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Abstract: The Kullback–Leibler (KL) divergence is a widely used measure for comparing probability
distributions, but it faces limitations such as its unbounded nature and the lack of comparability
between distributions with different quantum values (the discrete unit of probability). This study ad-
dresses these challenges by introducing the concept of quantized distributions, which are probability
distributions formed by distributing a given discrete quantity or quantum. This study establishes an
upper bound for the KL divergence between two quantized distributions, enabling the development
of a normalized KL divergence that ranges between 0 and 1. The theoretical findings are supported
by empirical evaluations, demonstrating the distinct behavior of the normalized KL divergence
compared to other commonly used measures. The results highlight the importance of considering
the quantum value when applying the KL divergence, offering insights for future advancements in
divergence measures.

Keywords: Kullback–Leibler divergence; entropic divergence; statistical distance; quantized distribution;
probability distributions

1. Introduction

The Kullback–Leibler divergence (KL), also called entropic divergence, is a widely
used measure for comparing two discrete probability distributions [1]. Such a divergence
is derived from the notion of entropy, and it aims at evaluating the amount of information
that is gained by switching from one distribution to another. The applications of the
divergence span several scientific areas, for example, for testing random variables [2–4],
for selecting the right sample size [5], for optimizing sampling in bioinformatics [6] or
for analyzing magnetic resonance images [7]. However, the entropic divergence has two
important properties that limit its applicability. It has also been applied as a cost function
in predictive machine-learning approaches [8] based on the well-established random-forest
model, or in artificial neural networks [9], for example, for clustering data points [10] or
for generative models [11]. It can not be used as a metric because it is not symmetric,
i.e., KL(P||Q) ̸= KL(Q||P), where P and Q are two probability distributions. Moreover,
its value is 0 if equal distributions are compared, but it is shown not to have an upper
bound to its possible value. One of the reasons is that it results in an infinite divergence
if the probability of a specific event is equal to 0 in Q but is greater than 0 in P. Although
infinite divergence is discarded, an upper bound for the entropic divergence has not
been established.

The search for bounded divergences is an important topic in information theory, and
some attempts have been made in the past few years. For example, the main goal of the so-
called Jensen–Shannon divergence (JS) [12] is to provide a notion of symmetric divergence,
but it is also shown to be upper-bounded by the value 1 if the base of the used logarithm is
2. It is a metric but its values are not uniformly distributed within the range [0 . . . 1], as is
empirically shown in this study. Kullback–Leibler and Jensen–Shannon measures are in the
class of f -divergences [13], which aim at representing the divergence as an average of the

Information 2024, 15, 547. https://doi.org/10.3390/info15090547 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15090547
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-1637-7545
https://doi.org/10.3390/info15090547
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15090547?type=check_update&version=1


Information 2024, 15, 547 2 of 22

odds ratioweighted by a function f . Each divergence has a specific meaning and behavior,
and the relation among different types of f -divergence is a well-studied topic [14]. The
Hellinger distance [15] is one of the most used measures among the f -divergences, together
with Kl and JS. It avoids infinite divergences by definition, and it is bounded between
0 and 1. More generally, the KL divergence is shown to be related to several other types of
divergences [16].

The present work introduces a new class of discrete probability distributions called
quantized distributions. The name comes from the fact that the probabilities reported by
such a class of distributions are formed by quanta of probability. The final aim of the present
study is to show that, given a quantized distribution P, there exists another quantized
distribution U that maximizes the entropic divergence from P. Thus, for each distribution
P, an upper bound to the divergence form P can be obtained by constructing U. The
assumptions are that infinite divergences must be avoidable and that the two distributions
must be formed by distributing a given discrete quantity, namely, the same quantum must
form them. This last property highlights an important previously unaccounted aspect
of the KL divergence. Because such a bound can only be assessed under this condition,
KL divergence should only be applied between probability distributions formed by the
same quantum. These theoretical results allow the introduction of a notion of entropic
divergence that is normalized in the range [0 . . . 1], independently from the base of the
used logarithm. Such a measure is compared with the more commonly used notions of
divergence and distance between distributions by showing that it behaves in a precise
way. Furthermore, it is empirically shown that its values are better distributed in the range
[0 . . . 1] with respect to the compared measures. In conclusion, the novel aspects of this
study are (i) the introduction of the concept of quantized distributions, (ii) the establishment
of an upper bound for the KL divergence between quantized distributions, and (iii) the
proposal of a normalized KL divergence.

2. Preliminaries

A finite (thus discrete) multiplicity distribution is defined as a function f , which dis-
tributes a given discrete quantity M to a finite set C of |C| distinct cells. Thus, ∑c∈C f (c) = M.
This class of distributions is often represented via Ferrers diagrams [17], in which the
distributed quantity is a finite set of M dots that are assigned to cells. A multiplicity
distribution is commonly transformed into discrete probability (frequency) distributions
by converting it to a distribution such that the sum of its outcomes equals 1. Thus, a finite
discrete probability distribution P is obtained by dividing the assigned quantities for the
total quantity, namely P(c ∈ C) = f (c)

M . In this context, the term quantum signifies that the
distribution is defined on a finite, discrete domain, and the assigned values are composed
of quanta, which are discrete, unitary pieces of information.

Definition 1 (Quantized distribution). A quantized (probability) distribution (QD) is a finite
discrete probability distribution that assigns a probability value to each of the n values of a variable.
The probability values are positive, non-zero multiples of the fraction 1/M, called the quantum of
the distribution, for a given M ∈ N. The value n is also called the cardinality of the distribution.

It has to be noticed that since quantized distributions are probability distributions, the
sum of the assigned probabilities must equal 1. Furthermore, this defines a special type of
probability distribution. In fact, in general, it is not required that a probability distribution
is sourced by a discrete quantity M distributed over a finite set of cells. Such a type of
distribution is of great importance in the field of Computer Science, where probabilities are
estimated by looking at frequencies calculated from discrete quantities, for example, for
representing biological information [18–20]. However, it can be easily shown that the class
of quantized distribution covers all the possible discrete finite probability distributions. For
distributions where assigned probabilities are rational numbers, rescaling is always possible.
This is achieved by setting the quantum value as 1 divided by the common denominator of
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the assigned probabilities. The rest of the discrete finite probability distributions can be
approximated by using an arbitrarily small epsilon for their discretization.

Remark 1. For each multiplicity distribution D, there exists a quantized distribution P, and
vice versa.

