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Abstract: In the early stages of residential project investment, accurately estimating the engineering
costs of residential projects is crucial for cost control and management of the project. However, the
current cost estimation of residential engineering in China is primarily carried out by cost personnel
based on their own experience. This process is time-consuming and labour-intensive, and it involves
subjective judgement, which can lead to significant estimation errors and fail to meet the rapidly
developing market demands. Data collection for residential construction projects is challenging,
with small sample sizes, numerous attributes, and complexity. This paper adopts a hybrid method
combining a grey relational analysis, Lasso regression, and Backpropagation Neural Network (GAR-
LASSO-BPNN). This method has significant advantages in handling high-dimensional small samples
and multiple correlated variables. The grey relational analysis (GRA) is used to quantitatively
identify cost-driving factors, and 14 highly correlated factors are selected as input variables. Then,
regularization through Lasso regression (LASSO) is used to filter the final input variables, which are
subsequently input into the Backpropagation Neural Network (BPNN) to establish the relationship
between the unit cost of residential projects and 12 input variables. Compared to using LASSO and
BPNN methods individually, the GAR-LASSO-BPNN hybrid prediction method performs better in
terms of error evaluation metrics. The research findings can provide quantitative decision support
for cost estimators in the early estimation stages of residential project investment decision-making.

Keywords: cost estimation; small sample; GRA; LASSO; BPNN; variable selection

1. Introduction

The current real estate industry faces challenges due to national policy regulations,
the scarcity of land resources, and the continuous rise in land prices [1,2]. How to main-
tain profitability and reduce costs as much as possible has become a key issue for the
development of enterprises. In residential construction projects, cost estimation is a crucial
component, especially during the early decision-making stages, where it can have an im-
pact on the total project cost of up to 75% to 95% [3]. During these early decision-making
stages, cost estimation methods are largely based on past experiences and rely on cost
engineers, requiring a high level of expertise. These methods also depend on certain survey
and statistical data and often need to find completed projects with high similarity to the
proposed project. Otherwise, issues such as insufficient design depth and low estimation
accuracy may arise. In the late 20th century, in addition to experience-based methods,
major companies began using static software tools such as Glodon, EXCEL, and SPSS for
cost estimation. However, these programmes still cannot address complex pre-control cost
issues like cost forecasting and require significant time and computational resources to
complete the cost estimation [4]. Therefore, in response to the aforementioned research
issues, there is an urgent need to establish an efficient, accurate, and quantifiable residential
cost estimation model that can accurately estimate the cost of a new residential project
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within a short period. This model would improve the management and control of project
costs, provide digital tools and technical support for real estate companies, and help them
maintain competitiveness in a fiercely competitive market environment.

