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Abstract: With quantum computers, the quantum resistance of cryptographic systems has gradually
attracted attention. To overcome the shortcoming of existing identity-based encryption (IBE) schemes
in resisting quantum attacks, we introduce an IBE scheme based on learning with errors (LWE). In
addition, devices with limited computing power are becoming increasingly common in practice,
making it increasingly important to improve the efficiency of online computation of encryption
algorithms. The classic solution is to directly improve the efficiency of the Gaussian sampling
algorithm, thereby increasing the overall efficiency of the scheme. However, our scheme combines the
efficient Gaussian sampling algorithm, G-trapdoor, with online/offline method to further improve the
online encryption efficiency of the encryption algorithm. Our scheme completes partial computation
before knowing the message and receiver’s identity, and once the message and receiver’s identity are
obtained, the online part encryption can be efficiently completed. We construct an identity-based
online/offline encryption (IBOOE) scheme from LWE with G-trapdoor, improve the efficiency of
online encryption while achieving quantum resistant security. We prove the scheme’s security under
the standard model for chosen-plaintext attack (CPA). By comparing with relevant schemes in terms
of experiments and analysis, our scheme has improved efficiency by 65% to 80% compared to the
classical LWE IBE scheme (increasing with LWE security parameters), and by 60% to 70% compared
to the recent IBE scheme from LWE. This greatly improves the efficiency of online computing for
low-power encryption devices while ensuring security.

Keywords: lattice; LWE; IBE; online/offline

1. Introduction

In IBE schemes, user submits an arbitrary string corresponding to the identity to key
generation center (KGC). This user’s private key which is authenticated is generated by
the KGC and corresponds to the identity. Encrypting messages only requires knowing
the identity of the recipient. This process does not require verifying the correctness of
credentials in traditional public key architectures, especially for energy limited devices.
With quantum computers’ computing technology, traditional encryption algorithms face
the danger of being attacked by quantum computers. However, traditional IBE schemes do
not have quantum resistant security.

Lattice-based cryptography system has the characteristics of simple structure and
complex mathematics, and is the most prospective type of anti-quantum cryptography
technology. The lattice-based IBE schemes deserve further research due to the excellent
performance in practical application scenarios and scalability advantages. Gentry, Peikert,
and Vaikuntanathan [1] designed an approach for lattice-based signature algorithms and
proved the method’s security under the random oracle model; we abbreviate their scheme
to GPV scheme. Cash et al. [2] proposed the LWE IBE scheme and proved this anti-quantum
IBE scheme’s security under the standard model. Furthermore, Agrawal et al. [3] brought
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up an anti-quantum IBE scheme based on lattice under the standard model. In line with
Agrawal et al.’s [3] work, their scheme has a simpler construct and shorter ciphertext
compared to Cash et al.’s [2] scheme. Agrawal et al. treated identity as a chunk, and the
lattice in their scheme consists of “left” and “right” lattices. The trapdoor for the left lattice
is the true trapdoor for generating secrete keys, while the trapdoor for the right lattice
is only used in security proof. Our scheme learns their idea of trapdoor generation and
further improves based on it.

However, the current IBE algorithm based on lattice structure still has shortcomings
in computational efficiency. The biggest reason is that lattice-based encryption schemes
are closely related to Gaussian sampling, and thus, many efficiency improvement schemes
focus on improving the efficiency of Gaussian sampling. Since the current implementa-
tions of Gaussian sampling are still achieved through extensive simulations to infinitely
approximate Gaussian distributions, which still affects the overall computational efficiency.
In an effort to carry the efficiency of existing lattice-based IBE schemes to a new and higher
level, we apply online/offline method to delegate most of the Gaussian sampling and
the parts that do not require identity and message knowledge to powerful devices for
offline computation.

1.1. Our Motivation and Contributions

Although existing IBE schemes can protect the confidentiality of data without checking
certificates, they cannot resist attacks from quantum computers. To address this issue, an
anti-quantum IBE scheme can be achieved by constructing on LWE, the classic hard problem
on lattice. However, the current LWE based IBE schemes are less efficient. Thus, we propose
an IBOOE scheme based on LWE; the offline phase completes Gaussian sampling before
obtaining the message to be encrypted and identity. In this way, our scheme ensures the
efficiency of the scheme while achieving anti-quantum security. Our contributions are
shown below.

(1) We first investigate the coexistence of anti-quantum security and efficiency in the IBE
system, and design an IBOOE scheme from the LWE problem.

(2) We then construct our concrete IBOOE scheme from LWE and prove the CPA secure
under the standard model.

(3) Finally, we aim to test the feasibility and effectiveness of our scheme through the
contrast of the original scheme [3], our scheme, and the recent anti-quantum IBE
scheme [4].

1.2. Paper Organization

The rest of this article is organized as follows. We introduce the relevant work of
our paper in Section 2. In Section 3, we introduce some concepts and related definitions,
and describe the security model and system architecture. In Section 4, we propose the
construction of our efficient IBOOE based on LWE and analyze its correctness and security.
In Section 5, we compare our scheme with classical and recent LWE based IBE schemes. In
Section 6, we conclude this article.

2. Related Work

The GPV scheme [1] provided the underlying scheme for the lattice-based IBE cryp-
tographic algorithms. Regev [5] presented a typical lattice difficulty problem, the LWE
problem. In the research of anti-quantum cryptography schemes, especially for IBE schemes,
considering quantum circuits’ aspect, the proof of GPV scheme is conducted solely under
the random oracle model, but without considering the security proof under the random
oracle model from quantum technology. Zhandry [6] developed a new technology for
random oracle model from the quantum technology, and then demonstrated that the GPV
scheme is secure under the random oracle model from the quantum technology. Kat-
sumata et al. [7] then provided more rigid proof for GPV scheme under the random oracle
model from quantum technology. While Gao et al. [8] first constructed anti-quantum
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IBE scheme from LWE and a quantum circuit, they proved their quantum IBE scheme’s
security under the random oracle model. Moreover, considering the enlargement of anti-
quantum cryptography schemes in terms of functionality, Dutta et al. [9] first brought
up the specific unidirectional construction of the proxy-re-encryption-based identity from
LWE; they then proved under the standard model that the scheme is secure. In addition,
for the sake of strengthening the security of proxy-re-encryption-based identity, on this
basis, Wu et al. [10] added a function called re-encryption verifiability, which is a proxy
re-encryption IBE scheme from basic lattice. Liu et al. [11] then extended the concept of
server-aided revocable IBE to hierarchical IBE. In order to withstand side channel attack,
Li et al. [12–15] presented some identity-based encryption schemes with leakage resilience.
Furthermore, in terms of extending LWE itself, Abla et al. [16] brought up an IBE scheme
based on ring LWE, with shorter main public key and stricter security analysis. Conversely,
Fan et al. [17] brought up an adaptively secure scheme under the standard model, which
is a fresh anti-quantum IBE scheme for middle product LWE. In addition, Lai et al. [18]
promoted two-stage sampling approach of the GPV scheme, and proposed the new lattice
two-stage sampling technology, which added noise not only to the ciphertext, but also to
the key.