In fact, given a multiplicity distribution, it can always be converted to a quantized
distribution by dividing the assigned values by their sum. Vice versa, a quantized distri-
bution can be represented as a function that assigns values that are an integer multiple
(a multiplicity) of the quantum.

Because of the strict relation between frequency/probability and multiplicity distri-
butions, from now on and without loss of generality, the assigned probability values, f (c)

M ,
will be interchanged with their multiplicity/integer-quantity counterpart, f (c), depending
on the purpose of the context in which they are recalled. Similarly, Ferret diagrams and
their dot-based representation represent this type of distribution.

Remark 2. Two distributions P and Q, defined on the same domain C, are considered equal, thus
not distinct if ∀c ∈ C ⇒ P(c) = Q(c).

Proposition 1. The total number of distinct, thus not equal, quantized distributions that can be
formed by arranging a quantity M in n distinct cells is (M−1

M−n).

Proof. Given a set S of x elements, the number of y-combinations, namely the number of
subsets of y distinct elements of S, if given by (x

y). The number of y-combinations with
repetitions, namely the number of sequences of y non-necessarily distinct elements of S, is
given by (x+y−1

y ) [21].
Quantized distributions require that at each cell, a minimum value of 1/M must be

assigned. Switching from quantized to multiplicity distributions implies that a quantity
of n elements, out of M, does not participate in the arrangement process since a fixed
minimum value of 1 is assigned to each cell. Thus, the quantity that is arranged equals
M − n. Each dot must be assigned to a given cell, and no dot can remain unassigned.
Thus, the arrangement process can be seen as an assignment of one specific cell to each of
the M − n dots by allowing a cell to be assigned to multiple dots. Compared to classical
combinatorial problems, we are not assigning dots to cells but cells to dots. Thus, this
means counting the number of (M− n)-combinations with repetitions of a set of n elements,
which is given by (

M − n + n − 1
M − n

)
=

(
M − 1
M − n

)
(1)

The present study aims to show that for each of these distributions, there exists another
distribution that maximizes the value of the entropic divergence. The proof of it, which
is given in the next section, requires that the elements of the domain must be ordered
according to the values assigned to them.

Definition 2 (Ordered quantized distribution). Given a quantized distribution P, an ordered
quantized distribution (OQD) is obtained by assigning an integer index i, with 1 ≤ i ≤ |C|, to
each domain element c ∈ C such that P(ci) ≥ P(ci+1). P(ci) is also referred to as Pi.

It must be noted that Definition 2 is based on a monotonically decreasing order, but
without loss of generality; a monotonically increasing order can also be used. Furthermore,
in what follows, the greatest value of the distribution is considered to be placed in the
leftmost position. Consequently, the lowest value is considered to be placed in the rightmost
position of the distribution.
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Remark 3. Two ordered distributions P and Q, defined on the same domain C, are equal, thus not
distinct, if ∀i : 1 ≤ i ≤ |C| ⇒ Pi = Qi.

Multiple unordered distributions may produce the same ordered distribution leading
them to belong to the same class of equivalence that is defined by such a shared ordered
output. Formally, QM,n is defined as the complete set of QDs that can be formed by
arranging a quantity of M into n cells. OM,n is defined as the complete set of OQDs that
can be formed by arranging a quantity of M into n cells. Then, the function that transforms
an unordered QD into an ordered QD, ord : QM,n 7→ OM,n, can be shown to be a surjective
function. Thus, each class of equivalence is represented by a given distribution O ∈ OM,n,
and it is formed by a subset of QM,n, referred to as QO

M,n, such that ∀P ∈ QO
M,n : ord(P) = O.

We are interested in counting the number of classes, which also equals the number of
distinct ordered distributions.

Proposition 2. The total number of distinct ordered distributions that can be formed by arranging
a quantity of M in n cells equals the number of partitions of the integer M for representing it as a
sum of n integer addends.

Proof. Similarly to unordered distributions (see Proposition 1), ordered distributions assign
a minimum quantity of 1 to each cell. The number of partitions of an integer x to represent
it as a sum of y addends, the value of which can not be 0, can be obtained by the recursive
formula py(x) = py(x − y) + py−1(x − 1), with py(x) = 0 if y > x and py(0) = 0 [22].
Thus, we can use the formula to evaluate the number of ordered distributions by setting
x = M because it is the total arranged quantity, and y = n because we want to represent
such an integer as a sum of exactly n non-zero addends (namely, non-empty cells).

The search for a maximum value of the KL divergence between two quantized distri-
butions P and Q (presented in the next section) is based on the fact that the same quantum
value must form both distributions. However, there are plenty of practical situations where
this assumption is not verified, and the two distributions need to be transformed into two
comparable distributions before calculating the divergence.

Proposition 3. Given two quantized distributions, P and Q, formed by two different quanta,
1/MP and 1/MQ, respectively, they can always be transformed into two distributions formed by
the same quantum.

Proof. Since MP and MQ are two positive integer numbers, the least common multiple
(lcm) between them can be used for re-scaling the two distributions such that the same
quantum value will form them. The new distributions are formed by the same quantum,
that is M = 1/lcm(MP, MQ). The values of these distributions are always in the form x/M,
with x being a positive integer. Thus, the values of the new distributions can be re-scaled
as x(M/MQ)/M. It is trivial to show that the new distributions maintain their status of
quantized distribution.

3. Upper Bound of the Entropic Divergence

Given two probability distributions, the entropic divergence, also called the Kull-
back–Leibler (KL) divergence from the authors who discovered it [1], quantifies the in-
formation gained by switching from one distribution to another. For two probability
distributions, P and Q, that are defined on the same domain C, the divergence of P from Q
is defined as:

KL(P||Q) = ∑
c∈C

p(c)log2
P(c)
Q(c) (2)

The divergence is not symmetric, thus KL(P||Q) ̸= KL(Q||P), and its possible value ranges
between 0 and +∞. In fact, the divergence is 0 if the two distributions are equal in their
outcomes, namely P(c) = Q(c), ∀c ∈ C. Gibbs’ inequality [23] demonstrates that it has no
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upper bound. However, such an affirmation has been shown by comparing two general
distributions and by stating that the entropic divergence is a difference between the two
quantities −∑c∈C P(c)log2P(c) and −∑c∈C P(c)log2Q(c), which implies

− ∑
c∈C

P(c)log2P(c) ≤ − ∑
c∈C

P(c)log2Q(c) (3)

and thus

KL(P||Q) = ∑
c∈C

P(c)log2
P(c)
Q(c)

≥ 0 (4)

Given two positive numbers M and n, the previous section establishes that the sets
QM,n and OM,n are finite. Consequently, for any P within either of these sets, there exists
a distribution U in QM,n or OM,n that maximizes KL(P||U). Here, we are interested in
finding such a distribution U. It must be noted that P and U are quantized distributions
formed by the same quantum. This assumption is crucial for obtaining an upper bound on
the divergence from a given distribution P in practical situations.

