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Abstract: In this paper, we focus on weighting methods within multi-attribute utility/value theory
(MAUT/MAVT). In these methods, the decision maker (DM) provides ordinal information about
the relative importance of criteria, but also additional information concerning the strength of the
differences between the ranked criteria, which can be expressed in different forms, including pre-
cise/imprecise cardinal information, ratio-based methods, a ranking of differences, a semantic scale,
or preference statements. Although many comparison analyses of weighting methods based on ordi-
nal information have been carried out in the literature, these analyses do not cover all of the available
methods, and it is not possible to identify the best one depending on the information provided by the
DM. We review the analyses comparing the performance of these weighting methods based on empir-
ical and simulated data using different quality measures. The aim is to identify weighting methods
that could be recommended for use in each situation (depending on the available information) or the
missing comparison analyses that should be carried out to arrive at a recommendation. We conclude
that in the case of additional information in the form of a semantic scale, the cardinal sum reciprocal
method can definitively be recommended. However, when only ordinal information is provided
by the DM and in cases where additional information is provided in the form of precise/imprecise
cardinal information or a ranking of differences, although there are some outstanding methods,
further comparison analysis should be carried out to recommend a weighting method.

Keywords: multicriteria utility/value theory; weight elicitation; ordinal information; comparison
analyses

1. Introduction

The WEB-MAUT-DSS is a web decision support system (DSS) based on the multi-
attribute utility theory (MAUT), which consists of an adaptation and improvement of the
generic multi-attribute analysis (GMAA) system [1,2]. It is based on the decision analysis (DA)
methodology [3], which has been widely used to address complex real-world decision-
making problems on the basis of an additive multi-attribute utility model.

DA consists of the following steps: structuring the problem (building an objective
hierarchy and establishing attributes to indicate the extent to which the lowest-level objec-
tives are achieved); identifying the feasible alternatives and their performances in terms
of the attributes and uncertainty (if necessary); quantifying preferences, which involves
assessing single attribute utility/value functions, as well as the relative importance of
criteria; evaluating alternatives by means of a multi-attribute utility/value function; and
conducting sensitivity analyses to check the robustness of the results.

Regarding alternative evaluation, the additive multi-attribute utility/value function
is considered a valid approach in most real decision-making problems for the reasons
described in [4,5].
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However, most complex decision-making problems involve imprecise information,
mainly because it is impossible to exactly predict the performances of the alternatives under
consideration, which may be derived from statistical methods. Additionally, it is often not
easy to elicit precise weights, since decision makers (DMs) may find it difficult to compare
criteria (some weighting methods are too cognitively demanding) or may not want to reveal
their preferences in public. Alternatively, the imprecision of weights may be the result of a
negotiation process. This situation is usually referred to as decision-making with imprecise
information, with incomplete information or with partial information [6], which has been widely
addressed in the literature focusing mainly on the weight elicitation process [7–11].

WEB-MAUT-DSS accounts for uncertainty about the alternative performance and
admits imprecise information about the DMs’ preferences in both the assessment of compo-
nent utilities and weight elicitation, which leads to classes of utility functions and weight
intervals, respectively.

Regarding weight elicitation, the GMAA originally provided two methods to hierar-
chically elicit the relative importance of criteria. Local weights were first elicited at the
different levels and branches of the objective hierarchy by means of a direct assignment
or a method based on trade-offs, accounting for imprecision concerning DM responses by
means of ranges of responses to the probability question that the DM is asked. Then, the
attribute weights, wj, were computed by multiplying the local weights in the paths from
the corresponding attribute to the overall objective.

One of the improvements provided by WEB-MAUT-DSS over the GMAA system is the
incorporation of new weighting methods apart from direct assignment or methods based
on trade-offs. Specifically, weight elicitation methods based on ordinal information can be
considered, where the DM has to provide ordinal information about the relative importance
of attributes/criteria, i.e., a ranking of importance of the criteria. Moreover, the DM is
allowed to provide additional information about the strength of the differences between
the ranked criteria if they are able or consider it appropriate to do so. This additional
information could be provided in different forms, including a ranking of differences, a se-
mantic scale, precise/imprecise cardinal information, ratio-based methods, and preference
statements. The DM can decide which information they are able/willing to provide (or
with which they feel more comfortable), and then the respective weighting method can
be used.

However, different weighting methods are available in the literature to deal with
only ordinal information within MAVT/MAUT, as well as with additional information
about the strength of the differences between the ranked criteria. In addition, different
comparative analyses have been carried out to analyse their performance based on empirical
and simulated data using different quality measures. The question is, then, is it possible
to recommend weighting methods for incorporation into the WEB-MAUT-DSS on the
basis of the comparison analyses in the literature? Or should further comparison analyses
be carried out to arrive at recommendations for different situations depending on the
available information?

In this paper, we try to answer these questions. To achieve this, we first review the
different weighting methods reported in the literature dealing with ordinal information on
weights or which also employ additional available information. We then look at papers in-
cluding comparison analyses of weighting method performance, analyzing the conclusions
drawn by the different authors in order to arrive at a recommendation or at least identify
missing comparison analyses.

The paper is structured as follows: in Section 2, weighting methods accounting for
ordinal information on weights are reviewed, including surrogate weighting methods
and methods based on the notions of pairwise and absolute dominance, as well as other
techniques like stochastic multi-criteria acceptability analysis (SMAA2) or simulation. Section 3
deals with weighting methods in which additional information is also available. A review of
comparison analyses in the literature involving the weighting methods under consideration
is reported in Section 4. The results of the different comparison analyses are aggregated
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and discussed in Section 5. Finally, some conclusions and future research lines are provided
in Section 6.

2. Weighting Methods Accounting for Ordinal Information

We consider an MAUT/MAVT context in which an additive model is used to evaluate
the alternatives under consideration:

u(Aj) =
n

∑
i=1

wjui(xj
i), (1)

where n is the number of attributes/criteria, xj
i is the impact/performance of the i-th

attribute for alternative Aj, ui represents the single utility/value assigned to the respective
attribute Xi, and wi is the weight of the i-th attribute.

Most authors agree with the classification of weighting methods into subjective and
objective approaches [12,13]. Subjective approaches reflect the DM’s subjective opinion
and intuition, which have a direct influence on the outcome of the decision-making process.
Objective approaches determine the criteria weights on the basis of the information con-
tained in a decision-making matrix by means of mathematical models, neglecting the DM’s
opinion. Although both approaches are recognized as efficient in dealing with real-life
multicriteria decision-making problems, most of the weighting methods in the literature
are based on the DM’s cognitive preferences. The hybridization of both concepts has been
discussed at length in [14,15], and other classifications are available in [12].

In this paper, we consider subjective MAUT/MAVT methods with partial/imprecise/
incomplete information where ordinal information is available on weights, i.e., the DM
is able to provide a ranking of importance of criteria/attributes, arranged in descending
order from the most to the least important ones:

w ∈ W =

{
w = (w1, ..., wn)|w1 ≥ w2 ≥ ... ≥ wn ≥ 0,

n

∑
i=1

wi = 1

}
. (2)

Different approaches can be found in the literature to deal with such a situation, par-
ticularly surrogate weighting methods and methods based on the notions of pairwise and
absolute dominance, as well as other techniques like SMAA2 or simulation (see Figure 1).

2.1. Surrogate Weighting Methods

In surrogate weighting methods (SWMs), a weight vector is selected from a set of admis-
sible weights to represent the set, which is then used to evaluate the alternatives on the
basis of MAVT/MAUT.