In recent years, project cost management has gradually transitioned from traditional
static management to dynamic management. Many accumulated cost data have not been
fully utilized, while advanced machine learning algorithm technologies can intelligently
analyze historical data and estimate the costs of different types of construction projects
based on initial project conditions. Currently, machine learning algorithms used for cost
estimation in the construction field include multiple linear regression (MLR), Decision Tree
(DT), Support Vector Regression (SVR), LASSO, and artificial neural networks (ANNs) [5–7],
among which artificial neural networks are widely used [8,9]. Deepa et al. have identified
the most influential factors in cost estimation models through investigations [10]. They
combined the characteristics of artificial neural networks and engineering cost estimation to
construct a hybrid cost estimation model based on neural networks. To overcome the slow
convergence and low prediction accuracy of traditional ANN models, Ye applied the Back-
propagation Neural Network (BPNN) to predict construction project costs, enhancing the
network’s learning capability and robustness [11], providing a basis for cost management
throughout the entire project lifecycle. Additionally, hybrid machine learning models such
as Genetic Algorithm–Optimized Neural Networks (GA-BPNNs) have been used to acceler-
ate model convergence and improve prediction accuracy [12,13]. Compared to traditional
machine learning models, multiple linear regression may be affected by outliers and noise,
especially with small datasets [14]. Decision Tree is sensitive to data changes, and their
performance may be affected if the data change [15]. SVR is sensitive to the choice of kernel
functions, and an inappropriate choice may lead to a decline in model performance [16].
LASSO regression, as a regularization method, shows unique advantages in a regression
analysis. Its most significant advantage lies in feature selection and model optimization. By
introducing the L1 penalty term, LASSO regression can automatically shrink the coefficients
of irrelevant or redundant features to zero, achieving feature selection, making the model
more concise and interpretable. Simultaneously, LASSO regression effectively addresses
multicollinearity issues, enhancing the model’s stability and generalization ability, making
it suitable for analyzing high-dimensional datasets in various fields [17–19]. Identifying
important influencing factors of residential project costs is also crucial for predicting project
costs [20]. Therefore, many scholars have conducted research on how to scientifically and
effectively select feature factors for cost estimation and prediction. The screening methods
mainly include GRA, questionnaire, sensitivity analysis, principal component analysis,
factor analysis, and fuzzy analytic hierarchy processes [21–25]. Wang and Qiao considered
the specificity and diversity of construction projects, noting that the factors influencing
project costs are complex and varied. However, not all factors have the same weight and
importance in project costs. Therefore, when selecting indicators, the principle of mod-
eration should be considered. GRA can be used to screen out indicators that effectively
describe the characteristics of the project or have a significant impact on project costs, which
are then used for project cost prediction using the BiLSTM network [26]. GRA is a data
analysis method based on grey system theory, aimed at studying the correlation between
multiple indicators. It sums the data related to each indicator to determine the relative
degree of each and calculates the grey correlation between indicators to determine the
impact of each indicator on the issue. Compared to traditional correlation analysis methods,
GRA can more accurately reflect the correlation and impact degree between indicators.
Additionally, GRA has advantages such as a simple model, small data volume, and inter-
pretable results [27], making it suitable for selecting residential project cost indicators in this
study’s small dataset. Tong et al. quantitatively identified key cost drivers through GRA,
selected relevant indicators as input variables, and then used LASSO regression to establish
the relationship between engineering feature variables, economic factors, and highway
engineering budgets [28]. Compared with LASSO regression without GRA, they found that
the GRA-LASSO hybrid method was more accurate in predicting highway project costs. Yu
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et al. applied LASSO regression for factor selection and constructed a LASSO-BP hybrid
model for short-term vegetable price prediction, resulting in an 82.11% lower prediction
error compared to BPNN [29].

Based on the above research backgrounds, to improve the accuracy of residential unit
cost predictions, this study combines the characteristics of cost data for residential projects,
which are small in sample size and high-dimensional, with the advantages of LASSO
regression and BPNN. This paper uses GRA to rank the correlation of input variables
affecting the unit cost of residential projects, employs LASSO regression regularization and
model evaluation for variable selection, and constructs a predictive ensemble model based
on GRA-LASSO-BPNN. This model is compared with commonly used machine learning
methods, validating the superiority and applicability of the proposed method in the field
of residential cost estimation.

2. Methodology

This section describes the architecture of the GRA-LASSO-BPNN hybrid prediction
model and the methods used for data collection. It examines the GRA method, which
identifies key drivers of residential costs; the LASSO method, which further refines in-
put variables through regularization; and the BPNN, which possesses strong learning
capabilities and robustness. The establishment process of the GRA-LASSO-BPNN hybrid
prediction model is shown in Figure 1.

Figure 1. The flowchart of GRA-LASSO-BPNN.

2.1. Data Collection Method

Residential project data are considered confidential by companies, making it difficult
for individuals to access them. Therefore, this paper primarily uses web scraping technol-
ogy [30] and writing programmes to download data from cost information websites and
extract key data from web pages according to certain rules to obtain residential construction
project data. The main workflow is shown in Figure 2. This section mainly implements the
following three functions:

1. Data Request: Send a request to the server of the specified website to obtain its
corresponding web content.

2. Webpage Analysis: Use regular expressions and other rules to selectively filter the
needed information from the extensive content on the web server.