The general concept of distribution, and thus of probability distribution, is indepen-
dent of a given ordering of the elements in C. In this perspective, ordered quantized
distributions are used without loss of generality. The KL formula for ordered distributions
can be written as:

KL(P||Q) = ∑
1≤i≤n

Pilog2
Pi
Qi

(5)

It must be pointed out that the ordering does not affect the value of the KL divergence.
This means that the distribution that maximizes the KL value from a given distribution
P also maximizes the KL for all the unordered distributions within the same class of
equivalence of P defined in the previous section. Thus, the goal is to define the shape of the
distribution U, which maximizes the entropic divergence to P.

It is required that the compared distributions, P and U, must be defined on the set C
and that for each element, the two distributions are non-zero valued, namely Pi > 0 and
Ui > 0 for 1 ≤ i ≤ n, in order to avoid infinite divergences. This constraint, together with
the discretization of the quantity that is distributed to the cells, implies that at each cell, at
least a quantity equal to 1 is assigned, that is, Pi, Ui ≥ 1/M for every i. Thus, the quantity
that must be arranged to construct the distribution U is M¯n.

The entropic divergence is a sum of terms in the form Pilog2(Pi/Ui). If Pi < Ui, then
a negative contribution is given to the sum because of the logarithmic function, while
positive contributions are given for Pi ≥ Ui. Thus, the aim is to reduce the number of
positions with negative contributions. Each term is mediated by the Pi factor. Thus, it
is preferable to assign positive contributions to the greatest Pi values. On the contrary,
negative contributions should be assigned to the smallest Pi values. This means that if
P is monotonically decreasing in order (from left to right), then positive contributions
should be on the left side of the distributions, and negative terms should be on the right
side. Furthermore, the greater Pi with respect to Ui, the higher the value of the divergence.
This translates to trying to increase the difference between the greatest Pi values and their
corresponding Ui counterparts as much as possible. Of course, reducing the quantity
assigned to the initial positions of U results in increasing the quantity assigned to the
right-most positions of it.

All of these considerations lead to the intuition that the distribution that maximizes
the entropic divergence is the one that minimizes the quantity assigned to positions from 1
to n − 1 and that assigns the remaining amount to the last position. Since the minimum
quantity is equal to 1, such a distribution assigns the remaining M − n + 1 quantity to
the last position n. In what follows, it is shown that if P is monotonically decreasing
ordered, then such a distributional shape maximizes the entropic divergence independently
of how the quantity is distributed in P. This fact also implies that such maximization
is independent of the ordering of P. It is only necessary that the quantity M − n + 1 is
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assigned to the position i, rather than n, where Pi is minimal. However, the ordering helps
prove the initial statement.

From here on, the maximizing distribution is always referred to as U, and any other
competitor distribution is referred to as Q. The proof that the entropic divergence from
U to P is greater than the divergence from any other distribution Q is split into two parts.
Firstly, a special case is addressed, then the proof of the general case is given.

The special case is presented in Figure 1. A total amount of M = 11 elements are
arranged into n = 5 cells to compose the distributions. As introduced above, the P
distribution has a monotonically decreasing order, and the U distributions assign a quantity
of M − n + 1 to the last cell. The special case is represented by the Q distribution, which
assigns a quantity of 2 to the (n − 1)-th position and a quantity of M − n to the last position.
For all the distributions, for every cell, a minimal quantity of 1 is assigned. The goal is to
show that:

KL(P||U) > KL(P||Q) (6)

Figure 1. First special case. Each element is represented as a dot that is assigned to one of the cells. A
total of 11 elements are assigned to a total of 5 cells for each of the three distributions, P, U and Q,
that are present in the case.

From cell 1 to cell 3, the two divergences have an equal contribution; thus, they differ
in terms of the last two terms. Thus, the inequality can be written as:

P4log2
P4

U4
+ P5log2

P5

U5
> P4log2

P4

Q4
+ P5log2

P5

Q5
(7)

that is
P4log2P4 − P4log2U4 + P5log2P5 − P5log2U5

>

P4log2P4 − P4log2Q4 + P5log2P5 − P5log2Q5

(8)

that is
−P4log2U4 − P5log2U5 > −P4log2Q4 − P5log2Q5

− 2
11

log2
1

11
− 1

11
log2

5
11

> − 2
11

log2
2

11
− 1

11
log2

4
11

− 1
11

log25 > − 2
11

log22 − 1
11

log24

−log25 > −2log22 − log24

−log25 > −4

(9)

which is true.
A general proof of this special case, independently from the values of M and n, is

given in Appendix A.

Moving forward, the final goal is to show that U maximizes the divergence with
respect to any possible distribution Q obtained by arranging the M − n quantity in all
the cells.

Proposition 4. Let P be an OQD obtained by distributing a quantity M to n cells. Let U be a
QD, which assigns all the free quantity M − n to the n-th cell and the minimum quantity of 1 to
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each cell. Let Q be a QD that assigns the free quantity in a way different from U, in addition to
the minimum quantity of 1 for each cell. Then, KL(P||U) > KL(P||Q), independent of how the
quantity is arranged in Q.

Proof. The initial n − 1 cells of U have a value equal to 1/M, and the last cell has a value
equal to M−n+1

M . Instead, for what concerns Q, a quantity equal to 1 + xi, for xi ≥ 0, is
assigned to each cell, such that ∑1≤i≤n xi = M − n.