The original SWMs were proposed in [16] (equal weights (EW)), [17] (rank sum (RS), rank
exponent (RE) and rank reciprocal (RR) weights), and [18] (rank-order centroid (ROC) weights).
Table 1 shows how weights are computed for SWMs. The ROC and RR methods attach
more importance to the best rankings, whereas all the attributes are equally important in
the EW method, and the RS method places equal emphasis on all the weight rankings (i.e.,
w1 − w2 = w2 − w3 = · · · = wn−1 − wn). The RE method is a generalization of the RS
method, which is reduced to the EW and the RS methods if p is 0 or 1, respectively. Note
that the SMART exploiting ranks (SMARTER) method [19] incorporates a component to elicit
ordinal information on weights, from which ROC weights are derived.

Different SWMs have been proposed since then. They are summarized in the order in
which they were published, as follows.

In the equal ratio fixed (ERF) method [20], each weight is given a ratio to the next largest
weight, and w1 is determined as ∑ wi = 1. Alternatively, it is suggested that w1/wn be
elicited, thus making r = (w1/wn)(1((n−1)) in [21]. The geometric weights (GW) method wass
also proposed in [20], where weights decrease exponentially by a factor of

√
2.

In the rank order distribution (ROD) method [22], the relative w2 through wn are uni-
formly distributed at the interval (0, w1), and then the surrogate weights are obtained by
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computing their means and through normalization. The authors provided formulas for
n = 2 to 5, whereas the corresponding surrogate weights up to n = 10 were provided
in [23].

Figure 1. Weighting methods based on ordinal information and accounting for additional information.
[7,11,19,24–48].

In [49], the variable-slope linear (VSL) method was proposed, where the criteria weights
are assumed to be linear with a variable slope, and least-squares regression is applied to
identify the best of three different (quadratic, inverse, and exponential) models to estimate
the slope.

Maximum entropy ordered weighted averaging (MEOWA) weights were proposed in [50,51].
These are a special class of the ordered weighted averaging (OWA) method [52] that has the
maximal entropy for a specified value of attitudinal character θ, which, like Hurwicz’s α,
denotes the DM’s degree of optimism. The underlying notion of the least-squared ordered
weighted averaging (LSOWA) method [25] is to compute the weights that minimize the sum of
deviations from EW, since entropy is maximized when all weights are equal. It also extends
the OWA method, deriving the OWA weights that are, as far as possible, evenly spread out
around EW. The LSOWA method ensures that weights are the weight space if θ ∈ ( n−2

3n−3 , 2n−1
3n−3)

and θ ≥ 0.5 (see Table 1).
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Table 1. Surrogate weighting methods (SWMs).

Equal weights (EW) wi=
1
n , i = 1, ..., n

Rank sum (RS) wi=
n+1−i

n
∑

j=1
(n+1−j)

= 2(n+1−i)
n(n+1) , i = 1, ..., n

Rank exponent (RE) wi=
(n+1−i)p

n
∑

j=1
(n+1−j)p

, i = 1, ..., n

Rank reciprocal (RR) wi=
1/i

n
∑

j=1
1/j

, i = 1, ..., n

Rank-order centroid (ROC)
wi=

n
∑
j=i

1/j

n , i = 1, ..., n
Equal ratio fixed (ERF) wi(r)= ri

n
∑

j=1
rj

, i = 1, ..., n

Geometric weights (GW) wi=
100

(
√

2)i−1 , i = 1, ..., n

Variable-slope linear (VSL) wi=
1−(3.19514+ 37.75756

n )( i−1
100 )

n
∑

j=1
(1−(3.19514+ 37.75756

n )( j−1
100 ))

, i = 1, ..., n

Maximum entropy ordered (MEO) wi=
n−1
√

wn−i
1 ∗ wi−1

n , i = 2, ..., n − 1
Weighted averaging (MEOWA) w1, wn predetermined
Least-squared ordered weighted wi(θ)=

1
n + 6(2i−n−1)

n(n+1) + ( 1
2 − θ) i = 1, ..., n

Averaging (LSOWA)
Sum reciprocal (SR) wi=

1/i+ n+1−i
n

n
∑

j=1
(1/j+ n+1−j

n )
, i = 1, ..., n

Rank order total (ROT) wi=
3(n+1−i)(n+2−i)

n(n+1)(n+2) , i = 1, ..., n

Geometric sum (GS) wi=
si−1

n
∑

j=1
sj−1

, i = 1, ..., n

Generalized rank sum (GRS) wi(δ) =
(δ−1)δn−i

δn−1 , i = 1, ..., n
Improved ROC (IROC) wi(φin, ..., φnn)=

n
∑
j=i

(φjn/j), i = 1, ..., n

Generalized ROC (GROC) wi(φ)=
n
∑
j=i

φn−j

n
n−j−i

∑
k=1

φk−1
, i = 1, ..., n

Rank order logarithm (ROL) wi=
log( i

n+1 )
n
∑
j=i

log( j
n+1 )

, i = 1, ..., n

This Table summarizes the most common SMWs in the literature and their mathematical formulas.

Combinations of SWMs have also been proposed by different authors, such as the sum
reciprocal (SR) method [26], an additive combination of RS and RR weight functions, and the
rank order total (ROT) method [53], a combination of the RS method and the ROC method.
In the geometric sum (GS) method [26], the resulting weights multiplicatively reflect the
rank order, including the parameter s (see Table 1).

The aim of the generalized rank sum (GRS) method [54] is to maximize the distance
from the closest inequality constraint of the weight space, which is tantamount to finding
the middlemost solution to the constraints. The result is actually a simple extraction from
the finite geometric series, and δ (see Table 1) has to be more than 1 to ensure the order
relations of the weight space. Note that the GRS method reduces to the EW method when δ
is close to 1.

Finally, the most recent proposals regarding SWMs consist of revised versions of the
ROC method. The improved ROC (IROC) method [55] claims, contrary to the ROC method,
that DM preferences at the corners of the weight space may be similar rather than equal and
establishes the corresponding different coefficients φjn by means of simulation techniques.
On the other hand, the generalized ROC (GROC) method [56] incorporates an upper bound
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φ for the ratio wi/wi+1, which implies that a given weight needs to be multiplied by φ to
be equal to the next highest weight, leading to the following weight space:{

(w1, ..., wn)|w1 ≥ φw2, w2 ≥ φw3, ..., wn−1 ≥ φwn,
n

∑
i=1

wi = 1, wi ≥ 0

}
. (3)

Note that φ = 1 in the ROC method. Meanwhile, another revised version of the ROC
method, the rank order logarithm (ROL) method, was proposed in [57] (see Table 1).

Note that one or more parameters have to be set in some of the above SWMs, which
may imply the application of simulation techniques (IROC). Alternatively, the DM may be
required to provide additional information, such as w1/wn in the ERF method or an upper
bound for the ratio wi/wi+1 in the GROC method. The θ, δ, and s parameters also have to
be set in the LSOWA, GRS, and GS methods, respectively.

2.2. Methods Based on Pairwise and Absolute Dominance Notions

Pairwise and absolute dominance notions can be used to directly recommend the best alter-
native and fully rank alternatives rather than selecting a weight vector from a set of admissible
weights. Absolute dominance considers the following linear optimization problems:

Uk = max{wuk|w ∈ W} and Lk = min{wuk|w ∈ W}, (4)

and alternative Ak absolutely dominates Aj if Lk > Uj, i.e., the lower bound of Ak exceeds
the upper bound of Aj.

The use of absolute dominance values is exemplified by the modification of four clas-
sical decision rules to encompass an imprecise decision context concerning weights and
component values/utilities [27,28]:

• The maximax or optimist, based on their maximum guaranteed value, i.e., max{Uj, j =
1, ..., m}.

• The maximin or pessimist, based on their minimum guaranteed value, i.e., max{Lj, j =
1, ..., m}.

