yes/no questions: questions that require either a ‘yes’ or ‘no’ answer. (2) Factoid
questions: questions that require a particular entity name, a number, or a similar short
expression as an answer. (3) List questions: questions that expect a list of entity names.
(4) Summary questions: questions that expect short summaries as the answer.

Table 2. Statistics of the BioASQ dataset.

Partition Yes/No Factoid List Summary Documents Snippets Total

Training 1271 1417 901 1130 9.01 12.03 4719

Test 1 24 19 12 20 2.48 3.28 75

Test 2 24 22 12 17 2.95 4.29 75

Test 3 24 26 18 22 2.66 3.77 90

Test 4 14 31 24 21 2.80 3.91 90

To build a corpus suitable for BioASQ, we utilized the PubMed annual baseline
document collections, which span from 2002 to 2023. This extensive corpus comprises titles
and abstracts of approximately 35 million documents, with the 2023 collection being the
most recent. In the process of constructing the corpus, in order to ensure the integrity of
the data, we identified and excluded documents that lacked a title, abstract, or both. This
was often due to licensing restrictions or language issues.

4.2. TREC-COVID

TREC-COVID [30] stands as a pivotal dataset tailored for Information Retrieval and
text mining, aimed at facilitating researchers’ exploration of scientific literature pertaining
to COVID-19. For the TREC-COVID dataset, we used the corpus CORD-19 [57], which
contains new publications and preprints on the topic of COVID-19, as well as relevant
historical studies on coronaviruses, including SARS and MERS. The distribution of query
lengths within the TREC-COVID dataset is presented in Figure 7.

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
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Fitted log-normal distribution
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Figure 7. This histogram illustrates the distribution of query lengths within the TREC-COVID dataset.

To illustrate the types of questions about COVID-19 and the nature of the correspond-
ing answers, Table 3 randomly presents three questions from the TREC-COVID dataset and
the corresponding answers.
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Table 3. TREC-COVID dataset entry example.

Question Answer

1 What is the origin of COVID-19?

Although primary genomic analysis has
revealed that severe acute respiratory
syndrome coronavirus (SARS CoV) is a
new type of coronavirus. . .

2 How does the coronavirus respond to
changes in the weather?

Abstract: In this study, we aimed at ana-
lyzing the associations between transmis-
sion of and deaths caused by SARS-CoV-
2 and meteorological variables. . .

3 Will SARS-CoV2 infected people develop
immunity? Is cross protection possible?

Of the seven coronaviruses associated
with disease in humans, SARS-CoV,
MERS-CoV and SARS-CoV-2 . . .

5. Experiments and Results

This section first presents the setup for our experiments and the evaluation metrics
used to assess the performance of the proposed method; next, the indexing strategy is
discussed; then, the detailed fine-tuning of the BM25 model is presented; and finally, the
experimental results of the proposed two-stage Retrieval with LLMs are detailed.

5.1. Setup

The experiments were carried out in PyTorch 2.0.1, CUDA 12.2, and cuDNN 9.1.0
software environments, and the hardware environment was an Intel i7-10700K CPU, Nvidia
RTX A5000 GPU.

To facilitate efficient and precise retrieval, we created sparse indexes for each year
Using Pyserini [58]. Pyserini [58] is a robust toolkit for replicable Information Retrieval
research, which facilitated the construction of an index for these documents. This indexing
approach significantly enhanced the search accuracy for documents relevant to specific an-
nual queries, thereby improving the overall precision of our Information Retrieval process.

5.2. Evaluation Metrics

We evaluate the performance of our model using standard Information Retrieval
metrics: Precision, Recall, and the F1 Score. To account for the ranking order of retrieved
documents, we also employ Average Precision (AP) and Mean Average Precision (MAP),
which are widely used to measure the effectiveness of ranked retrieval systems. While
Precision, Recall, and F1 Score provide a foundational evaluation, AP and MAP offer
insights into the order sensitivity of retrieval results.

