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Abstract: Near-infrared (NIR) spectroscopy has emerged as a popular technique for assessing food
quality due to its advantages over complex chemical analysis methods. However, the application of
NIR spectroscopy for evaluating fish quality based on histamine content has not been extensively
explored. This study investigates the use of NIR spectroscopy in combination with machine learning
(ML) techniques to classify fish samples into two safety classes, Safe and Unsafe, based on their
histamine content. A comprehensive NIR dataset comprising 11,360 spectra collected at eight distinct
positions within the fish body was obtained from 284 fish samples of mackerel, tuna, and pompano
species. ML experiments were conducted to classify fish samples based on whether their histamine
content exceeded the permissible limit of 100 ppm. To address class imbalance and optimize ML
models, various data pre-processing and feature extraction techniques as well as ML algorithms were
explored. The results demonstrated that utilizing NIR data specifically obtained from the tail’s flesh,
a specific location within the fish, yielded superior models for fish safety classification. A feature
extraction method employing pre-processed NIR spectra and their second derivatives, combined
with an optimized convolutional neural network architecture, outperformed traditional ML classifiers
with an accuracy of approximately 93%.

Keywords: near-infrared spectroscopy; histamine content; fish quality assessment; nondestructive
analysis; machine learning; convolutional neural network

1. Introduction

Considering that fish quality directly affects consumers’ health status, we should
put a significant amount of importance on assessing fish quality. Furthermore, since the
consumption of fish has been on the rise in many parts of the world, and the hygiene and
safety of food is of increasing interest to agencies and customers, solving the problem of
fish quality control is becoming even more urgent in this context.

Histamine is an endogenous toxin commonly formed in many types of fish. The
formation of histamine is a result of the improper storage of fish at incorrect temperatures
and durations, which can cause illness in consumers. Histamine poisoning from seafood
is primarily associated with the consumption of tuna, herring, anchovies, sardines, and
mackerel. In these fish species, certain bacteria can synthesize the enzyme histidine decar-
boxylase. This enzyme catalyzes the reaction that converts histidine into histamine. Once
histamine is formed, it cannot be eliminated by heat (including cooking) or freezing [1].

The permissible limits for histamine content in fish are regulated according to country
and region [2]. Australia and New Zealand allow a maximum histamine level in a fish
sample of 100 mg/kg (or ppm). The maximum allowable level in Europe is 100 ppm
to 200 ppm, while in the USA it must not exceed 50 ppm. In Vietnam, according to the
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standard on tuna raw material named TCVN 12153:2018 [3], the histamine level in tuna
must not exceed 100 ppm. In this study, we chose a permissible histamine limit of 100 ppm
in a fish sample to align with the regulations of Vietnam and many other countries.

Chemical analysis is an effective tool to determine the presence of histamine in fish.
Since histamine is often unevenly distributed within fish or batches of fish, the reliability of
histamine analysis depends on the sampling method. A large sample size is required. The
method of collecting fish samples is also very important. Regarding histamine analysis, the
challenge is to completely separate histamine from a large number of interfering substances
like histidine or carnosine. Most methods require elaborate and careful processing to
remove potential interferents, thus extending the analysis time [2]. Therefore, there is a
need to develop rapid analysis methods.

Among the rapid histamine content analysis methods, biosensors are quantitative
analytical tools consisting of a biologically based sensor component integrated with a
physicochemical transducer. These devices utilize specific biochemical reactions mediated
by isolated enzymes, immunosystems, tissues, organelles, cells, and analyze chemical
compounds usually through electrical, thermal, or optical signals. Some market products
include BIOFISH 300 and BIOFISH 700. Besides biosensors, other rapid analysis methods
include colorimetric methods, such as enzyme kits, Hista strip, Agra strip, and ELISA
methods using XL665-labeled histamine and Cryptate-labeled antibodies. Biosensors can
measure on site, with a relatively quick analysis time compared to other methods. While
an ELISA has better sensitivity, colorimetric methods have the shortest analysis time [4].