The following inequality must be verified:(
∑

1≤i≤n−1
Pilog2

Pi
1
M

)
+ Pnlog2

Pn
M−n+1

M
> ∑

1≤i≤n
Pilog2

Pi
1+xi

M

(10)

that is (
∑

1≤i≤n−1
Pilog2

Pi
1
M

)
+ Pnlog2

Pn
M−n+1

M

>(
∑

1≤i≤n−1
Pilog2

Pi
1+xi

M

)
+ Pnlog2

Pn
1+xn

M

(11)

The left side of the inequality is composed of a series of terms Pilog2
Pi
1
M

, each of which

equals Pilog2Pi − Pilog21 + Pilog2M, and the entire inequality can be written as

∑
1≤i≤n−1

(
Pilog2Pi − Pilog21 + Pilog2M

)
+Pnlog2Pn − Pnlog2(M − n + 1) + Pnlog2M

>

∑
1≤i≤n−1

(
Pilog2Pi − Pilog2(xi + 1) + Pilog2M

)
+Pnlog2Pn − Pnlog2(xn + 1) + Pnlog2M

(12)

that is

∑
1≤i≤n−1

(
Pilog21

)
− Pnlog2(M − n + 1)

>

∑
1≤i≤n−1

(
− Pilog2(xi + 1)

)
− Pnlog2(xn + 1)

(13)

that is
−Pnlog2(M − n + 1) > − ∑

1≤i≤n
Pilog2(xi + 1) (14)

Since P is ordered, for each position i it happens that Pi = Pi−1 − ϵi, namely Pi−1 = Pi + ϵi.
The inequality can be written as

Pnlog2(M − n + 1) <

(Pn)log2(xn + 1)+

(Pn + ϵn)log2(xn−1 + 1)+

(Pn + ϵn + ϵn−1)log2(xn−2 + 1)+

. . .

(Pn + ϵn + · · ·+ ϵn−n+2)log2(xn−n+1 + 1)

(15)
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The arguments of the logarithms are always greater than 1, thus the values of the
logarithms are always positive. Moreover, the factors that multiply the logarithms are
always positive because they are probabilities. The inequality can be written as

Pnlog2(M − n + 1) < nPn

(
∑

1≤i≤n
log2(xi + 1)

)
+ c (16)

with c ≥ 0 and ∑1≤i≤n(xi + 1) = M − n. Considering that the sum of logarithms is
greater than the logarithm of the sum [24], it is now trivial to show that the inequality is
always satisfied.

The previous proof is given for an ordered distribution P. However, the final inequality
is independent of the ordering. In fact, it compares the quantity M − n + 1 (that is, the one
that makes U the distribution of interest) with the sum of the xi + 1 terms independent of
their position and specific value. P is ordered, and U assigns by construction the additional
M − n quantity to the cell where P has the lowest assigned value.

The retrieving of an upper bound for the entropic divergence is here shown to be
possible under two main conditions: (i) no zero values are assigned by the two distributions;
(ii) the compared distributions are quantized distributions over the same quantum value
1/M. The first condition is often ensured in practical applications, where pseudo-counts
are used to avoid infinite divergences. The second condition emerges from this study. It
states that the entropic divergence acquires a more powerful meaning when applied to
comparable distributions. The term comparable refers to sharing the same quantum value.
This aspect should be taken into account in future developments of divergences.

4. A Notion of Normalized Entropic Divergence

The retrieving of the maximizing distribution is exploited to normalize the entropic di-
vergence in the range [0, 1], both included. Given two distributions P and Q, the normalized
entropic divergence is calculated as

NKL(P||Q) =
KL(P||Q)

KL(P||U)
(17)

where U is the distribution for which the maximum entropic divergence from P is obtained.
This maximizing distribution is constructed based on the results from the previous section.
Specifically, it distributes a minimum value of 1 to each cell, and the remaining quantity
M − n is assigned to the cell for which the value in P is the minimum.

In what follows, the proposed normalized entropic divergence is compared with
the most-used notions of entropic divergence, plus a measure that is highly suitable for
comparing multiplicity distributions. The comparison is performed by looking at three
different aspects: (i) the difference in the values that the measures output on comparing
two distributions (see Section 4.2); (ii) the spread of output values within the output range
(see Section 4.4; (iii) the diversity of the measures in assigning a rank (see Section 4.5).
The relation between the measures and the properties of the compared distributions is
investigated too (see Section 4.3).

The investigations are empirically conducted by computationally generating the dis-
tributions. The source code for generating the unordered and ordered distributions and
the computational experiments are available at the following link https://github.com/
vbonnici/KL-maxima (accessed on 1 September 2024).

https://github.com/vbonnici/KL-maxima
https://github.com/vbonnici/KL-maxima
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4.1. Compared Measures

The proposed divergence is compared with the unnormalized one, namely KL(P||Q),
and with the commonly used symmetric divergence, also called Jensen–Shannon divergence
(JS). The JS divergence is defined as

JSD(P, Q) =
KL(P||A) + KL(Q||A)

2
(18)

with A = P+Q
2 , and it is known to be upper-bounded by 1 if the base of the logarithm

is 2 [12].
Another important divergence is the Hellinger distance, which is defined as

HE(P, Q) =
1√
2

√
∑

1≤i≤n
(
√

Pi −
√

Qi)2 (19)

and it can also be written as HE2(P, Q) = 1 − ∑1≤i≤n
√

PiQi. Important properties of such
a divergence are that it implicitly avoids infinite divergences and it is bounded in the
range [0 . . . 1].

The generalized Jaccard similarity is a measure suitable for comparing multiplicity
distributions. It is defined as:

J(P, Q) =
∑1≤i≤n min(Pi, Qi)

∑1≤i≤n max(Pi, Qi)
(20)

It can be shown that such a measure ranges from 0 to 1, both included. The minimum
value is reached when the two distributions have no multiplicity in common, which
means that Pi = 0 when Qi ̸= 0 and vice versa. It reaches the maximum value when
the two distributions have equal values. It is a notion of similarity. Therefore, it is in
contrast with the meaning of entropic divergence. Thus, for this study, it is converted as
J̃(P, Q) = 1 − J(P, Q) to have it as a notion of distance.

The generalized Jaccard distance is directly applied to multiplicity distributions,
while entropic divergences are applied after converting the distributions into probabil-
ity/frequency distributions.

4.2. Direct Comparison of Output Values

In what follows, scatter plots are used for investigating differences between the com-
pared measures when they are applied to measure the distance/divergence between two
quantized distributions. Each point within the scatter plot represents a specific pair of distri-
butions that are put in comparison. The position of the point within the plot depends on the
values of the compared measures. For example, in Figure 2a, the classical Kullback–Leibler
divergence is compared with the proposed unnormalized Kullback–Leibler divergence,
respectively, on the axis of ordinates and the axis of abscissae. Thus, the coordinates of a
point representing a specific pair of distributions are given by the KL divergence and the
NKL divergence between them. Since a relatively huge number of two-by-two distribution
comparisons are made, many points overlap in the same area of the plot. Thus, the chart
is also equipped with two histograms located beside the axes that report the number of
instances that fall within a given range of values.