AP considers the precision at each relevant item in the ranked list, and MAP, calculated
as the mean of AP values across all queries, quantifies the overall quality of the search
results. Specifically, MAP is defined as:

MAP =
1
Q

Q

∑
q=1

1
mq

mq

∑
k=1

Precision(Rqk) (1)

where Q is the total number of queries in the evaluation set, mq is the number of relevant
documents for query q, Precision(Rqk) is the precision at the rank of the k-th relevant
document for query q, and Rqk represents the set of ranked retrieval results from the top
result until you get to the k-th relevant document.

This formulation of MAP takes into account both the precision and the ranking of
relevant documents, providing a comprehensive measure of retrieval performance across
multiple queries.
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Additionally, for the BioASQ dataset, the evaluation also incorporates the Geometric
Mean Average Precision (GMAP). GMAP is particularly sensitive to the performance of
difficult queries, as it emphasizes the geometric mean of individual average precisions
across the queries, thus penalizing poor performance on any single query more heavily
than MAP.

GMAP = exp(
1
n
·

n

∑
i=1

ln(APi + ϵ)) (2)

where ϵ is a small constant to prevent the logarithm from being undefined.
Similarly, for the TREC-COVID dataset, the evaluation also incorporates the Normal-

ized Discounted Cumulative Gain (NDCG). NDCG is a robust evaluation metric widely
used to assess the performance of search engines and recommendation systems.

5.3. Indexing

In order to index the content, stop words were initially removed, and then the doc-
ument title and abstract were connected. This provided the BM25 algorithm with a more
comprehensive context, enabling it to more effectively identify potentially relevant documents.

During the indexing of the PubMed baseline 2023 corpus, when both PDF and PubMed
XML versions of documents are available, the text from the PubMed XML is preferred.
This preference is due to the PubMed XML text being more concise and structured. For the
CORD-19 corpus, only the text version is available. Consequently, the title and abstract are
concatenated and used directly as the index content.

5.4. Fine-Tuned BM25 Model

The BM25 algorithm is a well-established model in document retrieval. It operates as
a bag-of-words model, which evaluates the relevance of documents based on the frequency
and distribution of query terms within them.

Given a query, q, comprising terms, q1, q2, . . . , qn, the BM25 score of a document, D, is
calculated as follows:

score(D, Q) =
n

∑
i=1

IDF(qi) ·
f (qi, D) · (k1 + 1)

f (qi, D) + k1 ·
(

1 − b + b · |D|
avgdl

) (3)

In this equation, f (qi, D) represents the term frequency of the query term qi, within doc-
ument D. |D| denotes the length of document D in terms of words, while avgdl signifies
the average document length within the corpus of documents under consideration. IDF(qi)
denotes the inverse document frequency of the query term qi, calculated as:

IDF(qi) = ln
(

N − n(qi) + 0.5
n(qi) + 0.5

+ 1
)

(4)

where N signifies the total number of documents in the corpus and n(qi) denotes the
number of documents containing the query term qi.

While parameters k1 and b are typically regarded as free parameters, advanced op-
timization techniques can be employed for their selection. To identify the optimal val-
ues of these parameters, we conducted a grid search on the BioASQ [29] and TREC-
COVID [30] datasets.

The grid search was designed to cover a broad spectrum of potential values for both
parameters. For k1, we examined values ranging from 0.0 to 1.9, incrementing by 0.1 at
each step. Similarly, for the b parameter, we investigated values from 0.0 to 0.9, also with
0.1 increments.
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For hyperparameter optimization, we employed a data partitioning strategy. Each
dataset was divided into three subsets: a training set comprising 60% of the data, a valida-
tion set with 20%, and a test set containing the remaining 20%.

The grid search was performed using the validation set to identify the best hyperpa-
rameters, while preserving the integrity of the test set for final evaluation. This approach
was consistently applied to both the BioASQ and TREC-COVID datasets, maintaining the
same proportions for training, validation, and test sets.