However, most of the current IBE schemes are inefficient, and they take up a lot of
storage space. In terms of storage, the main issue is each user’s ID has a parameter matrix,
which yields a sharp increase in the scale of the system’s public parameters. Zhang et al. [4]
proposed a flexible trade-off mechanism using blocking technology to balance the scale
of common parameters and the computational cost involved. They divide the identity
into multiple parts and associate each part with a matrix, while slightly increasing the
modulus of the lattice to maintain the same level of security. In the Gaussian sampling
aspect, Weiden et al. [19] displayed that the running time consumed by Gaussian sampling
accounts for half of the Lyubashevsky’s lattice signature scheme [20]. For the sake of
improving the efficiency of Gaussian sampling, Micciancio and Peikert [21] brought up
a new approach for generating a trapdoor in the lattice, which is more efficient with
smaller hidden constants; this trapdoor is called G-trapdoor. This method of generating
trapdoors is more efficient because it does not involve any expensive Hermite normal
form or matrix inversion computations. Next, Micciancio and Walter [22] developed a new
Gaussian sampling algorithm and the algorithm is applicable to arbitrary and variable
Gaussian distributions. By implementing more efficient Gaussian sampling, lattice-based
cryptographic algorithms can be more widely applied. Furthermore, Sun et al. [23]
also proposed a secure and efficient exponential Bernoulli sampling algorithm to achieve
universal, efficient, and synchronized Gaussian sampling of integers.

Significantly, in the sake of improving the expense of Gaussian sampling in lat-
tice encryption algorithms, the online/offline method is also an effective way. In 2008,
Guo et al. [24] first brought up the IBOOE scheme. The principal idea is to complete com-
puting that consume a lot of resources in the offline part through powerful devices. These
calculations do not require knowledge of messages and identities. Under this mindset,
we propose an online/offline IBE scheme from LWE with G-trapdoor, complete Gaussian
sampling during the offline phase. The offline part can be completed by powerful devices
without the need to know identity and messages.

3. Preliminaries

We take values from the finite set Ω, and let A and B be random variables. Furthermore,
the statistical distance between A and B, two ensembles of distributions indexed by s, is
△(A; B) := 1

2 ∑s∈Ω|A(s)− B(s)|. For an uniform and random variable UΩ from Ω, if we
have △(A; UΩ) ≤ δ, then we have the random variable A is δ-uniform over Ω. More
specifically, we let A(κ) and B(κ) be the two sets of random variables. Furthermore, set
d(κ) := △(A(κ); B(κ)), if d(κ) is an ignorable function of κ, and in this way, we have that A
and B are statistically approaching.
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For vectors S = {s1, . . . , sk} ∈ Rn×k. L2 norm is the shortest distance to go from
one point to another, which is the sum of squared differences between points. ∥S∥ indi-
cates the S’s longest vector’s L2 length.

∥∥∥S̃
∥∥∥ := {s̃1, . . . , s̃k} indicates the Gram–Schmidt

orthogonalization of the ordered vectors s1, . . . , sk as in above sequence.
We let a1, a2, . . . , an ∈ Rn×n be n linearly independent vectors and Y = (a1, a2, . . . , an).

Furthermore, the following additive discrete subgroup is called an n-dimensional lattice
which is generated by Y:

Λ = L(Y) =

{
n

∑
i=1

xiai : xi ∈ Z
}

For the three positive integers r, n, and q, where q is a prime number, we define
X ∈ Zr×n

q and ∂ ∈ Zr
q, and consider two kinds of n-dimensional lattices defined by X. The

transposed rows of X generates the first lattice and the first lattice is defined as:

Λq(X) :=
{

µ ∈ Zn : ∃s ∈ Zr
q where X⊤s = µ mod q

}
.

Those integer vectors are “orthogonal” under the modulus q to the rows of X. Further-
more, they constitute the second lattice. The second lattice is defined as:

Λ⊥q (X) := {µ ∈ Zn : Xµ = 0 mod q }.

Moreover, we let Λ∂
q = {µ ∈ Zn : Xµ = ∂ mod q} for the arbitrary ∂ ∈ Zr be the coset.

For c ∈ Rn and s > 0, the Gaussian function is defined as ρs,c(x) = exp
(
−π∥(x− c)/s∥2

)
.

Then, we let ρs,c(Γ) = ∑x∈Γρs,c(x) for any fixed countably subset Γ ⊆ Rn. Next, the discrete
Gaussian distribution for arbitrary x ∈ Γ is defined as DΓ,s,c(x) = ρs,c(x)/ρs,c(Γ).

Definition 1. Let Ψϵ over Zq for an ϵ ∈ (0, 1) indicates the distribution of the random variable
⌊qA⌉ mod q and a prime number q, ⌊qA⌉ means ⌊qA + 1/2⌋, where A is a normal random
variable, the mean of A is zero, and the standard deviation of A is ϵ/

√
2π.

Definition 2. For a prime number q, a positive integer r, and the distribution Ψϵ in Zq, the
(Zq, r, Ψϵ)-LWE problem is for the oracle access of samples, to differentiate between the distribution
(∂i, vi) =

(
∂i, ∂⊤i s + xi

)
∈ Zr

q ×Zq and the uniform distribution over Zr
q ×Zq, where xi ← Ψϵ,

∂i ← Zr
q and s← Zr

q.