3. Data Storage: Save the initially captured key information into files in formats such as
EXCEL to prepare for subsequent data preprocessing.
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Figure 2. Main workflow of web scraping technology [30].

2.2. Grey Relational Analysis

The calculation of the relational degree between engineering cost indicators is crucial
for predicting residential unit costs. GRA uses grey relational degrees to measure the order
of strength between factors. It is a method based on samples to evaluate the relationships
between factors [31]. This method determines whether the data series curves are closely
related by comparing their trends. If the sample data series reflect a consistent trend of
changes between two factors, their relational degree is relatively high; otherwise, it is
low. As shown in Figure 3, this method quantitatively analyzes the development trend of
the dynamic process and compares the geometric relationship of the relevant statistical
sequence data to calculate the grey relational degree. The calculation steps of GRA are
as follows:

Step 1—Determine the Analysis Sequence: This is similar to determining the depen-
dent variable Y and the independent variable X, identifying the system’s reference sequence
and the comparative sequence.

Y = X0(k), k= 1, 2, . . . , n (1)

Xi = Xi(k), k = 1, 2, · · · , n; i = 1, 2, · · · , m (2)

Step 2—Normalize the Sequence Data: To obtain accurate comparison results and
simplify calculations, the data must be standardized to eliminate the effects of different
dimensions in the data series.

Step 3: Calculate the Relational Coefficient:

ζi(k) =
min

i
min

k
|x0(k)− xi(k)|+ ρ · max

i
max

k
|x0(k)− xi(k)|

|x0(k)− xi(k)|+ ρ · max
i

max
k

|x0(k)− xi(k)|
(3)

where |x0(k) − xi(k)| represents the absolute value of the difference between each data
point and the reference sequence data. ρ is the distinguishing coefficient, which is usually
set to 0.5 to increase the differences and stability of the correlation coefficients [32].

Step 4—Calculate the Relational Degree: Since the relational coefficients are scat-
tered and not easy to compare as a whole, Equation (4) is used to calculate the grey
relational degree.

αi =
1
k

n

∑
k=1

ζi(k) (4)
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The larger the value of αi, the higher the correlation degree, indicating a closer rela-
tionship and development trend.

Step 5—Rank the Strength of Grey Relational Degrees: Sort the relational degrees to
show the strength of the relationship between each independent variable and the depen-
dent variable.

Figure 3. Implementation principle flowchart of grey relational analysis [28].

2.3. LASSO Regression

LASSO regression refers to adding an L1 regularization term to the minimization of
the sum of squared residuals [33], as shown in Equation (5):

Cost(β) = ∑ (yi − ŷi)
2 + λ ∥ β̂ ∥1 (5)

where ∥ β̂ ∥1 denotes the L1 norm of the model coefficients, yi is the actual value, and ŷi
and λ are the regularization parameter that controls the influence of the regularization
term. By adjusting the value of λ, a balance can be achieved between the model’s predictive
performance and feature selection.

LASSO regression can perform both variable selection and complexity adjustment,
making it suitable for various types of target dependent variables, including continuous,
binary, and multinomial discrete types. Through variable selection, LASSO regression can
identify the most relevant independent variables from all possible ones and ignore those
that are unimportant, thereby enhancing predictive performance.