• The minimax regret rule, based on the maximum loss of value with respect to a better
alternative, i.e., min{MRk, k = 1, ..., m}, where MRk represents the maximum regret
incurred when choosing alternative j, i.e., MRk = max{max{u(Aj)− u(Ak)|w ∈ W}
∀j ̸= k}.

• The central value rule, based on the midpoint of the range of possible performances,

i.e., max{Uj+Lj
2 , j = 1, ..., m}.

Two additional rules were proposed in [11]: the quasi-optimality rule and the quasi-
dominance rule.

Regarding pairwise dominance, linear programming displays dominance and potential
optimality for alternatives when information about weights, utilities, and alternative
performances is available in the literature [29–31,58,59], whereas the concepts of weak
potential optimality and strong potential optimality were proposed in [60].

In the rank inclusion in criteria hierarchies (RICH) method [61], the DM is allowed to
provide a ranking of weights or to specify subsets containing the most important attributes,
leading to decision recommendations on the basis of the computation of dominance rela-
tions and decision rules. It was implemented in a user-friendly decision support system,
RICH Decisions (http://decisionarium.aalto.fi (accessed on 26 August 2024), [62]).

Another approach accounting for pairwise dominance consists of considering infor-
mation about each alternative’s intensity of dominance, known as dominance measuring
methods (DMMs) [7,32,63,64]. DMMs are based on the computation of a dominance matrix
including pairwise dominance values, which are exploited in different ways to derive
measures of dominance to rank the alternatives under consideration.

http://decisionarium.aalto.fi
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The first DMMs, OUT I, and OUT II, were proposed in [63], where dominating (OUT I)
and dominated measures are computed for each alternative, and then a net dominance
accounting for the difference between them is used to rank the alternatives (OUT II).

The methods in [63] were extended in [32], where dominating and dominated mea-
sures are combined into a dominance intensity reducing the duplicate information involved
in the computations (dominance measuring extension 1 (DME1) method). The dominance
measuring extension 2 (DME2) method was also proposed in [32], which derives a global
dominance intensity index to rank alternatives on the basis that

Dkl ≤ wT(vk − vl) ≤ −Dlk, ∀w ∈ W, vk, vl ∈ Vkl , (5)

where Dkl is the pairwise dominance value between alternatives Ak and Al , and W and Vkl
define the feasible region for weights and values for each attribute, respectively.

A new dominance intensity method based on triangular fuzzy numbers and a distance
notion was proposed in [7]. This method, known as dominance intensity method (DIM),
incorporates the DM’s attitude toward risk into the analysis. Instead of pairwise dominance
(Dkl), the DIM method uses the following values:

vkl =
n

∑
j=1

wc
j v

c
kj −

n

∑
j=1

wc
j v

c
lj, (6)

where (wc
1, ...wc

n) is the centroid of the polytope representing the weight space and (vc
k1, vc

l1),
..., (vc

kn, vc
ln) are the centroids of the polytopes in the n attributes delimited by the constraints

accounting for alternatives Ak and Aj.

2.3. Other Weighting Methods Based on Ordinal Information

Probability distributions and partial preference information are used to represent
inaccurate uncertain criteria values and weights in the stochastic multi-criteria acceptability
analysis (SMAA) method [65] in order to explore the weight space and identify the scores
that each alternative would need to achieve if it were to be the preferred option or ranked
in a specific position. The SMAA-2 method [33] extends SMAA by incorporating various
types of preference information, including a priority order for the criteria.

In addition, Monte Carlo simulation techniques could also be used to deal with ordinal
information on weights. For instance, the GMAA system [1,2], an MAUT decision sup-
port system (DSS) accounting for imprecision concerning DM preferences and uncertainty
about alternative performances, includes a sensitivity analysis tool that randomly gener-
ates weights while preserving a total or partial attribute rank order. The GMAA system
computes several statistics about the rankings of each alternative and provides multiple
boxplots for the alternatives that can be useful for discarding and/or identifying the most
preferred available alternatives.

3. Weighting Methods Accounting for Additional Information

In many real decision-making problems, the DM is unable/unwilling to provide
additional information on the ranking of the importance of attributes, as pointed out in
Section 1, in which the above methods are applicable. However, the DM might provide
information about the differences between the weights of consecutive criteria in different
ways (see Figure 1).

One possibility is the provision of precise/imprecise cardinal information, or ratios.
Alternatively, the DM could provide a ranking of the differences between the weights of
consecutive criteria, although a semantic scale could also be used. In addition, additional
information on the basis of preference statements could be available. These possibilities are
described in detail below.
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3.1. Precise/Imprecise Cardinal Information

Different methods using scores to derive the strength of the differences between the
weights of criteria can be found in the literature, including the direct rating, SWING, and
simple multi-attribute rating technique using SWING (SMARTS) methods.

In direct rating [34], the DM first ranks all the criteria according to their importance
and then rates each criterion on a scale of 0–100. Indeed, a high score means that the factor
is important. Then, some form of normalization can be applied to this scoring operation.

The SWING method [35] explicitly incorporates the attribute ranges in the elicitation
questions. The DMs are asked to consider the worst consequence for each criterion and to
identify which criterion they would most prefer to change from its worst to its best outcome.
This criterion is assigned the highest number of points—for example, 100. The procedure
is then repeated with the remaining criteria. The criterion with the next most important
swing is assigned a number relative to the most important criterion (thus the points scored
by criteria denote their relative importance), and so on. Finally, the scored points are
normalized to a sum of one.

The simple multi-attribute rating technique (SMART) and the SWING method were later
combined into the SMARTS method [19], where SWING was used to set up the order of
importance of the criteria.

Simos’ method proposes that the DM should rank criteria by placing cards containing
the names of the criteria under consideration in order of the least to the most important
(where cards containing equally important criteria are grouped together) [36,37]. Then, the
DM is asked about the importance of successive criteria in the ranking by introducing white
cards between two successive cards (or subset of cards). Finally, the collected information
is processed to derive the normalized weights, wi. Simos’ method was extended in [38] to
overcome some objections to how the normalized weights are derived.

The cardinal and rank ordering of criteria (CROC) method was proposed in [39,40].
CROC is a two-stage distance-based method where the DM provides the magnitude of the
differences between the ranked criteria.

In the first stage, the DM is asked to provide information about their preferences.
This stage consists of three steps. First, ordinal information is collected in a criteria ranking
with a SWING weighting style, producing a Hasse diagram. Then, the difference between
the weights for the most and the least important criteria is assessed. Note that it is easier for
DMs to provide information on the most and least important criteria than those in between.
Finally, the criteria are equally distributed along a slider (using a graphical user interface),
i.e., all magnitudes of the differences are initially equal, and each criterion is associated
with a clouded region with a length equal to the default distance. Then, the DM is asked
to adjust the distances between criteria to represent information of cardinal importance
between them, leading in some cases to overlaps between the respective clouded regions.

In the second stage, the information provided by the DM is translated into a constraint
set for weight variables, enabling the use of decision analysis methods to model imprecision
by means of linear constraints. This process is explained in detail in [41].

This method is capable of handling imprecision in two ways: by means of intervals
(where the DM statement xi in the slider is interpreted as an interval such that wi ∈
[xi/ ∑ xi − ai, xi/ ∑ xi + bi], with ai, bi ∈ (0, 1] representing the degree of confidence in the
weights) and/or by means of weight comparison.

Although the step-wise weight assessment ratio analysis (SWARA) method [42,66] was
originally proposed as a dispute resolution method in a group decision-making context, it
is a score-based method which has also been adapted to deal with a single DM.