Theorem 1 ([5]). There is an efficient algorithm for approaching the SIVP and the GapSVP
problems in the worst case, to within Õ(r/ϵ) factors in the L2 norm, if for resolving the

(
Zq, r, Ψϵ

)
-

LWE problem with q > 2
√

r/ϵ there exists an effective, probable quantum algorithm.

3.1. Framework and Security of IBOOE

Our IBOOE scheme is made up of the following five probabilistic polynomial-time
(PPT) algorithms as below.

Setup: In the setup phase, it takes security parameter λ as the input, sets plain-
text space and ciphertext space, then manufactures the global public parameters PP for
following algorithms and the master secret key MK for the KGC.

Extract: In the process of extracting secret key, it takes public parameters PP, the
master secret key MK and the id for generating the secret key SKid, and SKid corresponds to
the identity id.

Encoff: During the offline encrypting phase, it takes public parameters PP as input for
generating the offline ciphertext ξ.

Encon: During the online encrypting phase, it takes public parameters PP, the message
mes, the offline ciphertext ξ, and the id as inputs for generating online ciphertext ξ.
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Dec: In the decrypting phase, it takes public parameters PP, the ciphertext ξ and the
secret key SKid of the receiver, whose identity is id as inputs for decrypting the message mes.

For the security proof of our construction, we reduce our lattice based IBE scheme to a
classical difficult problem on lattices, the LWE problem.

The (Zq, r, Ψϵ)-LWE problem permits repetitive queries to the given challenge oracle
O. Furthermore, we say that if the following:

LWE− adv[A] :=
∣∣∣Pr

[
AOϑ = 1

]
− Pr

[
AO$ = 1

]∣∣∣
is non-ignorable for the random s from Zr

q, then the algorithmA resolves the (Zq, r, Ψϵ)-LWE
problem. Oϑ returns the real LWE sample and O$ is for the random case. The Pr

[
AOϑ = 1

]
means the probability of A guessing correctly when A accesses Oϑ. The same applies to
Pr

[
AO$ = 1

]
.

Security Game. In order to ensure strong privacy in our IBOOE scheme, we describe
a game that caches a character called “indistinguishable from random”. This implies that
the challenge ciphertext from the ciphertext space appears to be a random element, making
it difficult to decipher. For the security parameter λ, we define the scheme’s message space
asMλ and the scheme’s ciphertext space as ξλ. How the game works is described below.

Init: In the initial phase, the adversary A first outputs its target identity id∗.
Setup: In the setup phase, the challenger then runs the algorithm Setup and gives

the adversary A public parameters PP. Furthermore, the challenger keeps the master key
MK to itself.

Phase 1: In the first phase, the adversaryA sends private key queries q1, . . . , qn and the
query qi is for idi. We request that idi cannot equal to id∗. For private key di corresponds to
the identity idi, and the challenger runs algorithm Extract to respond. Then, the challenger
sends di to A. The above queries are all adaptive.

Challenge: After adversary A′s judgement of that the first phase is completed, a
plaintext M ∈ Mλ will be output. Furthermore, this is the plaintext that A intends to
be challenged. Then, for the following simulation, the challenger chooses the random bit
a ∈ {0, 1} corresponding to different situation, and the challenger also chooses a random
ciphertext ξ ∈ ξλ.

(1) For a = 0, challenger uses algorithm Encrypt for setting challenge ciphertext as
ξ∗ := Encrypt (PP, id∗, M).

(2) For a = 1, the challenger directly uses the challenge ciphertext chosen before and sets
ξ∗ := ξ.
The challenger then sends ξ∗ as the ciphertext for challenge to adversary A.

Phase 2: Then, in the second phase, the adversary A adaptively sends the supplemen-
tal queries from n + 1 to r, and the query qi corresponds to the id′is private key extraction
query, where idi cannot be equivalent to id∗. Just like in phase 1, the challenger sends qi to
adversary A.

Guess: Lastly, adversary A sends the guess a′ ∈ {0, 1} as its output for result that the
challenger chose before. A wins the game when a = a′. For the positive of adversary for
attacking an IBE scheme, we define it as:

AdvA(λ) =
∣∣Pr

[
a = a′

]
− 1/2

∣∣.
The possibility of the adversary winning depends on the random bits which are used

by the challenger and the adversary A.

Definition 3. If for every INDr-sID-CPA PPT adversary we have AdvA(λ), which is an ignor-
able function, then we are able to say that an IBE scheme is selective-identity, indistinguishable
from random.
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Lastly, we define the corresponding adaptive identity of our aforesaid concept, that is,
in the attack game process, the init phase is removed so that the adversary can reveal the
id∗ that it wants to attack, namely its target identity, until the challenge phase. In the first
phase, we permit the adversary to send random private key queries and then the adversary
selects the random target identity id∗. Furthermore, the only limitation is that in the phase
1, the adversary will not send the private key query for id∗. Our security concept obtained
in this way is defined in Definition 3, which is defined as INDr-ID-CPA.

3.2. Sampling Algorithms

For r, q ∈ Z, q is an odd number, k = ⌈log2 q⌉, namely the result of rounding up log2 q.
We denote the g⊤ ∈ Z1×k

q as
[
1 2 4 · · · 2k−1

]
. Let G = Ir ⊗ g⊤ ∈ Zr×rk

q be a public
matrix and ⊗means tensor product. The G-trapdoor for the lattice Λ⊥(X) was proposed
in the scheme [21].

Definition 4 ([21]). Given a matrix X ∈ Zr×n
q , G ∈ Zr×ω

q with n ≥ ω ≥ r, q is an odd number. If

there pertains some invertible matrix S ∈ Zr×r
q , and we have X

[
TX
I

]
= SG, then TX ∈ Z(n−ω)×ω

q

is named a G-trapdoor for X. We say that the greatest singular value of TX is denoted as s1(TX),
and the quality of this trapdoor TX is judged by s1(TX).