Figure 2 reports the relations between the proposed normalized divergence and the
other investigated measures. Calculations were performed by setting a number of cells
equal to 5 and a total distributed quantity of 15. The experiment generated 1001 unordered
distributions, of which 30 were monotonically decreasing ordered. Thus, a total of 1001
two-by-two distribution comparisons were performed.
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Figure 2. Relation between the proposed normalized Kullback–Leibler divergence and (a) unnor-
malized Kullback–Leibler divergence; (b) symmetric Kullback–Leibler divergence; (c) generalized
Jaccard distance; (d) Hellinger distance.

The proposed measure is more correlated with the non-symmetric divergence than the
other measures. The Pearson correlation coefficient [25] reaches a value of 0.97 between the
proposed divergence and the unnormalized one and a correlation value of 0.96 between the
proposed measure and the symmetric divergence. The complete list of Pearson correlation
coefficients between the compared measures is reported in Table A1.

4.3. Relation with Distributional Properties

Entropic divergences and other measures can be used to prioritize elements with
respect to their deviance from randomness or, generically, from a background model.
Thus, it can be interesting to study how the rank assigned to elements, based on their
divergence, changes when the four different measures are used. In what follows, the
uniform distribution is used as the background model, and the measure of divergence
from it is calculated for the set of ordered distributions that can be formed by taking into
account the same quantity that is distributed in the uniform shape. For the experiments,
a number of cells equal to 8 and a total quantity of 32 have been considered. In this way,
the uniform distribution assigns a quantity of four to each cell. The difference with respect
to the previous experiments, where 5 cells and 15 elements are considered, is because the
previous experiment generates only 30 distinct ordered distributions, which is a relatively
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small number. On the contrary, a setup with 8 cells and 32 elements generates a high
number of unordered distributions (2,629,575) that leads to a huge number of two-by-two
comparisons. As a pro, the new setup generates 919 ordered distributions, which can be
considered sufficient to draw experimental conclusions.

The correlation between the measures and the properties of the compared distributions
is investigated. Entropy, coefficient of variation, skewness and the Kurtosis index are the
considered properties.

Figure 3 shows the relation between the four investigated measures and the entropy
of the ordered distribution that is compared with the uniform distribution. The simple
Kullback–Leibler divergence is the measure that better correlates with the entropy, followed
by the proposed normalized divergence. Table A2 reports the correlations between the
measures and the entropy. The numeric correlations confirm what is shown by the graphics.

Figure 3. Scatter plots generated by putting in relation four of the investigated measures and the
entropy of the set of monotonically ordered distributions, generated with 8 cells and 32 dots, and the
corresponding uniform distribution: (a) normalized Kullback–Leibler divergence, (b) unnormalized
Kullback–Leibler divergence; (c) Jensen–Shannon divergence; (d) generalized Jaccard distance.

Figure 4 shows the relation between the four measures and the coefficient of variation
of the ordered distribution that is compared with the uniform one. Pearson correlation
coefficients are reported in Table A2 of Appendix C. Differently from entropy-related
correlations, the proposed normalized measure is the one that better correlates with the co-
efficient of variation, followed by the unnormalized entropic divergence. Moreover, unlike
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the unnormalized Kullback–Leibler divergence and the Jensen–Shannon divergence, the
proposed normalized divergence forms a sigmoid curve rather than an exponential trend.

Figure 4. Scatter plots generated by putting in relation four of the investigated measures and the
coefficient of variation of the set of monotonically ordered distributions, generated with 8 cells and
32 dots, and the corresponding uniform distribution: (a) normalized Kullback–Leibler divergence,
(b) unnormalized Kullback–Leibler divergence; (c) Jensen–Shannon divergence; (d) generalized
Jaccard distance.

Entropy and coefficient of variation are the distributional properties that better cor-
relate with the investigated measures. In Figures A1 and A2 of Appendix C, it is shown
that the skewness and the Kurtosis’s index of the compared unordered distribution weakly
correlate with the measures. However, both distributional properties form shapes similar
to grids when they are plotted. This behavior is possibly due to the discrete nature of the
compared distributions.

4.4. Outcome Spread Diversity

Scatter plots and histograms of the proposed figures show interesting behaviors of the
investigated measures related to how the output values of these measures spread along the
output range.

For example, visible clusters are formed by the generalized Jaccard distance (see
Figure 2). This behavior directly emerges from Equation (20) since the Jaccard distance
tends to flatten the punctual comparison among the elements in the domain of the dis-
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tribution into a sum of values of multiplicity. The divergences do not seem to produce
such clusters; however, it can be helpful to investigate such a phenomenon more properly.
Distances between consecutive values of the two measures have been taken into account.
Given a set of n comparisons, a vector of size n is built from the values of the specific
measure on such comparisons. The vector is sorted and then runs within the vector, report-
ing that the same values are substituted with one single value. The differences between
adjacent positions of the vector are extracted. Then, the mean and the standard deviation
are computed. The elimination of the runs on the vector of the generalized Jaccard measure
decreases the size of the vector from 1001 × 1001 to 11, as can be observed in the figure.
The distances of the generalized Jaccard measure have a mean equal to 0.08 and a standard
deviation of 0.02. On the contrary, the distances of the normalized entropic divergence
have an average of 0.00004 and a standard deviation of 0.0005. Thus, it seems that the
divergence is not forming clusters.

Regarding the experiments presented in Section 4.3, the compared measures have
different output ranges. By definition, the unnormalized entropic divergence and the
Jensen–Shannon divergence have no upper bound; on the contrary, the proposed measure
and the generalized Jaccard distance are expected to range between 0 and 1. The pro-
posed normalized divergence ranges from 0 to circa 0.5 because one of the two compared
distributions is always the uniform distribution. The monotonically ordered distribution
that diverges more from the uniform distribution is the one that assigns all the available
quantity to the first cell. Such a distribution is completely opposed to U, and the uniform
distribution is in the middle of them. Thus, the divergence from the distribution to the
uniform one is half of the divergence from U. The generalized Jaccard distance is influenced
by the fact that values close to 1 can not be reached because the compared distributions
have no term equal to 0. The maximum observable distance is 0.8.