To assess the performance of each parameter combination, we employed the MAP@10
metric. MAP@10 is a widely adopted evaluation metric in information retrieval, which
quantifies the quality of search results by ranking relevant documents within the top
10 results for a given set of queries. The values of the k1 and b parameters were used
to determine these rankings. A higher MAP@10 score denotes superior performance,
indicating that a greater number of relevant documents are positioned higher in the search
results (the code repository for grid search can be found at https://github.com/Firestl/
Enhancing-Biomedical-Question-Answering-with-Large-Language-Models, accessed on
15 August 2024.

For the BioASQ dataset, the optimal settings found according to Figure 8 are k1 = 0.6
and b = 0.5, while for the TREC-COVID dataset, the optimal settings found according to
Figure 9 are k1 = 1.9 and b = 0.3. These parameters significantly improved the retrieval per-
formance, demonstrating their effectiveness over the commonly used settings in traditional
BM25 implementations, where k1 = 1.2 and b = 0.75.

Figure 8. BioASQ BM25 hyperparameter tuning.

https://github.com/Firestl/Enhancing-Biomedical-Question-Answering-with-Large-Language-Models
https://github.com/Firestl/Enhancing-Biomedical-Question-Answering-with-Large-Language-Models
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Figure 9. TREC-COVID BM25 hyperparameter tuning.

5.5. LLM Selection and k-Value Optimization

Following our investigation of BM25 hyperparameters, we conducted a series of ex-
periments to optimize our two-stage retrieval system. This section focuses on determining
the most effective open-source Large Language Model (LLM) and the optimal number of
nearest neighbors (k-value) for our retrieval task.

5.5.1. Experimental Setup

We evaluated three open-source LLMs: BGE-reranker-gemma [53], LLaMA-3.1-8B-
Instruct [59], and Qwen2-7B-Instruct [60]. To ensure a comprehensive assessment, we
utilized test sets from both the BioASQ and TREC-COVID datasets. Performance was
measured using MAP and NDCG metrics.

5.5.2. Results and Analysis

Figure 10 illustrates the impact of different k-values on the performance of various
models after fine-tuning. In this figure, k represents the number of samples retrieved by
the nearest neighbor algorithm for constructing training pairs. Specifically, for each query,
the top-ranked sample is used as a positive example, while the remaining k − 1 samples
serve as negative examples. As observed in the figure, the choice of k-value influences
the fine-tuned model’s performance, with different models exhibiting varying sensitivities
to this parameter. The BGE-reranker model demonstrates better performance across all
k-values for both MAP and NDCG metrics. Its performance remains consistently high
when k-values are between 1 and 10, with a slight peak at k = 5. This suggests that for
the BGE-reranker, a moderate number of negative samples provides an optimal balance
between diverse training data and computational efficiency. Comparative analysis reveals
that while LLaMA-3.1-8B-Instruct [59] and Qwen2-7B-Instruct [60] models also show
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improved performance with increasing k-values, they consistently underperform compared
to the BGE-reranker.
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Figure 10. Performance comparison of different models across various k-values using MAP and
NDCG metrics.

5.5.3. Optimal Configuration

Based on these experimental results, we selected the BGE-reranker as our core model
for the retrieval system. The optimal configuration uses k = 5 for constructing training
pairs, which means retrieving the 5 nearest neighbors for each query during the fine-tuning
process. This configuration ensures one positive sample and four negative samples per
query, striking an effective balance between training data diversity and model performance.

5.6. BioASQ Results Analysis

Table 4 presents a comparison of our BM25-LLMs method, with the best models from
the BioASQ Challenge Task 11B across four test batches. The numbers in bold represent
the best performance for each batch. To provide a more comprehensive analysis, we have
conducted additional experiments to examine the performance across different question
types: Factoid, List, Yes/No, and Summary. These detailed results are presented in Table 5.