In recent years, significant advancements in low-cost handheld near-infrared (NIR)
spectrometers and machine learning/deep learning (ML/DL) techniques have created new
opportunities for the development of rapid, non-destructive, and cost-effective histamine
analysis methods. Near-infrared (NIR) spectroscopy coupled with ML has emerged as a
promising tool for the non-destructive and rapid assessment of fish quality, both quantita-
tively and qualitatively [5]. Recent studies have explored its potential in predicting various
fish attributes such as freshness [6–10], fat content [11–13], and species identification [14,15].
In addition, NIR spectroscopy and ML techniques have found application in food quality
control across various food industries beyond fish. Examples of successful applications
include the detection of adulteration in lamb, beef [16], and milk [17], the identification
of unauthorized preservation techniques in fermented sausages [18], the discovery of
spoilage bacteria in pork [19], the exposure of mislabeling related to production processes
in eggs [20], the geographical origin of honey [21], and other aspects of fruits [22–24]. ML al-
gorithms, including partial least squares regression, support vector machines, and artificial
neural networks, have been extensively employed for spectra analysis and modeling in past
studies. However, challenges persist in terms of data pre-processing, model optimization,
and the need for larger, more diverse datasets to enhance the generalization capability of
the developed models.

Although official methods for histamine testing in fish and seafood [25] are generally
accurate, specific, precise, and well established, they have some drawbacks. These include
the high cost of instruments, facilities, and reagents, the need for large amounts of solvents
and samples, the destructive nature of some analyses, the requirement for extensive sample
preparation and/or post-treatment steps, long analysis times, and the need for skilled
operators. Given the need to enhance fish safety controls and transition towards risk-
based inspection protocols, the adoption of advanced, rapid, and efficient food inspection
technologies could significantly augment well-established methods. Therefore, the present
study aims to pioneer the application of NIR spectroscopy and ML techniques for the direct
classification of the histamine content of raw fish samples as either safe (below 100 ppm)
or unsafe without requiring sample destruction. This approach promises substantial
benefits in terms of streamlined workflows and sample conservation for fish industries and
markets, where timely food safety information is critical for effective management and loss
prevention. Additionally, competent authorities could leverage this technology to bolster
their inspection capabilities.
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2. Materials and Methods

Figure 1 presents the complete workflow of our study. The flowchart begins with the
collection of NIR spectra, followed by the handling of missing data to ensure a complete
dataset. The data are then divided into training, validation, and test sets, facilitating
the construction of a robust predictive model. Notably, the workflow incorporates the
SMOTE (Synthetic Minority Over-sampling Technique) [26], which synthesizes additional
training data to address class imbalance in the dataset. Subsequently, the data undergo
normalization and smoothing processes to ensure consistency and reduce noise. Feature
extraction is then performed to identify and prioritize relevant information, enhancing
the model’s performance. The extracted features are utilized for training and validating
the machine learning model, enabling fine-tuning of its parameters. Finally, the model’s
performance is evaluated using an independent test set, ensuring its generalization ability
to unseen data.
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Figure 1. The complete workflow of our study.

In the following sub-sections, we will describe each step in the workflow in detail.

2.1. Data Collection

We used a low-cost handheld NIR device, which is the DLP NIRscan Nano EVM
produced by Texas Instruments, to measure the NIR spectra of fish samples (Figure 2). In
this process, a portion of the radiation in the NIR range emitted by the device was absorbed
by the dissected samples. The remaining radiation, which was not absorbed, was either
reflected back to the device sensor or transmitted through the substances. According to
this, we could achieve absorbance, reflectance, and transmittance spectra simultaneously.
Each spectrum consists of 228 wavelengths in the range of 900–1700 nm, i.e., a resolution
of 3.5 nm per wavelength point. Among the three types of spectra, we decided to use the
absorption spectrum to conduct the experiments for the classification of histamine content
in fish.
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Figure 2. NIR spectrum measurement on a fish’s body.