2.4. GRA-LASSO-BPNN

This paper proposes a novel GRA-LASSO-BPNN cost prediction model, which is a
composite prediction model based on the existing GRA, LASSO, and BPNN methods. The
main steps involve data cleaning, variable selection, and finally inputting the processed
data into the BPNN for training. The variable selection process combines GRA and LASSO
to select variables that are strongly correlated with the unit cost of residential projects.
Specifically, the GRA method is used to rank the importance of input variables, and an
initial selection of variables is made using a threshold, as shown in Equations (1)–(4).
This is followed by the final variable selection using LASSO regularization, as shown in
Equation (5). The finalized input variables are then used as inputs for the BPNN, with
the unit cost of residential projects as the output. The dataset is split into training and
testing sets in a 7:3 ratio using the train–split–test approach. Finally, the performance of the
GRA-LASSO-BPNN model is evaluated using model evaluation metrics to improve the
accuracy of the prediction model.
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2.5. Performance Evaluation

To evaluate the performance of the unit cost prediction model for residential projects,
the model’s prediction accuracy is quantified using several metrics, including Mean Ab-
solute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Square Error
(RMSE), the coefficient of determination (R2), and Mallows’ CP value (CP). Performance
evaluation metrics are shown in Equations (6)–(10). By utilizing these five different perfor-
mance indicators, the prediction performance of the machine learning model can be better
described. The closer the values of MAE, MSE, RMSE, and MAPE are to 0, the smaller the
prediction error. Similarly, the closer the R2 value is to 1, the smaller the error.

MAE =
1
n

n

∑
i=1

|yi − ŷi| (6)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (7)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (8)

MAPE =
100%

n

n

∑
i=1

(|yi − ŷi|)/yi (9)

R2 = 1 −

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

(10)

Here, n represents the number of samples, yi represents the true value of the i-th
sample, ŷi represents the predicted value of the i-th sample, and y represents the mean of
the true values.

Mallows’ CP value, proposed by statistician Colin Mallows, is an indicator that con-
siders both model complexity and prediction accuracy, and it is used for selecting linear
regression models.

CP = p + (MSEp − MSEall)(n − p)/MSEall
= 1 − (SSE/SST)((n − 1)/(n − p − 1))

(11)

where n is the number of samples, MSEall is the mean squared error of the model containing
all feature variables, MSEp is the mean squared error of the model with the selected p
feature variables, SST is the total sum of squares, and SSE is the sum of squared errors.
Generally, the smaller the CP value, the better the predictive accuracy of the model, and
when the Mallows’ CP index value approaches p + 1, the model bias is lower.

3. Research Applications
3.1. Data Acquisition and Preprocessing

Using data scraping technology and research by domestic and foreign scholars on
factors influencing residential construction cost predictions, a dataset was preliminarily
determined [34–36]. This dataset includes 47 residential construction projects in Shanghai,
comprising 1 output variable, ‘unit cost’, and 17 input variables, as shown in Table 1. To fa-
cilitate the model’s processing and calculation of sample data, the preliminary data obtained
were quantified, and normalized using min–max normalization. Min–max normalization is
shown in Equation (12):

x′ =
x − xmin

xmax − xmin
(12)
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Table 1. Relevant input variables for residential project unit cost estimation.

Number Input Variables

X1 Project location
X2 Number of underground floors
X3 Structural type
X4 Total building area
X5 Above-ground building area
X6 Underground building area
X7 Presence of basement
X8 Number of floors
X9 Number of above-ground floors
X10 Ground floor height
X11 Standard floor height
X12 Eaves’ height
X13 Seismic fortification intensity
X14 Type of doors
X15 Type of windows
X16 Percentage of grade III steel
X17 Commercial concrete grade

In this equation, x′ represents the value after min–max normalization, x is the original
data value, and xmax and xmin are the specified maximum and minimum values for each
indicator, respectively.

3.2. Selection of Input Variables for Residential Project Costs
3.2.1. Input Variable Importance Ranking

In this study, using the GRA, 17 input variables such as ‘project location’ and ‘structural
type’ from 47 engineering projects were used as comparative sequences, and ‘unit cost’
was used as the system’s reference sequence for the grey relational analysis. The grey
relational degrees between each input variable and the unit cost were calculated and sorted
in descending order, resulting in the grey relational analysis outcomes shown in Table 2.

Table 2. Results of grey relational analysis.