In SWARA, after scoring (sci, i = 1, ..., n), the differences in the consecutive criteria are
determined for incorporation into the weight elicitation as follows:

Yi =
Yi−1

1 + (sci − sci−1)
, i = 2, ..., n, (7)

with Y1 = 1 and where sci is the score provided by the DM for the i-th criterion.
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Once the values of Yi, i = 2, ..., n are computed, a normalization process is performed
to derive the weights: wi =

Yi
∑n

i Yi
, i = 1, ..., n.

3.2. Ratio-Based Methods

In the simple multi-attribute rating technique (SMART) [67], the DM is asked to rank
criteria according to their importance from worst to best. Then, 10 points are assigned to
the least important criterion, and an increasing number of points are assigned to the other
criteria to address their importance relative to the least important criterion. The derived
weights are normalized.

The full consistency method (FUCOM) based on pairwise comparisons of criteria was
proposed in [68]. FUCOM consists of three steps. In the first step, the criteria are ranked
according to their significance from the highest to lowest weight. In the second step, the
ranked criteria are compared, leading to comparative priorities

(φ1/2, φ2/3..., φn−1/n), (8)

where φi/i+1 represents the significance (priority) that the i-th criterion has compared to the
(i + 1)-th criterion of the ranking. Note that only n − 1 comparisons are necessary. Finally,
in the third step, the weights are computed, taking into account the fact that they should
satisfy the following two conditions:

• The weight ratios should be equal to the comparative priorities, i.e., wi
wi+1

= φi/i+1, i =
1, ..., n − 1.

• The weight should satisfy the condition of mathematical transitivity, i.e., φi/i+1 ⊗
φi+1/i+2 = φi/i+2 and then wi

wi+2
= φi/i+1 ⊗ φi+1/i+2.

Full consistency is achieved if transitivity is fully respected. In order to meet such
conditions, the following constraints are established on weights | wi

wi+1
− φi/i+1| < χ and

| wi
wi+2

− φi/i+1 ⊗ φi+1/i+2| < χ, with the minimization of χ (χ = 0 implies full consistency).
Then, weights are obtained by solving the minimization optimization problem (where
∑i wi = 1 is also incorporated as a constraint) with the corresponding degree of consistency,
DFC(χ).

3.3. Ranking of Differences between the Weights of Consecutive Criteria

The first possibility that we consider consists of providing a ranking of the differences
between the weights of consecutive criteria. Given that the DM has established that
w1 ≥ w2 ≥ ... ≥ wn ≥ 0, we define ∆j = wj − wj−1, j = 1, ..., n − 1, and a ranking on ∆j
elements has to be provided by the DM. For instance, the ranking ∆2 ≥ ∆1 ≥ ∆4 ≥ ∆3
would correspond to the example shown in Figure 2.

Figure 2. Ranking of weights and differences between consecutive weights.
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In [43], this kind of information is considered in the computation of dominance in
additive weighting models, whereas an effective algorithm for an additive utility function
and the partial information represented by a set of linear constraints was proposed in [44],
including ranking of weights or alternatives, paired comparison of weights or alternatives,
and strengths of preferences of weights or alternatives. Ref. [69] extended the work in [44].

The ∆ROC rule deals with ordinal information about the position of alternatives and
about the difference in values between consecutive alternatives with respect to the different
criteria under consideration and ordinal information about weights [70]. The performance
of ∆ROC is compared with that of DMMs in [7]. Note, however, that the ranking of
differences refers to consecutive alternatives rather than weights in ∆ROC. Thus, it cannot
ultimately be classified as a weighting method measuring differences between the weights
of consecutive criteria. Therefore, it is not considered further in this study.

More recently, the minimizing squared deviations from extreme points (MSD) was proposed
in [45], which extends the ROC weighting method by seeking out surrogate weights
adjusted to the barycenter of the weight set. MSD accounts for the strict ranking of weights,
ranking with multiples, the ranking of differences in weights, or a mixture of these methods,
and it was proven, using simulation techniques, to outperform a linear programming-based
weighting method.

The ranking of differences between the weights of consecutive criteria could also
be addressed using approaches based on pairwise and absolute dominance, affecting
the computation of Uk and Lk in the modification of classical decision rules and of the
pairwise dominance matrix in DMMs. Note that linear constraints would be added to the
corresponding optimization problems, and a partial, rather than a complete, ranking of
differences could be provided, which is less stressful for DMs.

3.4. Semantic Scales to Account for Differences between the Weights of Consecutive Criteria

Another possibility for representing the strength of the differences between the weights of
consecutive criteria is to use a semantic scale.

For instance, the following scale was proposed in [71,72]:

• ≥ 0, equally important;
• ≥ 1, slightly more important;
• ≥ 2, more important (clearly more important), and
• ≥ 3, much more important.

This scale is used in [72] to extend the SR method, leading to the DSR method, whereas
the SW methods RS, RR, ROC, and SR are adapted in [71] to account for this scale, leading
to the so-called cardinal rank sum (CRS), cardinal rank reciprocal (CRR), cardinal rank-order
centroid (CRC), and cardinal sum reciprocal (CSR) methods, respectively. All of these extended
methods derive a weight vector in the same way as the original SR and SW methods. Note
that the DSR method in [72] is the same as the CSR method in [71]. In [73], the GS method
was extended in the same way, leading to the CGS method. In addition, the CAR method
proposed in [46] uses the semantic scale to elicit the values of the alternatives under each
criterion in a similar way to the weights.

The same scale was used in [74] to propose the partial SWING (P-SWING) method,
a refined version of the SWING method [35] that allows for intermediate comparisons,
avoiding synthetic constructs to improve understanding. However, these intermediate
comparisons refer to the differences in alternative values for different criteria rather than
differences between the weights of consecutive criteria. Thus, we will discard this method
from further analysis.

3.5. Additional Information on the Basis of Preference Statements

A systematic elicitation process based on an extended difference ranking (EDR) method
was proposed in [72], including the DM’s strength of preference order over weights. Specif-
ically, it is stated that the set of attributes can be partitioned as {XI , X−I}, where I defines
an arbitrary subset of X = {X1, ..., Xn} such that I ∪−I = {1, 2, ..., n}. If the decision maker
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asserts (x̄I , x−I) ≳ (xI , x̄−I) for a specific I, the constraint ∑
i∈I

wi ≥ ∑
i∈−I

wi can be added

to the set of constraints. The authors propose using these new constraints to refine the
weights derived from the DSR method, also proposed in [72], where a semantic scale is
used to represent the strength of the differences between the weights of consecutive criteria
(see Section 3.4). Unlike the above methods, EDR outputs an interval weight vector.

In the flexible and interactive tradeoff (FITradeoff ) method, the DM is required to provide
less information than in the standard tradeoff procedure [47]. FITradeoff systematically
evaluates the possibility of finding a solution to the problem while the elicitation process is
ongoing, using partial information elicited from the DM at any point in the process to solve
a linear programming problem in order to reduce the subset of potentially optimal alterna-
tives.

In the first step, the order of the weights wi is obtained (w1 > w2 > · · · > wn),
whereas the subsequent steps yield indifference relations in order to find the value of wi.
In step i, the DM is asked to provide the value xi such that they are indifferent regarding
the consequences A = (x1, . . . , xi−1, x̄i, xi+1, . . . , xn) and B = (x1, . . . , xi, xI

i+1, xi+2, . . . , xn),
with xi and x̄i being the worst and best value in attribute Xi, respectively, and thus, xi = 0
and x̄i = 1. Then, as v(A) = v(B), we have w1 = wi+1v(xI

i+1). Taking into account the fact
that ∑i wi = 1, we would need n − 1 similar equations to find the values of the weights (wi).
If the DM is unable to specify xI

i , they can alternatively provide an interval xI
i ∈ (x′i , x′′i ), so

that wi > wi+1v(x′i+1) and wi < wi+1v(x′′i+1).
Note that, in each iteration, the FITradeoff method solves the corresponding optimiza-

tion problems with the available weight space to identify non-dominated and potentially
optimal alternatives. Dominated alternatives are removed from the analysis, and the
method ends if a unique non-dominated or potentially optimal alternative is found. Oth-
erwise, the values for x′i+1 and x′′i+1 are elicited in the next step. Thus, the weight space
is progressively reduced, and more alternatives can be identified as dominated, thereby
possibly reducing the number of DM preference statements.