Table 1 shows the maximum value that each investigated measure reaches with the
varying numbers of cells and dots with which distributions are built. All the measures
have a minimum value of 0 because the uniform distribution is among the distributions
that are compared to itself. The proposed normalized divergence takes values that are
close to 0.5 but never equal to such a value. The reason resides in the discretized nature
of the compared distributions. However, some pattern emerges from the table. The val-
ues of the measures are directly related to the number of dots that are distributed. The
smaller the number of dots is, the higher the value of the proposed normalized measure
is. This behavior is opposite to the three other measures, which increase their value by
increasing the number of distributed dots. Intuitively, the distribution that maximizes the
divergence/distance from the uniform distribution is the one that assigns all the available
dots to the first cell; thus, it is specular to U. Computational experiments also confirm this
intuition. The fact that the measure takes different values depends on the ratio between the
dots that are assigned to the first cell and the number of cells. For example, the uniform
distributions obtained for 6 cells and 12 dots and for 7 cells and 14 dots are almost identical.
Both of them assign two dots to each cell. However, the number of available dots, after
assigning one dot to each cell, is six in the first case and seven in the second case. Thus, the
difference between the two generalized Jaccard distances is 2

7 versus 2
8 + 1

2 = 3
4 because

except for the first cell, all the other cells carry a value of 1
2 for both configurations. The

configuration with seven cells has an additional cell. This difference, notably, leads to a
different resulting value. Similar considerations can be made for the other measures.

The difference in how the measures spread the values, along with the range from 0 to
the maximum value, is summarized in Table 2. Each experiment regards a specific number
of cells and dots, as for the previous analysis. The average value divided by the maximum
value is used as a measure of spread. The closer the resultant measurement is to 0.5, the
greater the spread of the values. On the contrary, if the measurement tends to 0, then the
values are more concentrated towards 0, and similarly, they are concentrated towards the
maximum if the measurement tends to 1. The proposed normalized divergence better
tends to 0.5, with an average value of 0.4296, along with the complete set of experiments.



Information 2024, 15, 547 14 of 22

The unnormalized KL tends to 0 more than the Jensen–Shannon divergence, which is in
contrast with the mode observed in the figures. The generalized Jaccard distance tends
more to the maximum value, with an average of 0.6.

Table 1. Maximum values of the five investigated measures by varying the number of cells and dots
by which the distributions are formed by.

Cells Dots Norm. KL Unnorm. KL Jensen–Shannon Hellinger Gen. Jaccard

6 12 0.5078 0.6376 0.1395 0.0989 0.5882
6 18 0.4498 1.0876 0.2399 0.1719 0.7143
6 24 0.4297 1.3629 0.3046 0.2201 0.7692
6 30 0.4164 1.5480 0.3500 0.2546 0.8000
7 14 0.5151 0.7143 0.1518 0.1082 0.6000
7 21 0.4687 1.2057 0.2578 0.1857 0.7273
7 28 0.4502 1.5038 0.3257 0.2364 0.7826
7 35 0.4374 1.7033 0.3731 0.2726 0.8136
8 16 0.5233 0.7831 0.1622 0.1161 0.6087
8 24 0.4845 1.3103 0.2727 0.1973 0.7368
8 32 0.4672 1.6280 0.3429 0.2500 0.7925
8 40 0.4546 1.8397 0.3919 0.2876 0.8235
9 18 0.5315 0.8455 0.1711 0.1230 0.6154
9 27 0.4981 1.4043 0.2851 0.2072 0.7442
9 36 0.4815 1.7391 0.3573 0.2616 0.8000
9 45 0.4691 1.9614 0.4076 0.3002 0.8312
10 20 0.5394 0.9027 0.1789 0.1291 0.6207
10 30 0.5098 1.4897 0.2958 0.2158 0.7500
10 40 0.4938 1.8395 0.3696 0.2716 0.8060
10 50 0.4815 2.0713 0.4208 0.3112 0.8372

Table 2. Average divided by maximum value of the five investigated measures by varying the number
of cells and dots by which the distributions are formed by.

Cells Dots Norm. KL Unnorm. KL Jensen–Shannon Hellinger Gen. Jaccard

6 12 0.5301 0.4089 0.4418 0.4379 0.6203
6 18 0.4403 0.3217 0.3540 0.3495 0.5979
6 24 0.3987 0.2865 0.3159 0.3110 0.5848
6 30 0.3739 0.2672 0.2941 0.2886 0.5766
7 14 0.5277 0.3987 0.4365 0.4315 0.6277
7 21 0.4396 0.3139 0.3523 0.3466 0.6069
7 28 0.3965 0.2778 0.3131 0.3071 0.5910
7 35 0.3709 0.2583 0.2910 0.2846 0.5815
8 16 0.5318 0.3931 0.4379 0.4314 0.6483
8 24 0.4390 0.3066 0.3505 0.3436 0.6144
8 32 0.3956 0.2711 0.3117 0.3046 0.5967
8 40 0.3694 0.2514 0.2891 0.2818 0.5860
9 18 0.5332 0.3871 0.4369 0.4292 0.6578
9 27 0.4404 0.3017 0.3508 0.3427 0.6218
9 36 0.3961 0.2660 0.3114 0.3033 0.6022
9 45 0.3692 0.2462 0.2885 0.2803 0.5906
10 20 0.5362 0.3832 0.4384 0.4294 0.6708
10 30 0.4421 0.2977 0.3514 0.3423 0.6284
10 40 0.3972 0.2621 0.3119 0.3029 0.6076
10 50 0.3696 0.2422 0.2886 0.2796 0.5951

avg 0.4349 0.3071 0.3483 0.3414 0.6103

4.5. Differences in Ranking Outcomes

Lastly, the difference in the ranking produced by the four measures has been investi-
gated. Experimental results were obtained using 8 cells and 32 dots. As in the previous
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experiment, the uniform distribution was compared to the set of monotonically decreasing
ordered distributions. Then, distributions were ranked depending on the value each mea-
sure assigned to them. Figure 5 compares the normalized entropic divergence and the three
other measures in assigning the rank to the distributions. Each point in one of the three
plots is a given distribution whose coordinates, in the Cartesian plane, are given by the
rank assigned by the two compared measures. These charts show how different a ranking
can be when applying different measures. A mathematical method for comparing rankings
is Spearman’s rank correlation coefficient [26], whose values are reported in Table A3 of
Appendix D. The reported correlations may appear significantly high. However, there is
a discordance between the measures from circa 0.05 to 0.001, which means that from 5%
to 0.1% of the elements are ranked differently. Such a difference may, for example, lead to
different empirical p-values, which may change the results of a study.