Number Input Variables Correlation Degrees

X13 Seismic fortification intensity 0.9050
X17 Commercial concrete grade 0.9019
X15 Type of windows 0.9012
X14 Type of doors 0.8967
X11 Standard floor height 0.8913
X10 Ground floor height 0.8848
X16 Percentage of grade III steel 0.8795
X4 Total building area 0.8098
X5 Above-ground building area 0.8065

X12 Eaves’ height 0.8064
X3 Structural type 0.7984
X8 Number of floors 0.7947
X9 Number of above-ground floors 0.7937
X1 Project location 0.7257
X6 Underground building area 0.7119
X2 Number of underground floors 0.6916
X7 Presence of basement 0.6865

Typically, grey relational degree values range between [0, 1], with larger values indicat-
ing a higher similarity between two sequences. However, there is no fixed standard for the
threshold of low grey relational degrees, as the required range of relational degree values
varies across different application fields and specific issues [37–39]. Generally, different
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scholars may select different grey relational degree thresholds based on their experiments
and experiences. Nevertheless, the specific threshold choice needs to be adjusted according
to the particular problem and data circumstances and validated through experimentation
for effectiveness.

Combining the research results of domestic and international scholars with the rel-
atively small sample size of the data in this paper, to maximize data utilization, a grey
relational degree threshold of 0.72 was adopted in this study. Factors with values below
this threshold are considered to have a weak correlation with the target variable and are not
taken into account. Thus, from the correlation ranking results in Table 2, factors X6, X2, and
X7 are weakly correlated with cost changes and are considered for removal from the model.
Additionally, in the relational coefficient ranking results, the importance of variables such
as the total building area, eaves’ height, structural type, and number of floors aligns with
conclusions from reference [40], indicating a certain degree of credibility. Therefore, the
next step is to further investigate the actual predictive effectiveness of the 14 input variables
selected by GRA for the residential unit cost prediction model and verify the accuracy of
this selection.

3.2.2. Correlation Analysis

Using the sns. heatmap function package in Python3.7, after the preliminary selection
of indicators by GRA, a Pearson correlation test was conducted to analyze the linear
correlation between pairs of variables. The Pearson correlation coefficient ranges from
[−1, 1]. The closer the absolute value is to 1, the deeper the colour, indicating a stronger
linear correlation between the two variables.

As shown in Figure 4, high correlation degrees are observed between eaves’ height
(X12) and the number of floors (X8), and above-ground building area (X5), with coefficients
of 0.98 and 0.61, respectively. The number of floors (X8) also shows correlation with seismic
fortification intensity (X13) and above-ground building area (X5), with coefficients of 0.40
and 0.59, respectively. Furthermore, seismic fortification intensity (X13) and commercial
concrete grade (X17) have a correlation coefficient of 0.51, among others. Generally, the
more floors a building has, the higher the eaves’ height and the larger the building area.
Regarding the relationship between seismic fortification intensity and the number of floors
and commercial concrete grade, multi-storey buildings require higher seismic fortification
intensity than single-storey buildings, and higher seismic fortification intensity demands
higher commercial concrete grades to ensure stable seismic performance. Therefore, these
correlation results meet the requirements and are considered credible. The total building
area (X4) and above-ground building area (X5) have a linear correlation coefficient of 1.0,
indicating an extremely high correlation. In econometrics, it is usually considered that
if the Pearson coefficient is greater than 0.7, there is multicollinearity between the two
variables [41]. This means that the change in one variable will affect other independently
related variables, a common issue in multiple regression analyses. This multicollinearity
can affect the predictive accuracy of the regression model. The LASSO regression prediction
method can effectively solve this problem. Therefore, based on the initial variable selection
by GRA, the LASSO method will be further used to select input variables. The 47 resi-
dential construction project datasets will be randomly divided into 33 training samples
and 14 test samples in a 7:3 ratio to construct a regression prediction model using a hybrid
model approach.