The use of data visualization in a new method based on FITradeoff is proposed in [75],
whereas its implementation in a decision support system (www.fitradeoff.org, accessed on
26 August 2024) is described in [76], accounting for a neuroscience-based decision-making
approach in order to modulate changes in the decision-making process and in the design of
the DSS.

4. Comparison Analyses of Weight Elicitation Methods

When a new weighting method is proposed, it is usual practice to carry out a perfor-
mance comparison analysis against other methods in the literature. In addition, papers
focused on comparison analyses of weighting methods can also be found in the literature.
In this section, we conduct a review of the comparison studies existing in the literature,
where different information on weights is provided by the DM, ranging from a simple
ranking of the weights to additional information as described above.

We used the Citation Gecko search tool to carry out the review process, taking two
seeds corresponding the most recent papers we found in which a weighting method
based on ordinal information, or a comparison analysis of such methods, was performed.
We completed the search directly using combinations of keywords such as weight, ordi-
nal information, comparison, MAUT, surrogate weights, etc., in ScienceDirect, Scopus,
and PubMEd.

Tables 2 and 3 show a summary of the comparison studies considered, including
information about the corresponding authors, the data source (empirical and/or simulation-
based), the methods under comparison, and the quality metrics used.

www.fitradeoff.org
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Table 2. Comparison analyses in the literature (SWMs) I.

Papers Data Compared Methods Quality Measures

Stillwell et al. (1981) [17] Empirical EW, RS, RR, RE Kendall’s τ
Barron and Barret (1996) [77] Simulations EW, RS, RR, ROC Hit ratio, proportion of

maximum value range.
Barron and Barret (1996) [18] Simulations EW, RS, RR, ROC Average MAV, empirical

ranks, average value loss.
Jia et al. (1998) [78] Simulations EW, RS, ROC, Ratio weights Hit ratio

Pöyhönen and Hämäläinen (2001) [79] Empirical AHP, direct point allocation Inconsistencies in preferences,
SMART, SWING, tradeoff use of numbers to describe

preferences, spread of weights,
similarity of weights, overall
scores of alternatives.

Bottomley and Doyle (2001) [48] Both Direct rating, Max100, Min10 Kendall’s τ, internal consistency,
convergent validity.

Roberts and Goodwin (2002) [22] Simulations RR, RS, ROC, ROD Hit ratio, average value loss
Noh and Lee (2003) [80] Empirical ROC, AHP, a fuzzy method Correlation, number of pairwise

comparisons, ease of use.
Ahn and Park (2008) [63] Simulations Decision rules (CENT) Hit ratio, Kendall’s τ

OUT I, OUT II
EW, RS, RR, ROC

Sarabando et al. (2009) [11] Simulations Decision rules, ROC Hit ratio, mean position of
the supposedly best alternative
in each rule’s ranking, proportion
of cases where the position was
1, 2, 3, 4 or higher.

Riabacke et al. (2009) [40] Empirical CROC, SMART, direct rating cognitive effort, practical
usefulness, consistency.

Ahn (2011) [81] Simulations MEOWA, ROC, RR, RS, EW Hit ratio, Kendall’s τ
Roszkowska (2013) [82] Empirical EW, RS, RR, ROC Theoretical rationale,

choice accuracy.
Mateos et al. (2014) [32] Simulations RS, RR, ROC, EW Hit ratio, Kendall’s τ

Decision rules
OUT I, OUT II, DME1, DME2

Aguayo et al. (2014) [7] Simulations OUT I, DME1, DME2, DIM Hit ratio, Kendall’s τ
Danielson and Ekenberg (2014) [26] Simulations ROC, SR, RS, RR, GR Hit ratio

The first paper dates back to 1981, and 27 comparison analyses have been carried out
since then, most of which (14) were published in the last decade (2010–2019). In addition,
SWMs are clearly the methods that have been most analyzed in these comparisons, either
with respect to each other or to other methods, mainly decision rules and dominance
measuring methods. However, other weighting methods have sporadically been included
in the comparisons, such as the analytic hierarchy process (AHP), tradeoffs, discrete choice
experiments, the PAPRIKA methodology, the best worst method, conjoint analysis, and the
Slack method (see Tables 2 and 3).

Regarding the data source, there are two possibilities for empirical-based analyses.
The common opinion of a group of DMs is sometimes taken as a sample, whereas other
comparison analyses are based on data from previous real-life cases.

On the other hand, Monte Carlo simulation techniques can be used to analyze the per-
formance of weighting methods in different scenarios with different numbers of attributes
and alternatives. For this, weight vectors are randomly generated using a probability distri-
bution (uniform, normal, or exponential) and TRUE rankings of alternatives are derived
from them using the additive multi-attribute utility function. These random generated
weight vectors are then used in the weighting methods under comparison to derive the
corresponding rankings, which are compared against the TRUE rankings using the quality
measures. The uniform distribution is used as the general case in which the derived weight



Information 2024, 15, 527 13 of 23

vectors may have similar or different weight values in magnitude, whereas the normal
and exponential distributions function as particular cases in which weights of similar or
very different magnitudes will be generated, respectively. Moreover, filtering processes can
be incorporated into the generation to discard random vectors that are highly unlikely in
real life.

Table 3. Comparison analyses in the literature (SWMs) II.

Papers Data Compared Methods Quality Measures

Larsson et al. (2015) [41] Empirical CROC, SMART, direct rating Ease, consistency
Danielson et al. (2016) [46] Both SMART, CAR, AHP Hit ratio, Kendall’s τ,

efficiency, ease of use, ease
of communication, time efficiency,
cognitive correctness.

Alfares and Duffuaa (2016) [83] Simulations RR, RS, ROC, GW, LVS Mean absolute percentage error,
least significance distance.

Danielson et al. (2017) [71] Simulations ROC, RE, SR, RR, EW Hit ratio, mean square spread,
Simos’ methods mean square variation

Danielson and Ekenberg (2017) [84] Simulations ROC, SR Hit ratio, standard deviation
CRC, CRS, CRR, CSR
Simos’ methods

Ahn (2017) [45] Simulations MSD, Slack Hit ratio, Kendall’s τ
de Almeida et al. (2018) [85] Simulations EW, RS, RR, ROC Hit ratio, frequency of cases

with the perfect consistency.
Kunsch and Ishizaka (2019) [86] Simulations ROC, RR, RS, EW Hit ratio, Kendall’s τ, value loss
Németh et al. (2019) [87] Simulations Direct rating, SMARTS, AHP, Resource requirement, software

discrete choice experiments requirement, chance of bias,
conjoint analysis general complexity.

Burk and Nering (2023) [23] Empirical RS, REF, RR, SR, ERF, Euclidean distance, mean absolute
ROC, LVS, ROD deviation, maximum absolute

deviation, Kullback-Leibler
divergence.