Theorem 2 ([21]). Let q ≥ 2, r ≥ 1 and S ∈ Zr×r
q is invertible matrix. For k = ⌈log2 q⌉ and

n > r log q, there is a randomized algorithm GenTrap(1r, 1n, q, S), and the algorithm’s output is
a parity-check matrix X ∈ Zr×n

q with G-trapdoor TX. The distribution of X approximately follows
uniform distribution.

Moreover, for any ∂ ∈ Zr
q and sufficiently large ϱ >

√
r log q, randomized algorithm

SampleD(TX, X, S, ∂, ϱ), which outputs sampling results from distribution DΛ∂
q(X),ϱ

within
negl(r) statistical distance.

Lemma 1 ([3]). Suppose that n > (r + 1) log2 q + ω(log r), where q > 2 and q is a prime
number. Let n× k matrix R be an uniform matrix from {1,−1}n×k mod q. Let X and Y be two
uniform matrices from Zr×n

q and Zr×k
q separately. Then, for all of the vectors w from Zn

q , the
distribution

(
X, XR, R⊤w

)
and the distribution

(
X, Y, R⊤w

)
is statistically approaching.

We look back at some sampling algorithms from [3,21]. Let X, Y be matrices in Zr×n
q ,

the matrix M1 ∈ Zr×n1
q , and R ∈ {−1, 1}n×n. Set F1 := (X |M1), F2 := (X | XR + Y).

– SampleL(X, M1, TX, ∂, ϱ) → µ : For matrix X ∈ Zr×n
q and its G-trapdoor TX, ma-

trix M1 ∈ Zr×n1
q , vector ∂ ∈ Zr

q and parameter ϱ ≥
∥∥∥T̃X

∥∥∥ · ω(√
log (n + n1)

)
, the

algorithm outputs a vector µ distributed statistically approaching to DΛ∂
q(F1),ϱ

.

– SampleR(X, Y, R, TY, ∂, ϱ)→ µ : For matrix Y ∈ Zr×n
q and its G-trapdoor TY, matrix

X ∈ Zr×n
q , uniformly random matrix R from {−1, 1}n×n, vector ∂ ∈ Zr

q, and parameter

ϱ ≥
∥∥∥T̃Y

∥∥∥ · √n ·ω
(√

log n
)
, the algorithm outputs a vector µ distributed statistically

close to DΛ∂
q(F2),ϱ

.

3.3. Encoding Identities as Matrices

The encoding function N: Zr
q → Zr×r

q is used to map identities in Zr
q to matrices in

Zr×r
q . N is an explicit full-rank differences (FRD) construction, which means for all different

id1 and id2 from Zr
q, the matrix [N(id1)−N(id2)] ∈ Zr×r

q is full-rank. Furthermore, the
method is to build an additive subgroup G from Zr×r

q of size qr. All of the non-zero matrices
from G are full-rank. In this way, for all different X, Y ∈ G, the difference between them is
also in G, as a consequence, X− Y is full-rank.
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Although we are primarily interested in the finite field Zq, we represent the struc-
ture of a random field P. In cases where polynomial f ∈ P[x] of degree less than r,
we define the r-vector of coefficients of f as ces( f )∈ Pr and express it as a row vector.
However, in cases where f is of degree less than r − 1, we add zeroes to the right of
the coefficients vector, so it becomes r-vector. The case in point is, for r = 8 we have
ces(x5 + 7x2 + 1) = (1, 0, 7, 0, 0, 1, 0, 0) ∈ P8. We let p of degree r be some irreducible poly-
nomial from P[x]. Think back that the polynomial f from P[x] mod p has degree less than
r, consequently, the ces( f mod p) is a vector from Pr.

Yet, for an input h = (h0, . . . , hr−1) ∈ Pr, the polynomial fh(x) = ∑r−1
i=0 hixi ∈ P[x]. We

define N(h) as:

N(h) :=


ces( fh)

ces(x · fh mod p)
ces

(
x2 · fh mod p

)
...

ces
(
xr−1 · fh mod p

)

 ∈ Pr×r.

Because for all of the prime numbers q and the integer r > 1, there are irreducible
polynomials of degree r from Zq[x], and the structure can cater for any pair of q and r.

Theorem 3 ([25]). Let P be a field and the p is a polynomial from P[x]. The function N is an
encoding with FRD, if the p is irreducible from P[x].

Let r = 4, and p(x) = x4 + x− 1. The function N(h), where h = (h0, h1, h2, h3), works
as below.

N(h) = N(h0, h1, h2, h3) :=
h0 h1 h2 h3
h3 h0 − h3 h1 h2
h2 h3 − h2 h0 − h3 h1
h1 h2 − h1 h3 − h2 h0 − h3

.

Theorem 3 proves that for all prime numbers q, the function N is FRD, where x4 + x− 1
is irreducible from Zq[x].

4. New Lattice-Identity-Based Online/Offline Encryption

The construction of our lattice based IBOOE scheme is on the basis of the following idea.
In the offline phase, we generate offline ciphertext with high computational complexity
and no need to know identity and messages. During the online phase, we generate online
ciphertext by using identity, messages, and offline ciphertext.

4.1. Construction

As shown in Figure 1, in our IBOOE scheme, KGC generates public parameters and
master secert key. With the master secret key, KGC generates the private key for the
Data User. For performing the offline encryption operation, the Offline Server completes
Gaussian sampling and sends offline ciphertext to the Data Owner. Using the offline
ciphertext, the Data Owner completes online encryption with the Data User’s id and the
message mes. The Data User decrypts ciphertext for the final message mes. The concrete
algorithms are as below.

Setup: KGC takes r to be the security parameter, sets n = 2r1+δ, q = n2.5 ·ω
(√

log r
)
,

ϱ = n ·ω
(√

log r
)
, ϵ =

[
n2 ·ω

(√
log r

)]−1. Then, it rounds up n to next larger integer and
rounds up q to next larger prime number. Among above formulas, δ is for rδ = O(log r). By
using algorithm GenTrap, it selects a uniform and random r× n-matrix X0 ∈ Zr×n

q with
the G-trapdoor TX0 as defined in Definition 4. It then selects two uniform and random
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r× n matrices X1, Y in Zr×n
q . It selects a uniform and random r-vector ∂ in Zr

q. Lastly, KGC
outputs public parameters PP and the master key MK:

PP = (X0, X1, Y, ∂);MK = TX0 .