The dataset used in this study includes 11,360 samples of NIR absorption spectra from
284 fish samples (107 mackerel, 109 tuna, and 68 pompano samples). The fish samples,
after being collected from the market, were divided into two groups. One group was
preserved in cold conditions of 4 ◦C and samples were taken for analysis at the following
time points: 6 h, 12 h, 18 h, and 24 h. The other group was exposed to an atmosphere at
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ambient temperature and samples were taken for analysis at the following time points:
0 h, 4 h, 8 h, 12 h, and 16 h. Each fish sample for analysis was subjected to NIR spectrum
measurements at four points on the outside skin, including the nape, back, stomach, and
tail, as well as four points inside the flesh at the positions of the nape, back, stomach, and
tail. Each of the eight positions was measured five times. Consequently, a fish sample
produced 40 different NIR spectrum samples. Figure 3 illustrates the representative spectra
of the mackerel in terms of the mean and 95% confidence interval of absorbance values
aggregated over all mackerel samples in the dataset according to measurement positions on
the fish body. It can be seen that the absorbance values vary significantly across different
parts of the mackerel. Similar trends were also observed for the tuna and pompano.
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2.2. Data Labeling and Division

After collecting NIR data, the fish was filleted, minced, and then its histamine content
was determined accurately using a standard analytical chemistry method, which is high-
pressure liquid chromatography or HPLC. Forty NIR spectra were then assigned a safety
label according to the histamine content of the fish sample. In the event that the histamine
content of the fish fell below the established threshold of 100 ppm, the NIR spectra associ-
ated with that fish were classified as “Safe”; conversely, if the histamine content exceeded
the permissible limit, the NIR spectra were classified as “Unsafe”. Figure 4 illustrates the
average NIR absorption spectra of fish samples in the dataset with respect to fish types and
safety labels.

Finally, the whole NIR spectrum dataset was divided into three subsets including
training, validation, and test sets at the ratio of 3:1:1 for the training, validating, and
evaluating classification models. The data division was carried out so as to satisfy the
following two criteria: a fish sample and its associated spectrum samples only belonged to
one subset, and the histamine content distributions of three subsets were similar (as shown
in Figure 5). These requirements were met to assure the objectiveness of the model building
and evaluation processes.
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2.3. Data Pre-Processing

In the pre-processing stage, we performed three techniques in a row including missing
data handling, data normalization, and data smoothing. If a wavelength of an absorption
spectrum was missing, the missing absorbance value was replaced by the average of the
absorbance values of the two neighboring wavelengths. Then, standard normal variate
correction (i.e., z-score normalization) was applied to every single spectrum of the dataset
to eliminate the deviations caused by particle size and scattering, making the NIR data
consistent. Eventually, the NIR spectra were streamed through a Savitzky–Golay (SG) filter
with a window length of 13 points and a polynomial order of 5 to smooth the spectra,
thereby removing part of the noise [27]. These parameters of the SG filter were chosen
experimentally because they ensured that the resulting spectra were not over-smoothed
and that important spectral characteristics remained.

What is especially notable about our dataset is the severe imbalance between the two
safety classes. The number of NIR samples belonging to the “Safe” class is nearly six times
higher than the “Unsafe” class. This can cause a classification model to be biased towards
the majority class with the “Safe” label. To solve this problem, we leveraged the SMOTE
technique to handle data imbalance. SMOTE specifically generates new data points for
the minority class with the “Unsafe” label. It analyzes existing minority data points and
generates new ones similar to them. By adding these synthetic samples, SMOTE balances
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the data, giving the model a better capability to learn the minority class. After applying
SMOTE on the training subset, the number of NIR samples belonging to the “Unsafe” class
is equal to that of the “Safe” class. The details of the SMOTE algorithm can be found in [26].
The synthetic spectrum samples were also normalized and smoothed in the same way as
the original ones.