Lakmayer et al. (2023) [8] Simulations ROC, SR, RR, RS Hit ratio,
CRC, CRS, CRR, CSR standard deviation, mean.
DIM

Hatefi et al. (2023) [55] Simulations EW, RS, RE, RR, ROC, Steepness, nonlinearity,
VSL, LSOWA, SR, GRS, ROT, noncompensatoriness, paretoness,
IROC, GROC optimism, utilization, symmetry,

consistency.
Lakmayer et al. (2023) [73] Simulations ROC, SR, RR, RS, Hit ratio,

CRC, CRS, CRR, CSR, standard deviation, mean.
CGS, GS, LP

Hatefi (2024) [57] Simulations ROC, EW, RS, RE Hit ratio,
and
empirical VSL, LSOWA, ROL, GRS Kendall’s τ

RR, SR, ROT Steepness, nonlinearity.
Lakmayer et al. (2024) [88] Simulations ROC, SR, RR, RS, Hit ratio,

GS Approximate Maximum Hit Ratio.

There are significantly fewer papers using empirical than simulated data. This could
be explained by the fact that it is hard to assemble enough real-life cases and/or experts.
Note that some papers use both empirical and simulation-based information [48,79,87].
Moreover, DMs may be asked their opinion at several stages of an experiment and evaluate
methods accordingly [41,48,79,87].

The hit ratio and rank-order correlation are the most used metrics in comparison
processes. The hit ratio is the proportion of cases where the method under consideration
outputs the same best alternative as in the TRUE ranking, whereas the rank-order correlation
(Kendall’s τ, [89]) measures how similar the overall structures ranking alternatives are
between the TRUE ranking and the ranking output by the method under consideration.
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However, other metrics, such as value loss, mean absolute percentage error, Euclidean
distance, Kullback–Leiber divergence, the mean absolute deviation, and the maximum
absolute deviation, have also been used (see Tables 2 and 3).

We first review in Section 4.1 the comparison analyses focusing on the situation where
no additional information apart from the ranking of importance of attributes is provided,
where SWMs, methods based on absolute and pairwise dominance, the SMAA-2 method,
and Monte Carlo simulation techniques can be applied. We then look at the comparison
analyses focusing on methods in Section 4.2 where additional information is provided by
the DM.

4.1. Comparison Analyses When Only a Ranking of Criteria Is Available

Different analyses have been carried out to compare SWMs [17,18,23,26,77,78,82,83,85,86,90]
and different dominance intensity measuring methods [7] in order to identify the best one in
each category. On the other hand, comparison methods accounting for methods in the different
categories have also been carried out [8,11,32,63].

The first comparison analysis on SWMs was conducted by Stillwell based on empirical
data from three decision problems, where only the EW, RS, RR, and RM methods were
considered [17]. The conclusion was that EW is outperformed by the other methods. Barron
and Barret incorporated the ROC method into the comparison analysis, concluding, on
the basis of simulation techniques using EMAR software, that the best method is ROC,
followed by RR, RS, and EW [18,77]. The same conclusion was reached by de Almeida et al.
many years later, taking into account the hit ratio and the frequency of cases with perfect
consistency [85]. The EW, RS, and ROC methods were compared against a ratio-based
method in [78] based on unbiased judgments of attribute weights but subject to random
error, concluding that the comparison favored ROC over the RS and EW methods.

ROC was compared with AHP and a fuzzy method in [80], and it is concluded that
the simplicity and ease of use of the ROC method make it a practical method for eliciting
weights. In addition, ROC weights have an appealing theoretical rationale and outperform
EW, RS, and RR in terms of choice accuracy [82]. Moreover, the ROC method’s performance
is very good when applied to real-life cases [91].

The ROD method was proposed in [22] and compared with RR, RS, and ROC using
simulation techniques on the basis of the hit ratio and the average value loss. The conclusion
was that RS and ROD are the best, followed by ROC and RR. The use of the RS method
was recommended since formulae for ROD weights become more complex as the number
of attributes increase.

The comparison analysis performed in [81] found that MEOWA weights are perfectly
compatible with the ROC weights, which outperform RR, RS, and EW.

The SR and GS methods were proposed in [26], and were also compared to the ROC,
RS, and RR methods. An important concept introduced in this comparative analysis is the
degree of freedom (DoF) when randomly generating weight data. If the DM stores the criteria
preferences in a way similar to a given point sum, then there are n − 1 DoF for n criteria.
On the other hand, if the DM stores criteria preferences in a way that places no limit on the
total number of allocated points (or mass), then there are n DoF. These two models of DM
behavior yield very different results in assessing surrogate weights. Moreover, weak and
strong filtering processes were incorporated into the analysis to discard random vectors
that are highly unlikely in real life. It was concluded that the GS and SR methods are
the most efficient and robust SWMs, with a very good average performance, which was
consistent irrespective of differences in DM behavior. Moreover, GS slightly outperforms
SR, but is more complex since it incorporates a parameter.

The EW, RE, RR, ROC, and SR methods, along with Simos’ method, were compared
in [84] for both n − 1 and n DoF on the basis of simulation techniques taking into account
the hit ratio, the mean square spread and the mean square variation, concluding that SR is
clearly the preferred method, followed by ROC, RE, and Simos’ method.
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The GW and VLS methods were incorporated to comparison analyses for the first time
in [83], together with RS, RR, ROC, and LSD. Simulation techniques varying the number of
criteria and weight probability distributions allowed the relative performance of the rank-
weighting methods to be compared, accounting for different decision-making situations.
Note that in the above comparison analyses based on simulation techniques, the use of a
unique distribution favored some weighting methods over others. Specifically, uniform,
normal, and exponential distributions defining different priority structures of DMs and two
weight normalization rules were used in this analysis. The uniform distribution distributes
weights evenly across the whole range of values, whereas the normal distribution implies
a greater likelihood of medium weights, avoiding extreme values, and the exponential
distribution assigns most weight to a few top-ranked criteria.

It was concluded that the performance of the SWMs under consideration depends
on the number of criteria and their weight distribution. The mean absolute percentage error
and the least significance distance were used as quality measures. The RS method was best
for uniform weights, whereas the VSL and the ROC methods were best for normal and
exponential weights, respectively. Thus, if the criteria weight distribution is known in any
specific MCDM situation, then the respective best method can be applied; otherwise, the
weights can be computed using all three methods and a secondary rule should be applied.
Note that the statistical distribution of weights can be elicited from the DM using just a
few statements.

Ref. [86] agreed with Ref. [83] that the performance of SWMs is entirely dependent on
how the weight simplex is defined, i.e., the probability distribution used to generate the
TRUE weights. The EW, RE, RR, and ROC methods were analyzed on the basis of the hit
ratio, Kendall’s τ, and the value loss, concluding that ROC outperforms the other methods
when a uniform distribution is considered. Note, however, that this is a special case among
other elicitation possibilities, such as other non-uniform distributions.

More recently, a comparison analysis was carried out in [23] including a lot more
SWMs (RS, RE(p = 1.17), RR, SR, ERF(r = 0.716), ROC, VLS, and ROD). It was stated that it
is very difficult to establish what kind of distribution should be used to randomly generate
weights and what affects the simulation results. Therefore, a large number of elicited
weights from real-world applications (209 sets of weights with the number of attributes
ranging from 2 to 12) were collected.

In the comparison analysis, four alternative measures were used to analyze the quality
of the SWMs, and the results derived by each measure were different in some cases.
Regarding the average Euclidean distance from elicited weights, ERF > SR > RS > ROD >
RE > RR > VLS > ROC, whereas the positions of RE and ROD were inverted using the
mean absolute deviation, and the same order was derived from the maximum absolute
deviation. Finally, the results using the Kullback–Leibler divergence were clearly different:
SR > ROD > RE > RS > RR > ERF > ROC > VLS. However, if the four measures are
taken into account, SR was always the best or was statistically indistinguishable from the
best SWM, whereas VLS and ROC were always the worst SWMs.