3.2.3. Determination of Input Variables

This study sets the penalty coefficient Alpha of LASSO regression to control the
intensity of the first-order penalty function (L1) regularization. The larger the penalty
coefficient, the stronger the constraint on fitting models with more variables, causing
the regression coefficients of less influential variables to decay to zero. This results in
retaining only important features, thus obtaining a GRA-LASSO regression model with
better performance parameters.
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Figure 5 shows the variable coefficient trajectory of the GRA-LASSO, illustrating how
the coefficients of independent variables change with the Alpha parameter. The horizontal
axis represents the penalty coefficient Alpha, ranging from [0, 3], and the vertical axis
represents the size of the regression coefficients of the variables. Figure 5 intuitively shows
the changes in the coefficients of the 14 different input variables preliminarily selected
by GRA and which independent variable coefficients are compressed to zero first under
different Alpha parameters.

Figure 4. Pearson correlation analysis results.

Figure 5. LASSO variable regression coefficient path solution.
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As seen in Figure 5, as the Alpha value increases, the regularization intensity increases,
and the coefficients of the 14 variables are gradually compressed to zero. The coefficients
of total building area and the number of above-ground floors decay to zero the fastest,
indicating that these independent variables are the first to be filtered out in the model. This
also validates the correctness of the Pearson correlation analysis.

But the performance of the LASSO regression model varies with different numbers of
variables. Therefore, this study uses the MAPE, the coefficient of determination R2, and the
statistical Mallows’ CP value to measure the goodness of fit of the model.

Figure 6 shows the fluctuations of these indicators in the GRA-LASSO model with the
number of feature variables. According to the results, the model with 12 feature variables
is considered the optimal model. This model has the lowest MAPE and the highest R2,
while also meeting the requirement of the unbiased model with Mallows’ CP index close
to the number of feature variables + 1, indicating low bias in the model. At this point,
combining the GRA-LASSO variable selection where the regression coefficients of the
number of above-ground floors and the total building area were first compressed to zero,
the remaining 12 variables are determined as the input features for the BPNN model.

Figure 6. Cont.
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Figure 6. Model performance metrics with varying numbers of independent variables. (a) MAPE,
(b) R2, (c) CP.

3.3. GRA-LASSO-BP Prediction Model Establishment

The 12 influencing factors selected by LASSO regression—the seismic fortification
intensity, commercial concrete grade, type of windows, type of doors, standard floor height,
ground floor height, percentage of grade III steel, above-ground building area, eaves’
height, structural type, number of floors, and region—are used as input variables. The
unit cost is used as the output variable, and then the BPNN model is used for prediction.
Where the number of variables in the BPNN input layer is 12, the number of variables in
the output layer is 1 and the number of hidden layers is 14. The learning rate was set at
0.01, with 300 iterations, and the loss function used was MSE.

4. Results and Discussion
4.1. Conclusion and Analysis of Input Variable Selection

The importance of the input variables affecting the unit cost of residential projects
was ranked using GRA. Through a preliminary screening based on threshold values, three
variables with less impact—the underground building area, number of underground floors,
and presence of a basement—were filtered out. However, the further selection of input
variables required regularization through LASSO regression. After LASSO regularization,
the input variables were reduced to 14, as shown in Figure 7.

Although some variable coefficients may initially show an upward trend, the over-
all trend is that the variable coefficients approach zero. As the regularization intensity
increases, less influential variables are eventually eliminated, retaining only important vari-
ables. The model increasingly tends towards a simpler form during this process. However,
a simpler model is not always better. As shown in Figure 7, the Mean Absolute Error (MAE)
of the regression prediction model initially decreases and then increases as Alpha gradually
increases. Therefore, selecting an appropriate Alpha value in practical applications is
necessary to achieve a GRA-LASSO prediction model with better performance parameters.

Even though GRA and LASSO regularization have reduced the input variables to 14,
the performance of the GRA-LASSO regression model varies with different numbers of
variables. Therefore, the model performance was tested with different numbers of variables,
eventually leading to the selection of 12 input variables. These were then input into the
BPNN for training.
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Figure 7. Mean Absolute Error as Alpha varies.