Figure 5. Scatter plots obtained by considering the rank assigned by the proposed normalized
Kullback–Leibler and the other investigated measures: (a) unnormalized Kullback–Leibler divergence,
(b) Jensen-Shannon divergence, (c) generalized Jaccard distance and (d) Hellinger distance. The
complete set of monotonically ordered distributions generated with 8 cells and 32 dots was used for
extracting the rankings.

5. Conclusions

This study demonstrates that for any probability distribution P, there exists another
distribution U that maximizes the entropic divergence from P, provided infinite divergences
are avoided. P and U must have been generated by distributing a given discrete quantity.
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In the realm of quantum theory, the real world is composed of discretized quantities
called quanta. Thus, quantized probability distributions are, in their essence, multiplicity
distributions. This implies that the findings presented here have broad applicability.

Here, the shape of the distribution U is characterized, and it is used to provide a
notion of entropic divergence normalized between 0 and 1. Empirical evaluation of such a
normalized divergence with respect to other commonly used measures is reported. The
evaluation demonstrates that the proposed divergence exhibits distinct behavior, differing
from established measures, as the properties of the compared distributions vary.

This study highlights an important aspect of entropic divergence. An upper bound to
the divergence is obtainable only if the two compared distributions are formed by the same
quantum. Future developments of divergence should take this aspect into account.
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Appendix A. Special Case 1: General Proof

Proposition A1. Let P be an OQD obtained by distributing a quantity M to n cells. Let U
be a QD, which assigns all the free quantity M − n to the n-th cell and the minimum quantity
of 1 to each cell. Let Q be a QD, which assigns a quantity M − n − 1 to the n-th cell and a
quantity of 1 to the (n − 1)-th cell, in addition to the minimum quantity of 1 to each cell. Then,
KL(P||U) > KL(P||Q).

Proof. A first consideration is that from position 1 to n − 2 = 3, the two divergences have
identical contributions; thus, they can be ignored in the comparison. Therefore, it has to be
proven that:

Pn−1log2
Pn−1

Un−1
+ Pnlog2

Pn

Un
> Pn−1log2

Pn−1

Qn−1
+ Pnlog2

Pn

Qn
(A1)

By construction, Un = M−n+1
M and Un−1 = 1

M , while Qn = M−n
M and Qn−1 = 2

M . Thus,
Equation (A1) can be written as:

Pn−1log2
Pn−1

1
M

+ Pnlog2
Pn

M−n+1
M

> Pn−1log2
Pn−1

2
M

+ Pnlog2
Pn

M−n
M

(A2)

that is

Pn−1log2Pn−1 − Pn−1log2
1
M

+ Pnlog2Pn − Pnlog2
M − n + 1

M
>

Pn−1log2Pn−1 − Pn−1log2
2
M

+ Pnlog2Pn − Pnlog2
M − n

M

(A3)

https://github.com/vbonnici/KL-maxima
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and therefore, by removing equal terms from the left and right sides of the inequality,

−Pn−1log2
1
M

− Pnlog2
M − n + 1

M
> −Pn−1log2

2
M

− Pnlog2
M − n

M
(A4)

that is
−Pn−1log2(1) + Pn−1log2(M)− Pnlog2(M − n + 1) + Pnlog2(M) >

−Pn−1log2(2) + Pn−1log2(M)− Pnlog2(M − n) + Pnlog2(M)
(A5)

therefore, since log2(1) = 0 and by removing equal terms,

−Pnlog2(M − n + 1) > −Pn−1log2(2)− Pnlog2(M − n) (A6)

For this specific case, the difference between Pn and Pn−1 is given by a single element.
However, since P is ordered, it can be assumed that there is a discretized gap between the
two positions such that Pn−1 = Pn + ϵ, for ϵ ∈ N,≥ 0. Thus, the inequality can be written
by also changing its verse as

Pnlog2(M − n + 1) < (Pn + ϵ)log2(2) + Pnlog2(M − n) (A7)

that is

Pnlog2(M − n + 1) < Pnlog2(2) + ϵlog2(2) + Pnlog2(M − n) (A8)

that is

Pnlog2(M − n + 1)− Pnlog2(2)− Pnlog2(M − n) < ϵlog2(2) (A9)

that is

Pn

(
log2(M − n + 1)− log2(2)− log2(M − n)

)
< ϵlog2(2) (A10)

It can be assumed that Pn = kϵ, for a given factor k ∈ R,> 0; thus, Pn can be greater or
smaller than ϵ. In addition, log2(M − n + 1)− log2(2)− log2(M − n) equals log2

M−n+1
2(M−n) .

Thus, the inequality can be written as

kϵ

(
log2

M − n + 1
2(M − n)

)
< ϵlog2(2) (A11)

and, therefore

k

(
log2

M − n + 1
2(M − n)

)
< log2(2) (A12)

If M − n > 1, which is always true because a minimum amount of 1 is assigned to
each cell and the two distributions must be different, then M−n+1

2(M−n) is always less than 1.

This implies that log2
M−n+1
2(M−n) is always less than or equal to zero. Thus, the inequality is

always satisfied independently from the value of k, which must be in any case ≥ 0.
More generally, Equation (A12) can be written as:

k

(
log2

M − n + 1
(1 + x)(M − n + 1 − x)

)
< log2(1 + x) (A13)

because a given quantity x + 1, that is at least 1 and at most M − n + 1, is moved from
position n to position n − 1.
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In Equation (A13), we can put M − n + 1 = y and thus, to assert that the result of the
logarithm must always be less the 0, it has to be shown that

y < (1 + x)(y − x)

y < y + xy − x − x2

0 < +xy − x − x2

0 < x(y − 1)− x2

0 > x(1 − y) + x2

(A14)

The determinant is given by (1 − y)2 − 4 that is: equal to 0 for M = n − 4, which is
impossible because M > n; less than 0 for M < n − 4, which is still impossible because
M > n; and greater than 0 for M > n − 4. Thus, the determinant is always greater than
0, and the inequality is less than 0, which means that it admits two solutions x1 and x2

such that it is valid for x1 < x < x2. The two solutions are given by (y−1)±
√

(1−y)2−4
2 . The

determinant can also be written as (1− y)2 − 4 = (1− M+n− 1)2 − 4 = (M+n)2 − 22. For
practical applications, the determinant can be approximated to (M+ n)2, thus the inequality
is satisfied for (M − n + M + n)/2 < x < (M − n − M − n)/2, namely −n < x < M,
which is always true because x ≤ M − n by definition.