In one the first most recent comparisons carried out in [90], the LSOWA, GRS, ROT,
IROC, and GROC methods were incorporated into the analysis. A theoretical analysis was
performed on the basis of several evaluation measures: steepness (steeper patterns of the
weight curves are higher ranked), nonlinearity of the weight curves, non-compensatoriness
(number of comparisons in which the weight of a criterion is greater than the sum of
weights of the less important criteria), paretoness (80% of outcomes of most phenomena are
due to only 20% of relevant causes), optimism (degree of aggregation [52]), utilization of
information (making use of weight entropy [50,52]), symmetry, and consistency (accounting
for possible rank/weight reversal).

No recommendation about the best SWM was given, since the results differ when
different measures are applied, but a five-step selection procedure was proposed. The op-
timism and utilization of information measures are first used to discard some SWMs by
computing the DM’s coefficient of optimism and the degree of certainty about the information,
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which are compared with the optimism and the utilization levels of the SWMs, respectively.
Then, the consistency is analyzed, discarding additional SWMs on the basis of a threshold.
Finally, the remaining measures are computed, and the highest-scoring SWM is selected.

The RR, RS, ROC, SR, and GS with different values for the s parameter were com-
pared in [73], where both n − 1 and n DoF and a filtering process are again used. It was
confirmed that the performance of ROC and SR was stronger than that of the classical
methods from [17,92], whereas the results for the even newer GS method were mixed.
These inconclusive results leave the research field open.

The ROL method was proposed for the first time in [57]. Three types of analysis
(theoretical, simulation-based and empirical) were used to compare ROL with EW, RR, RS,
ROC, SR, ROT, RE, VSL, LSOWA, and GRS. All three analysis types demonstrated that ROL
is as strong as the ROC method.

Finally, RR, RS, ROC, SR, and GS were compared again in [88], using both n − 1 and
n DoF, as well as a filtering process. This comparison is novel in that it considers three
different probability distributions (uniform, beta, and log-normal). The results again show
that RS and ROC perform better for n − 1 and n DoFs, respectively, whereas SR is ideal for
an equal mixture of DoFs.

Looking at other weighting methods based on the absolute or pairwise dominance
notions, different comparison analyses can be also found in the literature.

The first was in [63], comparing the CENT decision rule with SWMs (EW, RS, RR, and
ROC), together with the dominance measuring methods (OUT I and OUT II) proposed in
that paper. The analysis was performed on the basis of simulation techniques using the hit
ratio and Kendall’s τ. It was concluded that ROC was the best method, followed by RR
and RS, the dominance measuring methods and the CENT decision rule (identified as the
best decision rule).

A similar conclusion was reached in [11], where decision rules were compared with
the ROC method using the hit ratio, the mean position of the supposedly best alternative
in each rule’s ranking, and the proportion of cases where the position was 1, 2, 3, 4, or
higher. The ROC method slightly outperformed the decision rules. Note that dominance
measuring methods were not considered in this analysis.

In [93,94], a comparison analysis was carried out accounting for decision rules, the
OUT I, OUT II, DME1, and DME2 dominance measuring methods, and the SMAA and
SMAA-2 methods. However, weight intervals rather than ordinal information on weights
were considered. Later, the SWMs (RS, RR, ROC, and EW), the decision rules, and the
DMMs (OUT I, OUT II, DME1, and DME2) were compared in [32]. To achieve this, simu-
lation techniques were used together with the hit ratio and Kendall’s τ quality measures.
The conclusion reached was that DME2 and ROC outperform the other methods.

The DIM method was proposed in [7], which was compared with previous dominance
measuring methods (OUT I, DME1, and DME2) and Sarabando and Dias’ method [70].
Ordinal information about the position of alternatives, the difference in values between
consecutive alternatives for the different criteria under consideration, and weights were con-
sidered, concluding that the DIM and Sarabando and Dias’ methods perform very similarly
for a neutral, risk-prone, and risk-averse DM. Both outperform the other dominance-
measuring methods.

Finally, the SWMs (RR, RS, SR, and ROC) and dominance-measuring methods were
compared in [8]. The effects of the generator on dominance intensity methods was studied
for the very first time since the different dimensions of generators were not differentiated
in either [32] or [7], affecting both efficiency and robustness analyses. In this paper, criteria
weights for DME2 were sampled using n − 1 DoF, and m attribute values were sampled
using m DoF, but normalizing the values. The conclusion was that SR outperforms the
other methods in terms of robustness, and DME2’s performance is nowhere near as good
as that of more classical SWMs. Thus, the added complexity of DIMs is not outweighed by
additional performance. Another important conclusion was that the difference in hit ratios
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for the two weight generation scenarios (n/n − 1 DoF) does not decrease when the number
of criteria is increased.

A similar comparison analysis was performed by the same authors in [73], where
SWMs (RR, RS, SR, GS, and ROC) were compared to linear programming, concluding
that linear programming performs worse than any of the other analysed methods by a
wide margin.

4.2. Comparison Analyses When Additional Information Is Provided by the DM

Methods using precise/imprecise cardinal information or based on ratios have been
widely compared in the literature addressing methods that either do (direct rating, Max100,
Min10, SMART, and interval SMART/SWING) or do not (direct point allocation, tradeoff method,
SWING, AHP, discrete choice experiments, the PAPRIKA methodology, and conjoint analysis)
establish a ranking of criteria beforehand. We focus on analyses that include at least one
method where a ranking of criteria is established beforehand.

The convergent validity of SMART was compared with that of AHP, direct point
allocation, SWING, and tradeoff weighting [95] on the basis of an Internet experiment [79],
where weight ratios were used, albeit based on different questions, concluding that the
derived weights differ because the DMs are asked to choose their responses from a limited
set of numbers. In addition, DMs could select any of the studied methods depending on
their personal preferences.

The direct rating (DR) method was compared with the Max100 and Min10 methods
on the basis of both empirical data and simulations in [48]. The weights derived from the
Max100 method were somewhat more reliable than those derived from DR, followed by
the Min10 method. SWARA was also compared to Max100 and pairwise weight elicitation
methods in [96], where SWARA is recommended when the DM wants criteria weights to
have neither very different nor very close values in relation to each other.

More recently, direct rating, SMARTS, AHP, discrete choice experiments [97], the PAPRIKA
methodology [98], and conjoint analysis [99] were compared in [87]. The authors concluded
that SMARTS and AHP can reach trade-offs between complexity and the potential for bias.

In addition, two comparison analyses were carried out in [40,41], comparing the CROC
method with SMART, SMARTS, and direct rating, using empirical data elicited from several
DMs and the cognitive effort and practical usefulness and the consistency quality measures.
In both papers, five DMs were engaged in decision making on purchasing a car according
to seven criteria on two occasions (one week apart).

In [41], all participants preferred the SMARTS method over direct rating, but considered
that it was difficult to explicitly score each criterion using both methods, and preferences
between the SMARTS and CROC methods varied. In addition, the CROC method achieved
the most consistent results across the two occasions in both comparison analyses, being the
more prescriptively useful method. However, CROC has not been compared with SWARA.

Finally, the FUCOM method yields better results than AHP and the best worst method [68],
but it has not been compared with CROC and SWARA.

In the case of ranking of differences, MSD was proven to outperform a linear programming-
based weighting method (the Slack method) which attempts to minimize the slack of con-
straints via simulation analysis under different forms of incomplete attribute weights in [45].
However, no comparison analyses have been carried out with the modification of classical
decision rules and dominance-measuring methods, which could also have been applied in
this situation.

Regarding the use of a semantic scale to express the strength of the differences between
the weights of consecutive criteria, a comparison analysis of the CRS, CRR, CRC, and
CSR methods together with Simos’ family weighting methods [36–38] and SR and ROC
SWMs was performed in [71] on the basis of simulation techniques, concluding that CSR
outperforms the other methods.