2.4. Feature Extraction

Relevant features need to be chosen for building classification models. For a fish
sample, its pre-processed NIR spectrum is a certain choice for the feature vector for safety
classification. We further examined the derivatives of the pre-processed spectrum to see if
they can help to differentiate labels of safety. We investigated six types of feature vectors
based on the concatenation of the pre-processed spectrum and its derivatives as described
in Table 1.

Table 1. Six feature types of the NIR spectrum.

Feature Type Vector Size Description

orig 228 × 1 Original spectrum
prep 228 × 1 Pre-processed spectrum
der1 228 × 1 1st derivative of pre-processed spectrum
der2 228 × 1 2nd derivative of pre-processed spectrum

prep + der1 456 × 1 Pre-processed spectrum + its 1st derivative
prep + der2 456 × 1 Pre-processed spectrum + its 2nd derivative

2.5. Model Training and Validation

We used both the traditional ML and modern DL approaches to build classification
models and compared their performances for the problem of classifying a fish sample
as safe or unsafe based on its histamine content, hopefully reflected by its extracted NIR
spectral features. For the traditional ML approach, four algorithms were evaluated, in-
cluding decision tree (DT) [28], k-nearest neighbors (KNN) [29], support vector machine
(SVM) [30], and extreme gradient boosting (XGB) [31]. For the DL approach, we employed
a convolutional neural network (CNN) [32] and proposed suitable architectures depending
on the experiments.

As model hyperparameters can dramatically influence the performance of the con-
ventional ML and CNN algorithms, hyperparameter tuning procedures on the common
validation set were carried out to produce optimal models. Table 2 lists the set of hyperpa-
rameters used in the grid searching for the optimal ML models. Meanwhile, the process of
optimization for CNN models involves adjusting two key components: the hyperparame-
ters and the layers. While tuning the latter proves to be more challenging compared to the
former, the former shares similarities with conventional ML algorithms. In the context of
CNN models, the hyperparameters subject to tuning encompass the number of neurons,
activation function, optimizer, learning rate, batch size, and epochs. The subsequent step
involves fine-tuning the number of layers, a characteristic absent in other conventional ML
algorithms. The number of layers employed in a CNN can significantly impact its accuracy.
Insufficient layering may yield an underfitting outcome, whereas an excessive number of
layers can lead to overfitting. The model training and hyperparameter tuning processes
were conducted by using the scikit-learn toolkit for the conventional ML algorithms and
the Keras framework for the CNN models. After the optimal models were determined,
their performances were evaluated on the common test set, which will be reported in the
next section.
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Table 2. Set of hyperparameters used in the grid searching for the optimal traditional ML models.

Model Set of Hyperparameters

DT maximum depth of the tree, minimum number of samples at a leaf node
KNN number of neighbors
SVM regularization parameter, kernel type
XGB number of decision trees, maximum depth of a tree, learning rate

3. Results

The initial analysis conducted, which is described in the preceding section, exhibited
discernible variations in the absorbance values observed across distinct anatomical regions
of the fish. Consequently, the present inquiry centers on the accurate identification of the
safety classification pertaining to a given fish sample, specifically concerning the optimal
approach to measuring the NIR spectrum. Is it more suitable to measure the spectrum at a
specific predetermined location or at any of the eight designated positions of the fish? In
order to address this query, a pair of experimental investigations were undertaken. In the
first experiment, the analysis focused solely on NIR data obtained from a predetermined
location on the fish’s body (hereafter referred to as “position-dependent”). Consequently,
sub-datasets were utilized, with each sub-dataset comprising only one-eighth of the com-
plete dataset in terms of sample size. In contrast, the second experiment employed the
whole NIR dataset obtained from all of the eight measurement positions (called “position-
independent”). The primary objective of these experiments was to establish a highly
effective model for the purpose of detecting the safety label associated with the fish sample.