4.2. Performance Analysis of the Residential Project Cost Estimation Hybrid Model

To verify the performance of the GRA-LASSO-BPNN prediction model proposed
in this paper, its prediction results were compared with those obtained using the BPNN
and LASSO regression methods alone, as well as with the actual unit costs. The LASSO
regression model is specifically shown in Equation (13). The BPNN method and its specific
parameters are detailed in Section 3.3.

Y = 971.54X1 − 357.09X3 + 26.00X5 + 5716.70X8 + 1683.31X10 − 692.59X11
−5871.77X12 − 424.92X13 − 86.07X14 + 2361.87X15 + 686.18X16 + 439.20X17

(13)

The prediction results of the three methods on the test set, compared to the actual
values, are shown in Figure 8. These prediction results were quantitatively analyzed using
evaluation metrics such as MAE, MSE, and RMSE. The calculation methods for MAE, MSE,
and RMSE are shown in Equations (6)–(8), respectively. The results are presented in Table 3.

Figure 8. Visual comparison of performance of three predictive models on test set.
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Table 3. Comparison of evaluation metrics for each model.

MODEL MAE MSE RMSE

GRA-LASSO-BPNN 197.02 55,057.04 234.64
BPNN 246.77 92,251.84 303.73
LASSO 278.33 237,556.01 487.40

As shown in Figure 8, the predicted values of the GRA-LASSO-BPNN regression
model are generally consistent with the trend of the actual costs, with relatively small
errors. Table 3 indicates that the MAE of the GRA-LASSO-BPNN model is 197.02, the
RMSE is 234.64, and the MSE is 55,057.04. The errors of these three evaluation metrics are
all smaller than those of the BPNN and LASSO regression methods used alone, and the
MAE of GRA-LASSO-BPNN is 29% lower than that of LASSO with the largest error, and
20% less than that of the BPNN model without screening for input variables. Therefore, the
prediction performance of GRA-LASSO-BPNN is the best.

5. Conclusions

This study utilized GRA, Pearson correlation coefficients, and LASSO regression regu-
larization to select input variables and establish the GRA-LASSO-BPNN hybrid prediction
model. This model is designed to assist cost estimation personnel in real estate companies
in making more reasonable, accurate, and efficient cost estimates for residential construc-
tion projects during the early stages of investment decision-making, thereby significantly
reducing project costs. The main findings include the following:

1. Among the 17 input variables, the ones with the most significant impact on the unit
cost of residential projects in Shanghai, after GRA and LASSO regularization, are the
seismic fortification intensity, commercial concrete grade, type of doors and windows,
and total building area. A total of 12 input variables were ultimately selected.

2. The evaluation metrics of the proposed GRA-LASSO-BPNN hybrid prediction model
are significantly lower than those of the BPNN and LASSO regression models, indi-
cating that the GRA-LASSO-BPNN hybrid prediction model proposed in this study
has superior predictive performance in estimating residential project costs.

3. The GRA-LASSO-BPNN model outperforms the BPNN model alone, demonstrating
that input variable selection can enhance model prediction accuracy. Additionally,
when comparing the BPNN and LASSO models, as well as the GRA-LASSO-BPNN
and LASSO models, it is evident that the errors of the hybrid models are lower
than those of LASSO, suggesting that BPNN can improve prediction accuracy on
high-dimensional small sample datasets.

The proposed early-stage cost estimation model for residential project investment
decision-making is currently applicable only to the Shanghai region. However, if the dataset
becomes sufficiently large, it could be widely applied to cost estimation for residential
projects across the country. Future work aims to achieve the following goals:

1. Collect more datasets to further reduce prediction model errors.
2. Introduce additional relevant feature parameters that impact the cost of underground

structures, and then use GRA-LASSO for feature selection.
3. Introduce optimization algorithms to improve the GRA-LASSO-BPNN model.

With the progressive informatization of construction, deep learning is expected to
become increasingly integral to the cost management in construction.
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