Figure 1. Our IBOOE scheme’s architecture.

Extract: KGC takes public parameters PP, the master key MK, and an identity id ∈ Zr
q

as inputs, then KGC samples µ ∈ Z2n as:

µ← SampleL
(
X0, X1 + N(id)Y, TX0 , ∂, ϱ

)
.

In the above formula, N is the FRD map as described in Section 3.3 and µ is distributed
as DΛ∂

q(Fid),ϱ
. Let Fid := (X0 | X1 + N(id)Y), which means Fid · µ = ∂. For the chosen id,

KGC outputs the following secret key:

SKid := µ.

Encoff: The Offline Server takes public parameters PP as input and completes Gaussian
sampling, which does not need the identity and the message that needs to be encrypted in

following online algorithm. It also chooses the uniform and random vector s R← Zr
q and the

uniform and random matrix R from {−1, 1}n×n. It also chooses x Ψϵ← Zq and y
Ψn

ϵ← Zn
q for

noise vectors, which both follow the distribution of Definition 1, and set z ← RTy ∈ Zn
q .

Offline Server computes ξ0 = ∂Ts + x ∈ Zq and ξ1 =

[
y
z

]
and stores the offline ciphertext

for the online phase:
ξ := (ξ0, ξ1, s)

Encon: The Data Owner takes PP, identity id, and a message mes ∈ {0, 1} as in-
puts. Then, it sets Fid as (X0 | X1 + N(id)Y). It also sets ξ0 = ξ0 + mes

⌊ q
2
⌋
∈ Zq and

ξ1 = F⊤id s +
[

y
z

]
∈ Z2n

q . The Data Owner outputs the online ciphertext:

ξ := (ξ0, ξ1).

Dec: The Data User takes public parameters PP, the private key SKid, and the online
ciphertext ξ as inputs, it then computes ω ← ξ0 − SK⊤idξ1 in Zq. It compares ω and

⌊ q
2
⌋
, the

downward rounding of q
2 , treat them as integers from Z. If the two integers are approaching,

namely, if
∣∣ω− ⌊ q

2
⌋∣∣ < ⌊ q

4
⌋

from Z, output 1, otherwise output 0.
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In the above encryption, the matrix R has significant importance in security proof.
The matrix is a tool for a specific distribution required by the simulation, which is used to
sample noise vectors (y, z).

4.2. Parameters and Correctness

We define our scheme’s correctness below.
Correctness. If (PP,MK)← Setup(λ), the Extract algorithm runs as SKid ← Extract

(PP,MK, id) and ciphertexts generated as ξ ← Encoff(PP), ξ ← Encon(PP, id, mes, ξ
)
, then

Dec(PP,SKid, ξ) outputs “mes” with an overwhelming probability.

Proof. When our scheme is operated as specified, during decryption, we have:

ω = ξ0 − SK⊤idξ1 = mes
⌊ q

2

⌋
+ x− SK⊤id

[
y
z

]
.

For recovering mes correctly, we can compute the error term as x− SK⊤id

[
y
z

]
, and it

needs to be less than q/5. Since x ∈ Ψϵ and y ∈ Ψn
ϵ , we have |x| < qϵω

(√
log n

)
+ 1/2 and

|y| < qϵω
(√

log n
)
+
√

n/2. For ∥SKid∥ is sampled by SampleL, we have ∥SKid∥ ≤ ϱ
√

2n.
Let SKid = (µ1, µ2), with the error term as follows:

x− SK⊤id

[
y
z

]
= x− µ⊤1 y− µ⊤2 z = x− (µ1 − Rµ2)

⊤y.

For a random matrix R chosen from {−1, 1}n×n, we have ∥R∥ ≤ O
(√

n
)
. Since

∥µ1 − Rµ2∥ ≤ ∥µ1∥+ ∥Rµ2∥ ≤ O(ϱn) ([3]), the error term
∣∣∣∣x− SK⊤id

[
y
z

]∣∣∣∣ is then limited by:

|x|+
∣∣∣(µ1 − Rµ2)

⊤y
∣∣∣ ≤ qϵω

(√
log n

)
+ O

(
ϱn3/2

)
.

In order for the system to function properly, we must make sure that the error term
described as above in Dec is lower than q/5. GenTrap needs n > r log q and ϱ >

√
r log q

to operate correctly. SampleR and SampleL need ϱ to be large enough, ϱ > nω
(√

log n
)
.

Furthermore, our security proof needs q > 2
√

r/ϵ.
For the sake of meeting the requirements of accuracy and safety, we set the parameters

as follows, using r as security parameter:

n = 2r1+δ , q = n2.5 ·ω
(√

log r
)

ϱ = n ·ω
(√

log r
)

, ϵ =
[
n2 ·ω

(√
log r

)]−1

which round up n to the next greater integer, and round up q to the next greater prime
number. Furthermore, δ is for rδ > ⌈log q⌉ = O(log r).

4.3. Security Proof

We demonstrate that our IBOOE scheme is indistinguishable from randomness under
the selective identity attack in Definition 3. Being indistinguishable from randomness
implies that, in the ciphertext space, the challenge ciphertext cannot be distinguished from
randomly selected elements in the ciphertext space.

Theorem 4. If the
(
Zq, r, Ψϵ

)
-LWE assumption holds true, the IBOOE scheme is secure for

INDr-sID-CPA.

Proof. Our security proof follows a series of games, where the first one of these games
is identical as INDr-sID-CPA game, which is described in Definition 3. Furthermore, the
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adversary A has no positive in the final game. Because when the adversary gets the
ciphertext in the last game, it is always a randomly selected element from ciphertext space.
We demonstrate that the upside of the PPT adversary winning the rudimentary INDr-sID-
CPA game is ignorable by demonstrating that the adversary cannot distinguish the series
of games presented below. The proof of indistinguishability between the Game 2 and the
Game 3 is reduced to the LWE difficulty problem.

Game 0: The Game 0 is between the adversary A for our scheme and the INDr-sID-CPA
challenger, it is just as described in Definition 3, namely the original game.