3.1. Traditional Machine Learning Models for Histamine Content Classification

Table 3 presents the accuracy of the optimally tuned DT models when being evaluated
on the test sets according to measurement positions and feature types. It can be seen that
the DT classifier achieved the highest accuracy of 87.2% when “Internal, tail” was used as
the measurement position and “der1” was chosen as the feature vector. For the position-
independent experiment, it obtained the highest accuracy of 77.2% when the feature type
“prep + der1” was selected.

Table 3. Accuracy (%) on test sets of optimally tuned DT models.

Position
Feature Type

orig prep der1 der2 prep + der1 prep + der2

Skin, nape 71.7 79.7 81.7 81.4 79.3 79.3
Skin, back 74.4 74.7 77.2 76.5 80.3 79.6
Skin, tail 71.4 81.4 77.6 76.6 72.8 79.3

Skin, stomach 68.6 72.4 79.0 77.2 81.4 77.9
Internal, nape 73.1 79.3 77.9 72.1 77.2 76.2
Internal, back 72.1 74.1 74.1 73.8 68.6 72.4
Internal, tail 72.4 76.2 87.2 83.4 86.6 82.1

Internal, stomach 67.2 77.2 76.2 74.5 77.6 78.3
All positions 73.5 77.1 73.7 73.7 77.2 74.4

Best accuracy scores together with the corresponding positions are in bold.

Table 4 presents the accuracy of the optimally tuned KNN models when being evalu-
ated on the test sets according to measurement positions and feature types. It can be seen
that the KNN classifier achieved the highest accuracy of 83.2% when “Internal, tail” was
used as the measurement position and “prep + der1” was chosen as the feature vector. For
the position-independent experiment, it obtained the highest accuracy of 78.8% when the
feature type “prep + der1” was also selected.
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Table 4. Accuracy (%) on test sets of optimally tuned KNN models.

Position
Feature Type

orig prep der1 der2 prep + der1 prep + der2

Skin, nape 82.3 74.1 76.2 72.8 75.2 75.2
Skin, back 64.7 81.0 82.4 73.0 82.7 81.3
Skin, tail 78.3 76.6 80.0 73.1 77.9 77.6

Skin, stomach 79.7 76.2 84.8 80.7 75.2 75.5
Internal, nape 72.1 75.2 70.3 69.7 75.5 72.8
Internal, back 72.1 75.2 72.8 68.6 71.4 72.4
Internal, tail 83.1 81.4 81.4 77.6 83.2 81.7

Internal, stomach 69.7 80.3 76.9 72.1 79.3 80.0
All positions 76.0 79.1 75.1 71.8 78.8 78.2

Best accuracy scores together with the corresponding positions are in bold.

Table 5 presents the accuracy of the optimally tuned SVM models when being eval-
uated on the test sets according to measurement positions and feature types. It can be
seen that the SVM classifier achieved the highest accuracy of 86.3% when “Internal, tail”
was used as the measurement position and “prep” was chosen as the feature vector. For
the position-independent experiment, it obtained the highest accuracy of 77.2% when the
feature type “orig” was selected.

Table 5. Accuracy (%) on test sets of optimally tuned SVM models.

Position
Feature Type

orig prep der1 der2 prep + der1 prep + der2

Skin, nape 78.3 85.9 73.8 74.1 82.9 84.6
Skin, back 84.4 85.5 81.0 74.0 85.1 85.5
Skin, tail 81.7 80.7 84.1 74.1 80.3 80.0

Skin, stomach 77.2 82.4 74.1 74.1 82.4 82.1
Internal, nape 83.1 80.7 74.1 74.1 79.7 80.3
Internal, back 77.9 75.2 75.5 74.1 75.5 75.2
Internal, tail 85.2 86.3 84.1 74.1 85.3 85.7

Internal, stomach 82.8 80.3 71.7 74.1 79.7 80.0
All positions 77.2 77.0 73.9 70.6 77.0 77.0

Best accuracy scores together with the corresponding positions are in bold.