The CRR, CRS, CSR, and CRC methods were again compared to SWMs (RR, RS, SR,
and ROC), but also to the DME2 dominance-measuring method in [8]. The conclusion
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was the same as in [71]. CSR clearly outperforms the other methods with regard to
robustness. A similar comparison analysis was performed in [73], incorporating GS and
its extension CGS into the analysis. They again concluded that CSR is generally the best-
performing method.

The CAR method was proposed in [46] and compared in an empirical experiment with
SMART and AHP using an equal combination of n − 1 and n DoF, concluding that CAR
outperforms the other methods in terms of the hit ratio and Kendall’s τ on the basis of
simulated data. An empirical experiment suggests that it also excels in terms of quality
measures such as ease of use, amount of time and effort required, and perceived correctness
and transparency.

Finally, regarding preference statements, no comparison analysis has been performed
accounting for either the extended difference ranking (EDR) method or the flexible and interac-
tive tradeoff (FITradeoff ) method.

5. Discussion

The aim of this section is to identify which of the weighting methods described in
Sections 2 and 3 could be recommended depending on the information that the DM is
able/willing to provide on the basis of the comparison analyses described in Section 4, or
what further comparison analyses should be carried out to arrive at such a recommendation.
First, we analyze the situation where the DM provides only a ranking of the criteria under
consideration. We then look at the situation where additional information is provided in
different ways.

More weighing methods are available for situations where DMs provide only a criteria
ranking. These include SWMs, methods based on the notions of absolute and pairwise
dominance, and the SMAA-2 method (see Section 2).

As pointed out in Section 4, many comparison analyses are available in the literature
concerning these weighting methods. Some focus on comparing SWMs with each other,
with decision rules, or with DMMs, whereas other papers compare all of the methods.

Looking at papers focused on the comparison of SWMs, we find that only the EW, RR,
RS, and ROC methods were compared in the early comparison analyses, since they were the
only SWMs to have been proposed when the analyses were carried out [18,77,78,82,85,91,92].
The conclusion was that ROC outperforms the other SWMs. The EW, RR, and RS methods
were also outperformed by other SWMs in subsequent analyses (in [26] or [84] for instance),
so they can be discarded for further analysis.

In the comparison analysis performed in [23], the SR method outperformed the VLS,
ERF, ROD, ROC, and RE methods. The SR method was also the best weighting method in
the comparison analysis in [84] (compared to ROC, RE, RR, EW, and Simos’ methods).

However, although it is more complex since it incorporates a parameter, GS slightly
outperforms SR in [26], irrespective of differences in DM behavior, whereas the most
recent comparison analysis in [73] is inconclusive, since ROC, GS, and SR outperform
each other depending on the DoF of the random number generator and the number of
attributes/alternatives under consideration.

What about the remaining SWMs (LSOWA, ROT, GRS, IROC, and GROC)? They were
analysed comparatively in [90], but no recommendation about the best was given since the
results differed when different measures were applied. Note that this analysis considered
neither the SR nor the GS methods.

So, is it possible to arrive at a recommendation about the best SWM when DMs only
provide a criteria ranking? The answer is no, because a comparison of ROC, GS, and SR
with LSOWA, ROT, GRS, IROC, and GROC is still missing and should be carried out.

Now, what is the best decision rule or the best dominance measuring method, and
how do they fare against SWMs and the SMAA-2 method?

In this respect, different comparison analyses were summarized in Section 4.1, conclud-
ing that CENT is the best decision rule [63]. However, CENT is outperformed by the ROC
method [11,63] and by dominance-measuring methods [32,63]. Thus, decision rules can be
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safely discarded. In addition, the best dominance measuring method is DIM [7], but it is
clearly outperformed by the SR method [8], which also outperforms linear programming.

Thus, we conclude that SWMs (SR) outperform decision rules and dominance measur-
ing methods. However, the SMAA-2 has not been compared with SWMs. This is a missing
comparative analysis that should be performed to arrive at a final recommendation.

Let us now discuss weighting methods when different forms of additional information
are available.

First, with respect to methods where precise/imprecise cardinal information is used to
represent the strength of the differences between the weights of consecutive criteria, the
CROC method is more consistent and a more prescriptively useful method than SMARTS
and direct rating [40,41].

In addition, although the CROC method itself has not been compared with Simos’
methods, it was demonstrated in [84] that the ROC method outperforms Simos’ methods
when only a ranking of weights is available. Meanwhile, the CRC method also outperforms
Simos’ methods when the differences between the weights of consecutive criteria are
represented by a semantic scale [71]. Therefore, the ROC method and its derivatives
designed to account for additional information appear to outperform Simos’ methods.
However, CRC method has not been compared to SWARA. Such a comparison analysis
would be very useful to identify which method should be recommended in this category.

In the case of ranking of differences, MSD was confirmed to perform better than the
Slack method in [45]. However, no comparisons have been made with the modification of
classical decision rules and dominance measuring methods, which could also be applied in
this situation. Such a comparison analysis would be very useful to identify which method
outperforms the others.

Finally, regarding the use of a semantic scale to express the strength of the differences
between the weights of consecutive criteria, CSR outperforms CRR, CRC, and Simos’ family
of methods [71], but also the SWMs (RR, RS, SR and ROC), and the DME2 dominance-
measuring method [8]. Thus, the CSR method is a good recommendation in this case.

6. Conclusions

In this paper, we focused on weighting methods in MAUT/MAVT when ordinal
information on criteria is available and the DM can also provide different forms of ad-
ditional information to express the strength of the differences between the weights of
consecutive criteria of such a ranking, including a ranking of differences, a semantic scale,
precise/imprecise cardinal information, or ratios.

The aim was to single out the best weighting methods for different situations depend-
ing on the available information, or otherwise identify the missing comparison analyses
that should be carried out to reach a recommendation. To achieve this, we reviewed the
comparative analyses in the literature based on empirical and simulation data and using
different quality measures.

After summarizing the weighting methods reported in the literature to address the
different types of available information on weights and analyses comparing their per-
formances, we deliberated on the findings of the different authors and arrived at the
following conclusions.

First, to be able to provide a recommendation on which method to use when only ordi-
nal information is available, ROC, SR, and GS need to be compared with LSOWA, ROT, GRS,
IROC, and GROC. Additionally, a comparison with the SMAA-2 method is also missing.
Note that several SWMs outperform decision rules and dominance measuring methods.

If additional information on the ranking of criteria is available in the form of a ranking
of differences, a comparison of MSD with the modification of classical decision rules and
dominance measuring methods is also missing. If DMs provide additional information
in the form of a semantic scale, then the CSR method is recommended. If DMs are able
to provide additional precise/imprecise cardinal information, the comparison of CROC
against Simos’s methods and SWARA is missing.
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Note that methods where the additional information on the ranking of criteria differs
(ranking of differences vs. semantic scale vs. imprecise cardinal information) have not been
compared as yet, although a broader range of information should provide better results.
Moreover, in real decision-making problems, DMs will select which type of information
they are able or willing to provide. Thus, the corresponding recommended method would
be directly applied. As a future research line, we propose performing the above-mentioned
missing comparison analyses aimed at reaching more robust recommendations.

Other future work includes the incorporation of the recommended weighting methods
into WEB-MAUT-DSS, a web-based adaptation and improvement of the GMAA decision
support system [1,2] that is being implemented. One of the improvements provided
by WEB-MAUT-DSS will be the incorporation of new weighting methods on top of the
existing direct assignment methods or methods based on trade-offs. These new methods
will account not only for ordinal information on criteria but also for additional information
in terms of the ranking of differences or a semantic scale. It will be up to DMs to select the
type of information that they wish to provide. Other weighting methods will be included
in future versions of the system.
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