The fact that Equation (A13) is always verified implies that, independently of how the
quantity is arranged in the last two positions, the distribution U is the one that maximizes
the entropic divergence. It also implies two other assertions. The first assertion is that
if the number of cells is equal to 2, then U is always the maximizing distribution. The
second assertion is that if the quantity is moved from the last cell to a specific other cell,
not necessarily the second-last, the U is still the maximizing distribution. The inequality
is independent of the specific cell position, and it only requires that Pi = Pn + ϵ and
that Pn = kϵ, thus Pi = kϵ + ϵ = ϵ(k + 1), which means that Pi must be greater than
Pn. This consideration highlights the fact that U is the distribution that assigns all the
available quantities to the cell with the smallest probability in P; thus, it is independent of
the ordering.

Appendix B. Comparisons between Measures

Table A1 reports Pearson’s correlation among the five measures that are compared
in the main article. Correlations are calculated by taking into account the values of the
measures in computing the divergence (dissimilarity) between ordered distributions. The
distributions are built by distributing a quantity of 15 to 5 cells.

Table A1. Pearson’s correlation among the investigated measures on two-by-two comparisons of
ordered distributions generated by distributing a quantity of 15 to 5 cells.

Pearson Corr.

Normalized Kullback–Leibler Kullback–Leibler 0.9893
Normalized Kullback–Leibler Jensen–Shannon divergence 0.9888
Normalized Kullback–Leibler Generalized Jaccard distance 0.9549
Normalized Kullback–Leibler Hellinger distance 0.9881
Kullback–Leibler Jensen–Shannon divergence 0.9926
Kullback–Leibler Generalized Jaccard distance 0.9232
Kullback–Leibler Hellinger distance 0.9932
Jensen–Shannon divergence Generalized Jaccard distance 0.9441
Jensen–Shannon divergence Hellinger distance 0.9999
Hellinger distance Generalized Jaccard distance 0.9411
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Appendix C. Correlation with Distributional Properties

Table A2 reports Pearson correlation coefficients among the investigated measures on
comparing ordered distributions with the uniform one generated by distributing a quantity
of 32 to 8 cells.

Figure A1 shows the relation of the compared measures with the Kurtosis’s index,
and Figure A2 shows the relation with the skewness. It has to be noticed that some
values of the skewness and Kurtosis statistics may appear unexpected. Such an unexpected
behavior is because relatively small (in their cardinality) distributions are taken into account.
Furthermore, the generated distributions are more similar to exponential distributions than
normal ones. For example, only positive values of skewness are expected because the
examined distributions are monotonically ordered. However, the distribution whose
values are (7, 7, 7, 7, 1, 1, 1, 1) has a skewness of 0 because the mean, mode, and median of
the distribution have the same value. The distribution (7, 7, 6, 6, 3, 1, 1, 1) has a negative
skewness because the mode (1) is smaller than the mean (4).

Figure A1. Scatter plots generated by putting in relation four of the investigated measures and
the Kurtosis index of the set of monotonically ordered distributions, generated with 8 cells and
32 dots, and the corresponding uniform distribution: (a) normalized Kullback–Leibler divergence,
(b) unnormalized Kullback–Leibler divergence; (c) Jensen-Shannon divergence; (d) generalized
Jaccard distance.
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Figure A2. Scatter plots generated by putting in relation four of the investigated measures and the
skewness of the set of monotonically ordered distributions, generated with 8 cells and 32 dots, and the
corresponding uniform distribution: (a) normalized Kullback–Leibler divergence, (b) unnormalized
Kullback–Leibler divergence; (c) Jensen-Shannon divergence; (d) generalized Jaccard distance.

Table A2. Pearson correlation coefficients among the investigated measures on comparing ordered
distributions with the uniform one generated by distributing a quantity of 32 to 8 cells.

Measure Property Correlation

Normalized Kullback–Leibler Entropy −0.9892
Kullback–Leibler Entropy −0.9999
Jensen–Shannon divergence Entropy −0.9804
Generalized Jaccard distance Entropy −0.9232
Hellinger distance Entropy −0.9932

Pearson

Normalized Kullback–Leibler Coefficient of variation 0.9872
Kullback–Leibler Coefficient of variation 0.9832
Jensen–Shannon divergence Coefficient of variation 0.9678
Generalized Jaccard distance Coefficient of variation 0.9181
Hellinger distance Coefficient of variation 0.9649
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Table A2. Cont.

Measure Property Correlation

Pearson

Normalized Kullback–Leibler Skewness 0.6343
Kullback–Leibler Skewness 0.6096
Jensen–Shannon divergence Skewness 0.6554
Generalized Jaccard distance Skewness 0.5143
Hellinger distance Skewness 0.5475

Pearson

Normalized Kullback–Leibler Kurtosis 0.4715
Kullback–Leibler Kurtosis 0.4795
Jensen–Shannon divergence Kurtosis 0.5170
Generalized Jaccard distance Kurtosis 0.2622
Hellinger distance Kurtosis 0.3995

Appendix D. Differences in Ranking Outcomes

Table A3 shows the Spearman rank correlations among the investigated measures on
comparing ordered distributions with the uniform one generated by distributing a quantity
of 32 to 8 cells.

Table A3. Spearman rank correlations among the investigated measures on comparing ordered
distributions with the uniform one generated by distributing a quantity of 32 to 8 cells.

Spearman

Normalized Kullback–Leibler Kullback–Leibler 0.9989
Normalized Kullback–Leibler Jensen–Shannon divergence 0.9909
Normalized Kullback–Leibler Generalized Jaccard distance 0.9695
Normalized Kullback–Leibler Hellinger distance 0.9905
Kullback–Leibler Jensen–Shannon divergence 0.9947
Kullback–Leibler Generalized Jaccard distance 0.9695
Kullback–Leibler Hellinger distance 0.9946
Jensen–Shannon divergence Generalized Jaccard distance 0.9742
Jensen–Shannon divergence Hellinger distance 1.0000
Hellinger distance Generalized Jaccard distance 0.9728
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