Table 6 presents the accuracy of the optimally tuned XGB models when being evaluated
on the test sets according to measurement positions and feature types. It can be seen that
the XGB classifier achieved the highest accuracy of 90.3% when “Internal, tail” was used as
the measurement position and “der2” was chosen as the feature vector. For the position-
independent experiment, it obtained the highest accuracy of 83.6% when the feature type
“prep + der1” was selected.

Table 6. Accuracy (%) on test sets of optimally tuned XGB models.

Position
Feature Type

orig prep der1 der2 prep + der1 prep + der2

Skin, nape 83.1 79.3 85.9 83.1 80.3 82.8
Skin, back 82.7 79.6 83.0 81.3 82.0 81.3
Skin, tail 73.1 79.7 79.3 86.6 79.0 82.1

Skin, stomach 80.3 80.0 84.1 84.1 82.4 83.8
Internal, nape 77.9 80.7 82.1 80.0 84.1 81.7
Internal, back 72.1 75.2 76.2 78.3 73.8 75.5
Internal, tail 74.5 84.8 89.7 90.3 86.9 86.9

Internal, stomach 72.4 80.7 82.8 79.3 84.8 83.4
All positions 79.1 80.5 82.5 80.4 83.6 81.8

Best accuracy scores together with the corresponding positions are in bold.
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3.2. Convolutional Neural Network Model for Histamine Content Classification

Similar to traditional machine learning models, the classification performance of CNN
models is contingent upon both the type of input feature vectors and the measurement
position. Table 7 presents the accuracy of the optimally tuned CNN models when being
evaluated on the test sets according to measurement positions and feature types. It can be
seen that the CNN classifier gained the highest accuracy of 93.1% when “Internal, tail” was
used as the measurement position and “prep + der2” was chosen as the feature vector. For
the position-independent experiment, it attained the highest accuracy of 81.0% when the
feature type “der1” was selected.

Table 7. Accuracy (%) on test sets of optimally tuned CNN models.

Position
Feature Type

orig prep der1 der2 prep + der1 prep + der2

Skin, nape 83.7 84.5 87.7 83.5 86.8 86.8
Skin, back 81.0 81.2 81.2 74.4 80.5 82.5
Skin, tail 82.6 89.1 88.4 85.1 87.5 86.2

Skin, stomach 87.5 85.3 86.0 86.2 87.5 86.0
Internal, nape 80.0 86.4 86.0 80.0 83.5 82.6
Internal, back 84.8 81.7 81.3 76.6 81.5 83.3
Internal, tail 90.4 89.7 91.0 86.8 90.6 93.1 *

Internal, stomach 87.1 87.5 89.7 84.0 87.7 90.0
All positions 78.3 78.9 81.0 79.7 79.6 79.7

Best accuracy scores together with the corresponding positions are in bold. The highest classification accuracy
among CNN models is marked with an asterisk.

As each combination of the input feature type and the measurement position (and
thus the corresponding NIR sub-dataset) leads to a different configuration of CNN model,
we only present the process of constructing and evaluating the CNN model which achieved
the highest classification accuracy (marked with an asterisk in Table 7) to make this article
concise. Figure 6 describes the proposed CNN architecture in this case. The model includes
one input layer which contains 456 neurons as input data, representing the feature vector of
size 456 × 1, which is of the type “prep + der2” (i.e., pre-processed spectrum concatenated
with its second derivative). It consists of two convolutional layers, each of them followed
by a pooling layer and a dropout layer. The convolutional layers have kernels of size 16 × 1
and Rectified Linear Units (ReLUs) as the activation functions. They are alternated with
two max pooling layers with the pool size 2 × 1 and two dropout layers with a rate of 0.01.
The output of the final max pooling layer is streamed through a flatten layer in order to
convert multi-dimensional data into one-dimensional data, which are then entered into
the three fully connected (i.e., dense) layers. Both of the first two dense layers consist of
16 neurons and a ReLU activation function. A dropout layer is placed before the last dense
layer. Finally, the last dense layer contains two neurons where softmax classifier activation
is used to predict the output (i.e., the safety label) of the model. The proposed CNN model
consists of 30,098 parameters.