In Test Batch-1, our system demonstrates competitive performance across various
metrics. While bioinfo-0 leads in Mean Precision (0.3052) and F-Measure (0.3381), our
system excels in Recall (0.6753) and MAP (0.6292), indicating strong retrieval consistency
and coverage of relevant documents. Test Batch-2 shows improvement in our system’s
performance, with a Mean Precision of 0.3267, outperforming all other systems. Our system
achieves a competitive Recall of 0.4942, closely approaching the performance of bioinfo-0
(0.4993). The F-Measure (0.3843) and MAP (0.4597) demonstrate balanced and quality
retrieval performance. Similar trends continue in Test Batch-3, with our system showing
strengths in Mean Precision (0.3879) and competitive performance in other metrics. For
Test Batch-4, where only bioinfo-0 results are available for comparison, our system shows
superior Mean Precision (0.4447 vs. 0.3327) but lower Recall (0.3443 vs. 0.4323).
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Table 4. Comparison of the proposed BM25-LLMs method with the best models from BioASQ
Challenge Task 11B.

Test Batch-1

System Mean Precision Recall F-Measure MAP GMAP

A&Q [61] 0.1427 0.4814 0.1733 0.2931 0.0115
A&Q2 [61] 0.1747 0.5378 0.2069 0.3995 0.0465

MindLab QA System [62] 0.2820 0.3369 0.2692 0.2631 0.0039
bioinfo-0 [63] 0.3052 0.6100 0.3381 0.5053 0.1014
Our system 0.2653 0.6753 0.2915 0.6292 0.1735

Test Batch-2

System Mean Precision Recall F-Measure MAP GMAP

A&Q [61] 0.1987 0.4428 0.2079 0.3494 0.0255
A&Q2 [61] 0.1747 0.3728 0.1761 0.2339 0.0111

MindLab QA System [62] 0.2283 0.2835 0.1876 0.1661 0.0063
bioinfo-0 [63] 0.2841 0.4993 0.2913 0.4244 0.0858
Our system 0.3267 0.4942 0.3843 0.4597 0.0609

Test Batch-3

System Mean Precision Recall F-Measure MAP GMAP

A&Q [61] 0.2144 0.4502 0.2120 0.3603 0.0439
A&Q2 [61] 0.2289 0.4574 0.2236 0.3775 0.0525

MindLab QA System [62] 0.1600 0.2100 0.1440 0.1312 0.0025
bioinfo-0 [63] 0.2823 0.4794 0.2808 0.3568 0.0646
Our system 0.3879 0.4521 0.3405 0.4192 0.0451

Test Batch-4

System Mean Precision Recall F-Measure MAP GMAP

A&Q [61] - - - - -
A&Q2 [61] - - - - -

MindLab QA System [62] - - - - -
bioinfo-0 [63] 0.3327 0.4323 0.3066 0.3751 0.0595
Our system 0.4447 0.3443 0.3092 0.3623 0.0282

Note: The dashes (“-”) in the table indicate that the corresponding systems were not listed in the rankings for
this batch. Bold values indicate the best performance for each metric.

Table 5. Detailed results for different question types in BioASQ.

Test Batch-1

Type Precision Recall F-Measure MAP

Factoid 0.2105 0.6451 0.2415 0.5491
List 0.2667 0.5464 0.3050 0.3470

Yes/No 0.2458 0.6578 0.2590 0.5248
Summary 0.1850 0.6208 0.2329 0.4658

Test Batch-2

Type Precision Recall F-Measure MAP

Factoid 0.2955 0.5426 0.3108 0.4383
List 0.3250 0.3723 0.2226 0.2831

Yes/No 0.2708 0.6397 0.2955 0.4875
Summary 0.2706 0.6110 0.3025 0.4558

Test Batch-3

Type Precision Recall F-Measure MAP

Factoid 0.2154 0.5137 0.2166 0.3093
List 0.3833 0.3985 0.3150 0.3294

Yes/No 0.2000 0.5706 0.2188 0.4455
Summary 0.2545 0.5378 0.2661 0.3386

Test Batch-4

Type Precision Recall F-Measure MAP

Factoid 0.1774 0.5288 0.2287 0.3930
List 0.3083 0.3665 0.2631 0.3027

Yes/No 0.2643 0.4406 0.2173 0.3812
Summary 0.3524 0.3284 0.2796 0.2494

Examining the performance across different question types reveals interesting pat-
terns. Factoid questions show relatively consistent performance across batches, with Recall
ranging from 0.5137 to 0.6451, while Precision shows more variation (0.1774 to 0.2955).
List questions demonstrate the highest Precision among all types, particularly in Batch-3
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(0.3833), although Recall is generally lower compared to other question types. Yes/No
questions exhibit considerable performance variation across batches, with Precision (0.2708)
and Recall (0.6397) in Batch-2. Summary questions demonstrate more stable performance
across batches, generally showing a good balance between Precision and Recall.