Game 1:

Init: In the initial phase, the adversary A first outputs its target identity id∗.
Setup: In the setup phase, the challenger then runs algorithm Setup and chooses R∗

to construct X1 as:

X0R∗ −N(id∗)Y (1)

The challenger provides the system public parameters PP to the adversary A and
keeps the master key MK secrete from A.

Phase 1: In the first phase, the adversary A sends the private key queries q1, . . . , qn
to the challenger and the query qi is for idi. We request that idi cannot equal to id∗. For
private key di which corresponds to the identity idi, the challenger runs algorithm Extract
to respond. The challenger sends di to A. The above queries are all adaptive.

Challenge: After the adversary’s judgment of the first phase is completed, a plaintext
M ∈ Mλ will be output. Furthermore, this is the plaintext that A intends to be chal-
lenged. Then, for the following simulation, the challenger selects a random bit a ∈ {0, 1}
corresponding to a different situation, and it also picks a random ciphertext ξ ∈ ξλ.

(1) For a = 0, the challenger uses algorithm Encrypt for setting the challenge ciphertext
as ξ∗ := Encrypt(PP,id∗,M).

(2) For a = 1, the challenger directly uses the ciphertext chosen before and sets ξ∗ := ξ.

The challenger then sends ξ∗ as the ciphertext for challenge to adversary A.
Phase 2: Then, in the second phase, the adversary A adaptively sends supplemental

queries from n + 1 to r, and the query qi corresponds to the id′is private key extraction
query, where idi cannot be equivalent to id∗. Just like in phase 1, the challenger sends qi to
adversary A.

Guess: Lastly, the adversary A sends the guess a′ ∈ {0, 1} as its output for result that
the challenger chose before. A wins the game when a = a′. For the positive of adversary
for attacking an IBE scheme, we define it as:

AdvA(λ) =
∣∣Pr

[
a = a′

]
− 1/2

∣∣.
Game 2:

Init: In the initial phase, the adversary A first outputs its target identity id∗.
Setup: In the setup phase, the challenger then runs algorithm Setup, generates X0

as a random matrix and generates Y using GenTrap with G-trapdoor TY, and constructs
X1 ← X0R∗ −N(id∗)Y. The challenger provides the system public parameters PP to the
adversary A and keeps the master key MK secrete from A.

Phase 1: In the first phase, the adversary A sends the private key queries q1, . . . , qn
to the challenger and the query qi is for idi. We request that idi cannot equal to id∗. For
the private key di, which corresponds to the identity idi, the challenger runs Extract to
respond. During Extract, the challenger uses SampleR(X0, (N(id)−N(id∗))Y, R∗, ∂, ϱ) to
get µ ∈ DΛ∂

q(Fid),ϱ
where:

Fid := (X0 | X0R∗ + (N(id)−N(id∗))Y) (2)
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The challenger then sends di to A. The above queries are all adaptive.
Challenge: After the adversary’s judgement of the first phase is completed, a plaintext

M ∈ Mλ will be output. Furthermore, this is the plaintext that A wants to be challenged.
Then, for the following simulation, the challenger selects a random bit a ∈ {0, 1} corre-
sponding to different situation, and it also picks a random ciphertext ξ ∈ ξλ.

(1) For a = 0, the challenger uses algorithm Encrypt for setting challenge ciphertext as
ξ∗ := Encrypt(PP,id∗,M).

(2) For a = 1, the challenger directly uses the ciphertext chosen before and sets ξ∗ := ξ.

The challenger then sends ξ∗ to adversary A.
Phase 2: Then, in the second phase, the adversary A adaptively sends the supplemen-

tal queries from n + 1 to r, and the query qi corresponds to the id′is private key extraction
query, where idi cannot be equivalent to id∗. Just like in phase 1, challenger sends qi to
adversary A.

Guess: Lastly, the adversary A sends the guess a′ ∈ {0, 1} as its output for result that
the challenger chose before. A wins the game when a = a′. For the positive of adversary
for attacking the IBE scheme, we define it as AdvA(λ) = |Pr[a = a′]− 1/2|.
Game 3:

Init: In the initial phase, the adversary A first outputs its target identity id∗.
Setup: The challenger then runs algorithm Setup, generates X0 as a random ma-

trix and generates the matrix Y using GenTrap with G-trapdoor TY, and constructs
X1 ← X0R∗ − N(id∗)Y. The challenger provides the system public parameters PP to
the adversary A and keeps the master key MK secrete from A.

Phase 1: In the first phase, the adversary A sends the private key queries q1, . . . , qn to
the challenger and the query qi is for idi. We request that idi cannot equal to id∗. The private
key di corresponds to the identity idi, and the challenger runs Extract to respond. During
Extract, the challenger uses SampleR to get µ ∈ DΛ∂

q(Fid),ϱ
where Fid is as in Formula (2).

The challenger sends di to A. The above queries are all adaptive.
Challenge: After the adversary’s judgement of the first phase is completed, a plaintext

M ∈ Mλ will be output. Furthermore, this is the plaintext that A wants to be challenged.
Then, for the following simulation, the challenger selects a random bit a ∈ {0, 1} corre-
sponding to different situation, and it also picks a random ciphertext ξ ∈ ξλ, but always
sets the challenge ciphertext as ξ∗ := ξ.

The challenger then sends ξ∗ to adversary A.
Phase 2: In the second phase, the adversary A adaptively sends the supplemental

queries from n + 1 to r, and the query qi corresponds to the id′is private key extraction query,
where idi cannot be equivalent to id∗. Just like in phase 1, the challenger responds qi to
adversary A.

Guess: Lastly, the adversary A sends the guess a′ ∈ {0, 1} as its output for the result
that challenger chose before. A wins the game when a = a′. For the positive of adversary
for attacking an IBE scheme, we define it as AdvA(λ) = |Pr[a = a′]− 1/2|.

Theorem 5. Game 0 and Game 1 are statistically indistinguishable.

Proof. The challenger uses random matrices X0, X1, Y to generate public parameters PP
and the trapdoor TX0 in Game 0. The challenger generates challenge ciphertext ξ∗ during
the challenge phase. We use R∗ from {−1, 1}n×n to represent a random matrix, which is
used to generate ξ∗.