The training process of this model was implemented using the Keras framework with
the Adam optimizer and the initial learning rate at 0.0001. The learning rate was set to be
reduced by a factor of 0.8 when the training result was not progressing. The validation
set was used for stopping the training process. Given the substantial parameter count
associated with the initial CNN architecture and the limited availability of training samples,
the issue of overfitting emerged as a significant concern. Consequently, the incorporation of
three dropout layers was deemed necessary in order to mitigate this challenge effectively.

Figure 7 shows how the cross-entropy-based loss function of the CNN model varied
on the training and validation sets over training epochs. We stopped the training process
after 70 epochs to prevent overfitting since the model had their losses converged on the
validation set at this point.
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In order to comprehensively assess the efficacy of the proposed CNN model in ad-
dressing the binary classification problem with imbalanced data, the following metrics
were employed as evaluation measures on the test set:

• Accuracy = TP+TN
TP+FP+TN+FN = 93.1%;

• Sensitivity (or recall) = TP
TP+FN = 93.1%;

• Specificity = TN
TN+FP = 93.2%;

where
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• TP (True Positive): The total number of samples where the model correctly predicts
the positive class, i.e., when the actual class is Unsafe and the model also predicts it
as Unsafe;

• TN (True Negative): The total number of samples where the model correctly predicts
the negative class, i.e., when the actual class is Safe and the model also predicts it
as Safe;

• FP (False Positive): The total number of samples where the model predicts the positive
class incorrectly, i.e., the actual class is Safe but the model predicts it as Unsafe;

• FN (False Negative): The total number of samples where the model predicts the
negative class incorrectly, i.e., the actual class is Unsafe but the model predicts it
as Safe.

The evaluation of the proposed CNN model reveals not only a significantly high level
of accuracy but also almost equally high specificity and sensitivity (or recall) values. This
outcome establishes the model as highly effective and well suited for addressing the binary
classification problem at hand.

Lastly, we evaluate the impact of the SMOTE technique on the performance of the
proposed CNN model by trying not using SMOTE. Table 8 indicates sharp drops in accuracy
and recall scores of the model when not using the SMOTE technique for balancing class
distribution in the training set. This result confirms the essential use of SMOTE in dealing
with a highly imbalanced dataset such as the one in our study.

Table 8. Performance of the proposed CNN model when using and not using SMOTE.

Using SMOTE Recall (%) Accuracy (%)

Yes 93.1 93.1
No 74.4 80.3

3.3. Comparison among Different Classifiers

Table 9 summarizes the best performances of the investigated classifiers in the two
experiments: position-independent and position-dependent. It can be observed that the
position-dependent models attained a remarkably higher classification accuracy than the
position-independent ones with the best position for NIR measurement being the “Internal,
tail” part of the fish regardless of the classifiers. This suggests that we should collect
NIR spectra inside the flesh at the tail for fish safety classification. Among the position-
dependent models, the proposed CNN model described in Section 3.2 combined with the
feature vector consisting of the pre-processed spectrum coupled with its second derivative
was proved to be superior to the others. It achieved the highest classification accuracy of
93.1% on the hold-out test set and a similar level of specificity and recall scores.

Table 9. Summary of the best cases of different classifiers (accuracies for hold-out and cross-validation
approaches are exhibited outside and inside parentheses, respectively).