5.7. Results on TREC-COVID Dataset

To evaluate our proposed system, we conducted experiments on the TREC-COVID
dataset [30]. Due to the unavailability of historical records for participating systems in
previous years, we implemented a set of strong baselines for comparison. These base-
lines represent a range of traditional and state-of-the-art information retrieval methods,
providing a comprehensive evaluation framework for our proposed approach.

The baseline systems we employed include:

• BM25 [20]: A classical probabilistic retrieval model that serves as a fundamental sanity
check by directly using the ranking results from the first-stage retrieval.

• Sentence-BERT [64]: A modification of the BERT model that uses Siamese and triplet
network structures to derive semantically meaningful sentence embeddings.

• DPR [22]: A dense retrieval method that uses neural networks to encode queries and
passages into a low-dimensional space.

• docT5query [43]: A document expansion technique that uses a sequence-to-sequence
model to predict queries that a document might be relevant to.

• Manual Prompt: To benchmark against cutting-edge manual prompting techniques,
we incorporated RankGPT [65], the current state-of-the-art approach in this domain.

• CoT [66]: This approach extends the manual prompt by appending the phrase “Let’s
think step by step” to encourage more structured and detailed reasoning.

• ListT5 [67]: A re-ranking methodology leveraging the Fusion-in-Decoder architecture,
which processes multiple candidate passages concurrently during both training and
inference phases.

• COCO-DR [68]: A zero-shot dense retrieval method designed to enhance generaliza-
tion by addressing distribution shifts between training and target scenarios.

• RaMDA [69]: A novel model addressing the domain adaptation for dense retrievers
by synthesizing domain-specific data through pseudo queries.

We employed NDCG@10 as our primary evaluation metric. This measure was chosen
for its ability to capture both the relevance and ranking quality of the retrieved documents,
with a particular focus on the top 10 results. Table 6 presents a comprehensive comparison
of our proposed system against various models and approaches from the TREC-COVID
dataset. The values in bold typeface indicate the highest NDCG@10 score achieved across
all systems.

Table 6. Comparison of NDCG@10 scores for various document retrieval systems.

System NDCG@10

Our system 0.8326
BM25 0.4812

Sentence-BERT 0.3334
DPR 0.6420

docT5query 0.7420

GPT-3.5-Manual 0.7667
GPT-3.5-CoT 0.8213

LLaMA3-Manual 0.7746
LLaMA3-CoT 0.7454

Qwen2-Manual 0.8145
Qwen2-CoT 0.7972

ListT5-base 0.7830
ListT5-3B 0.8440
PE-Rank 0.7772

COCO-DR 0.7890
RaMDA 0.8143

Note: Bold values indicate the best performance.
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6. Conclusions

In the context of biomedical retrieval, enhancing the efficacy of traditional retrieval
models for case retrieval remains a critical challenge. To address this, we propose a
BM25-LLMs biomedical question retrieval system that integrates the traditional BM25 [20]
algorithm with LLMs. This approach leverages the strengths of both techniques to improve
retrieval accuracy and efficiency. Our comparative experiments indicate that the proposed
BM25-LLMs biomedical retrieval system demonstrates competitive performance when
evaluated against other current models in the field. The observed improvements in retrieval
effectiveness suggest that combining traditional retrieval techniques with large language
models may offer certain benefits in biomedical information retrieval tasks. These results
contribute to the ongoing research on hybrid approaches aimed at enhancing retrieval
capabilities within the biomedical domain.
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LoRA Low-Rank Adaptation
MAP Mean Average Precision
NDCG Normalized Discounted Cumulative Gain
QA Question Answering
RDF Resource Description Framework
TREC-COVID Text REtrieval Conference COVID
TP True Positives
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