The challenger chooses R∗ and constructs X1 as in Formula (1) in Game 1. Furthermore,
identity id∗ is the identity which will be attacked by A. This means we change a little in
how the challenger generates the matrix X1 in public parameters.

Lemma 1 shows that Game 0 is statistically indistinguishable from Game 1. We use
martix R∗ for constructing X1 and challenge ciphertext in Game 1. We are able to know that
the distribution (X0, X0R∗, z) is statistically approaching to (X0, X′1, z) by Lemma 1. The X′1
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is a uniform matrix from Zr×n
q . In this way, matrix X0R∗ is statistically approaching to the

uniform one in A’s view. Therefore, the X1 as defined in Formula (1) is also approaching to
the uniform one. As a result, X1 are indistinguishable in the Game 0 and the Game 1.

Theorem 6. Game 1 and Game 2 are statistically indistinguishable.

Proof. We construct matrix X0 as a random matrix in Game 2, and for Y, we generate it by
running algorithm GenTrap with G-trapdoor TY. Construct X1 as in Game 1. For private
key queries, the challenger uses matrix R to respond. Furthermore, for id ̸= id∗, for the sake
of answering the private key queries, the challenger uses the short vector µ from Λ∂

q(Fid)
and sets Fid as in Formula (2). According to the structure, the difference between N(id) and
N(id∗) is non-singular, namely [N(id)−N(id∗)]. Now, for private key query, challenger
runs algorithm SampleR to respond. As in Game 1, algorithm SampleR outputs the vector
µ from Z2n, which is sampled from distribution statistically approaching to DΛ∂

q(Fid),ϱ
.

In other aspects, Game 2 is as same as Game 1. Because the response to the private
key queries is statistically very approaching to the response in the Game 1, A’s positive
over the Game 1 and Game 2 has an almost ignorable difference.

Theorem 7. Game 2 and Game 3 are statistically indistinguishable.

Proof. Game 3 is just like Game 2, although it differs in that the challenge ciphertext(
ξ∗0 , ξ∗1

)
is always picked as an independent and random element from Zq ×Z2n

q . Since the
challenge ciphertext in the ciphertext space is always a novel random element and adversary
A has no positive in Game 3, then for a PPT adversary, the second and third games are
computationally indistinguishable, and we do this by reducing it to the LWE problem.

Assuming A has significant superiority in differentiating between the Game 2 and the
Game 3. Then, we apply the adversary A for an LWE algorithm L.

As described in Definition 2, an LWE problem instance is to differentiate between truly
random sample and noisy pseudo-random for some secret s in Zr

q. In our security game, we
set O$ as the truly random sample and the Oϑ as the LWE sample. Lmakes a distinction
between the two with the adversary A, and operates as below:

Instance. Simulator L approaches from O and for each i = 0, · · · , n, simulator L
achieves a fresh pair (∂i, vi) ∈ Zr

q ×Zq.
Targeting. The adversary declares to L that the object it wants to attack is id∗.
Setup. Simulator L generates the system’s public parameters PP as below:

(a) From n of the given LWE samples, it makes the random matrix X0 ∈ Zr×n
q and for all

i = 1, · · · , n the i-th column of X0 is the r-vector ∂i.
(b) Specify the zeroth LWE sample as a publicly available random r-vector ∂0 ∈ Zr

q. The
zeroth LWE sample has not been used yet.

(c) Use id∗ and R∗ to create the remaining of public parameters as in Game 2.
(d) Lastly, it sends public parameters PP = (X0, X1, Y, ∂0) to the adversary.

Queries. For each of the private key extraction query, simulator L answers just as in
Game 2.

Challenge. With the target id∗, when adversary prompts the message bit mes∗ ∈ {0, 1}
and the challenge ciphertext, L responds as below:

(a) Set v0, · · · , vn as the entries from the LWE instance and set v∗ =

v1
...

vn

 from Zn
q .

(b) Letting ξ∗0 = v0 + mes∗
⌊ q

2
⌋
∈ Zq for masking message bit.

(c) Set ξ∗1 =

[
v∗

(R∗)v∗

]
∈ Z2n

q .

(d) Send ξ∗ =
(
ξ∗0 , ξ∗1

)
to the adversary.
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If the LWE oracle is pseudo-random, namely O = Oϑ, ξ∗ will be distributed as in
Game 2. Firstly, inspect that the Fid∗ = (X0 | X0R∗). Secondly, by the definition of Oϑ we
are able to know that for some random noise vector y ∈ Zn

q , which is distributed as Ψn
ϵ ,

v∗ = X⊤0 s + y. Thus, ξ∗1 defined as above in the step (c) satisfies:

ξ∗1 =

[
X⊤0 s + y

(R∗)⊤X⊤0 s + (R∗)⊤y

]
= (Fid∗)

⊤s +

[
y

(R∗)⊤y

]

and the ξ1 part in Game 2 is the quantity on the right, namely the efficacious challenge
ciphertext. We also notice that v0 = ∂⊤0 s + x, and the x’s distribution is as the Ψϵ. In this
way, ξ∗0 in step (b) satisfies ξ∗0 = ∂⊤0 s + x + mes∗

⌊ q
2
⌋
, just like the ξ0 part of the challenge

ciphertext described in the Game 2.
In the case that O = O$, we have v0 is uniform from Zq and v∗ is uniform from Zn

q .
According to the standard left-over-hash-lemma, which describes the hash function defined
by the matrix

(
X⊤0 | v∗

)
. It makes sure that the two quantities X0R∗ and (R∗)⊤v∗ are

uniformly independent. Thus, ξ∗1 , which is defined as in step (c) is uniformly independent
in Z2n

q . As a result, the challenge ciphertext in Zq × Z2n
q is always uniform just as in

Game 3.

Guess. After allowing supplemental queries, A speculates that this is a challenger of
Game 2 or Game 3. The simulator L finally outputs the guess of A as a solution to the LWE
problem for which it is attempting to resolve.

We have mentioned before that in the case of O = Oϑ, the adversary A’s opinion is
just like in the Game 2. Furthermore, in the case of O = O$, the adversary A’s opinion is
just like in the Game 3. Consequently, the positive of smulator L in resolving LWE is equal
to the positive of A in differentiating between the Game 2 and the Game 3. At this point,
we have fully introduce the algorithm L and provide corresponding proof.