Classifier
Position-Independent Position-Dependent

Accuracy (%) Feature Accuracy (%) Position Feature

DT 77.2 (78.6) prep + der1 87.2 (86.9) Internal, tail der1
KNN 78.8 (77.5) prep + der1 83.2 (84.4) Internal, tail prep + der1
SVM 77.2 (76.3) orig 86.3 (85.4) Internal, tail prep
XGB 83.6 (82.8) prep + der1 90.3 (89.8) Internal, tail der2
CNN 81.0 (80.4) der1 93.1 (92.7) Internal, tail prep + der2

Best accuracy scores together with the corresponding classifier are in bold.

To ensure the reliability of the reported experiment results, we further employed
a stratified five-fold cross-validation technique on the NIR dataset for re-evaluating the
optimal classifiers. We maintained the same optimal hyperparameters as found in the
previous experiments and used the entire dataset for model training and testing. The
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stratified five-fold cross-validation strategy included splitting the dataset into an 80%
training set and a 20% test set for each fold so as to ensure the proportion of the Safe/Unsafe
samples was the same across the training set and the test set, which gives a more accurate
estimate of classification performance. In each fold, the training set was pre-processed
as described in Section 2.3 before a model was fitted and then evaluated on the test set.
Finally, the mean of the model’s accuracy after running five folds was used to provide its
cross-validation performance, which is shown by the numbers in parentheses in Table 9. It
can be seen that there are insignificant differences between hold-out and cross-validation
results. This could be accounted for by the careful training/validation/test data separation
we carried out when using the hold-out approach. These results confirm the robustness of
our findings in this section.

3.4. Discussion on the Optimal Measurement Point

Histamine is formed by the activity of microbial enzymes. We predict that microorgan-
isms are more active on the surface than inside the fish, leading to a higher abundance of
histamine. Additionally, the distribution of histidine, the substrate for histamine formation,
is not uniform within the fish meat. Therefore, the histamine content at our measurement
points may vary. According to Vietnamese standards and other guidelines, safety related
to histamine content is determined based on the average histamine content of the entire
fish. Thus, in our study, classification is based on the relationship between the NIR signal
reflection on the surface of the measured sample and the average histamine content of
the entire fish. The finding that the tail of the fish provides the best prediction accuracy
emerged from data processing and modeling. We believe that the histamine concentration
at this location can approximate the average histamine content of the entire fish when
thoroughly mixed.

4. Conclusions

In this study, we employed NIR spectroscopy in conjunction with ML techniques,
including DL using CNNs, to classify fish samples into two safety classes, Safe and Unsafe,
based on their histamine content. This study developed an effective machine learning
workflow that addresses class imbalance in the collected data by incorporating the SMOTE
technique and investigating various combinations of feature extraction techniques and
ML/DL algorithms. The main findings of this study can be summarized as follows. Firstly,
utilizing the NIR dataset collected at a specific location within the fish, specifically inside
the flesh at the tail, yielded superior models for fish safety classification. Secondly, a feature
extraction technique based on the original NIR spectrum, coupled with a CNN architecture
optimized for the task, outperformed conventional ML classifiers, achieving an accuracy
of approximately 93%. These findings have significant potential in developing a fast and
cost-effective method for detecting fish safety, providing valuable insights for food safety
authorities for determining the need for more advanced and expensive experiments in
assessing fish quality in laboratory settings.

It is important to note that our research was constrained by a small-sized NIR dataset
obtained using a low-cost NIR scanner and a limited number of fish samples from three
specific types: mackerel, tuna, and pompano. To enhance the study’s scope and robustness,
future research will involve expanding the dataset by employing higher quality NIR
scanners to train more powerful classification models. Additionally, conducting similar
studies on the detection of other potentially harmful agents in fish, such as urea and borax,
would help validate the effectiveness of NIR spectroscopy and the suggested ML workflow.
Lastly, considering the incorporation of chemometrics and multivariate data analysis
methods such as Principal Component Analysis or Partial Least Squares Discriminant
Analysis could be beneficial for extracting more relevant features from NIR spectra, enabling
differentiation among multiple safety classes.
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