5. Comparison and Analysis

We compare our scheme with existing schemes [3,4] in terms of storage and com-
puting. In Table 1, the performance of the schemes are analyzed from the aspects of PP
size, SK size, online ciphertext size, offline ciphertext size, and security. We compare the
computation efficiency of schemes in Table 2, from online computation, offline computation,
and dimension. In addition, we also demonstrate through experimental simulations that
our scheme is more efficient than existing schemes [3,4].

Table 1. Comparison of storage space.

Scheme [3] Scheme [4] Our Scheme

PP Size 2nr log q 2nr log q 2nr log q

SK Size 2n log q 2nr log q 2n log q

Online Ciphertext Size (2n + 1) log q (2n + 1)r log q (2n + 1) log q

Offline Ciphertext Size - - (2n + r + 1) log q

Security CPA CPA CPA

Table 2. Comparison of computation efficiency.

Online Computation Offline Computation Dimension

Scheme [3] r2 + 4nr - 6r log q

Scheme [4] r2 + 3nr - 2r log q

Our scheme 2nr r2 + 2nr 2r log q
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5.1. Theoretical Comparison

The schemes in Tables 1 and 2 are secure against CPA under the standard model,
where n is the dimension of the lattice, r is the security parameter, and q is the modulus.
Furthermore, the limiting relationship between them is n > r log q. Table 1 shows the
storage cost and security among Agrawal et al.’s anti-quantum IBE scheme [3], our on-
line/offline anti-quantum IBE scheme, and Zhang et al.’s anti-quantum IBE scheme [4].
Our scheme uses the more efficient trapdoor generation method G-trapdoor to generate
trapdoors in scheme. Moreover, the scheme [4] is a lattice based IBE scheme proposed by
Zhang et al. in 2020, which is an efficient IBE scheme with short parameters over lattice.
With the same security level, our scheme has a smaller SK size than scheme [4], and also
has a smaller online ciphertext size. This is friendly to low-power encryption devices.

We also compare the efficiency of different schemes in Table 2 in terms of the com-
putational cost of online ciphertext, the computational cost of offline ciphertext, and the
dimension of lattice. It is easy to see through a comparison that our scheme has the highest
efficiency in online ciphertext calculation compared to the scheme [3,4]. In addition, our
scheme not only supports expansion into adaptive security scheme, but also into multi-bit
encryption and HIBE, and has been proven to be secure in the standard model.

5.2. Experimental Simulation

Furthermore, we compare the clock cycles for implementing the online part of Agrawal
et al.’s anti-quantum IBE scheme, Zhang et al.’s anti-quantum IBE scheme and our on-
line/offline anti-quantum IBE scheme from LWE. In our scheme, the Gaussian sampling
parts which do not request id and mes are placed on the Offline Server for operation. Our
implementation is carried out on an Intel i7-12700 2.7GHz CPU, which is manufactured by
Intel, Shanghai, China, with double precision floating point numbers for non integers in
C++. We use the “time.h” to measure clock cycles. The one-dimensional sampler [26] is a
modified rejection sampler. We set q and r for different LWE security [27]. In our settings,
q = 212, r = 29 for 108.7-bit LWE security; q = 224, r = 211 for 279.7-bit LWE security;
q = 234, r = 213 for 454.7-bit LWE security; and q = 260, r = 214 for 531.7-bit LWE security.

The scheme in [3] is a classic IBE scheme based on LWE, while the scheme in [4]
is a recently published efficient LWE IBE scheme. The scheme in [4] balances efficiency
and public parameter size through clever ideas in identity processing, and our scheme
focuses on improving the efficiency of online computing while ensuring security. As
shown in Figure 2, for the efficiency of the online part, our online/offline scheme has
improved by 65% to 80% compared to the initial anti-quantum IBE scheme [3] from LWE,
and by 60% to 70% compared to the scheme [4]. The improvement in efficiency increases
with the increase of LWE security parameters. Because our scheme not only uses the
efficient trapdoor generation method of G-trapdoor in generating trapdoors, but also
performs offline calculation in advance to enable the online part to only complete necessary
operations with lower cost. This is very practical in scenarios where encryption devices
have low power consumption, because through online/offline technology, high calculation
overhead can be completed in advance, and this part of the calculation does not require
message and receiver’s identity. In this way, the efficiency of encryption devices can be
maximized during the online phase.
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Figure 2. The comparison of online part between our online/offline scheme and other schemes [3,4]
for different LWE security. In the above figure, the LWE security corresponds to different security
parameter r: 108.7-bit LWE security corresponds to r = 29; 279.7-bit LWE security corresponds to
r = 211; 454.7-bit LWE security corresponds to r = 213; and 531.7-bit LWE security corresponds to
r = 214.

6. Conclusions

With the rapid development of quantum computing technology, how to design efficient
IBE schemes that resist quantum attacks is currently a hot research topic. In this paper,
our innovative suggestion is to design an IBOOE scheme by utilizing the difficult problem
of lattice-based cryptography, which can efficiently perform online encryption even if
the device’s computing power is limited. Furthermore, the offline phase can be achieved
without the need of the message to be encrypted and the recipient’s identity. In addition,
we use G-trapdoor for generating “strong trapdoors” in lattice. Compared to most existing
schemes, our scheme is simpler and more efficient, greatly reducing online computing
costs. We prove under the standard model that the scheme is CPA secure. Through the
performance and security analysis, our scheme improve the performance of the classic
LWE IBE scheme [3] by 65% to 80% (increased by LWE security parameters), and by 60%
to 70% in comparison with the scheme [4]. This greatly increases the efficiency of online
computing for low-power encryption devices while guaranteeing security.

Our online/offline scheme based on IBE from LWE materializes high performance
while resisting quantum interference. Although our scheme can be easily expanded into
an adaptive security scheme [3], and can also convert to the Hierarchical IBE scheme [2],
it lacks practical features in daily life, such as flexible user changes. In the future, we
will further design attribute-based encryption schemes [28–31] from LWE, which has fine-
grained access control function.
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