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Abstract: The development of artificial intelligence (AI) and self-driving technology is expected to
enhance intelligent transportation systems (ITSs) by improving road safety and mobility, increasing
traffic flow, and reducing vehicle emissions in the near future. In an ITS, each autonomous vehicle
acts as a node with its own local machine learning models, which can be updated using locally
collected data. However, for autonomous vehicles to learn effective models, they must be able to
learn from data sources provided by other vehicles and infrastructure, utilizing innovative learning
methods to adapt to various autonomous driving scenarios. Distributed learning plays a crucial
role in implementing these learning tasks in an ITS. This review provides a systematic overview of
distributed learning in the field of ITSs. Within an ITS, vehicles can engage in distributed learning by
interacting with peers through opportunistic encounters and clustering. This study examines the
challenges associated with distributed learning, focusing on issues related to privacy and security in
data intelligence sharing, communication quality and speed, and trust. Through a thorough analysis
of these challenges, this study presents potential research avenues to address these issues, including
the utilization of incentive mechanisms that rely on reputation, the adoption of rapid convergence
techniques, and the integration of opportunistic federated learning with blockchain technology.

Keywords: distributed learning; federated learning; intelligent transportation system; gossip learning

1. Introduction
1.1. Motivation

As urbanization deepens and travel demand rapidly expands in various countries,
problems such as road congestion, reduced vehicle speed, overcrowding, and frequent
traffic accidents have also begun to rapidly increase [1,2]. Intelligent transportation systems
(ITSs) integrate cutting-edge technologies, such as electronic sensor technologies, data
transmission technologies, and intelligent control technologies, into transportation systems.
The objective of an ITS is to improve the quality of services offered to drivers and passengers
in transportation systems [3]. These systems are designed to provide a more efficient and
effective way of managing transportation in urban areas. Using artificial intelligence, such a
system analyzes data and makes decisions that can improve the efficiency of transportation
networks. In addition, it can be used to monitor traffic conditions and provide real-time
information to drivers [4]. In addition, resource utilization can be improved and the
environmental effects of transportation can be minimized through the use of an ITS. These
systems are transforming how cities and roads are managed and may be a key part of the
smart cities of the future. ITSs have the potential to make traveling more efficient, safer,
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and comfortable for people all over the world [5]. Intelligent and connected ITSs have been
shown to perform well in alleviating traffic congestion and reducing traffic accidents [6,7].

At the same time, the progress of machine learning (ML) due to the emergence of
various technologies—particularly cloud and edge computing—has been remarkable. ML
techniques can be used for accurate prediction and decision-making [8–10], and are also
applicable in the context of vehicle network security. Statistics from scientific publications
between 2010 and 2020 show that the number of publications utilizing machine learning ap-
proaches to enable and optimize ITS tasks has increased twenty-fold during this period [11].
However, enhancing the accuracy of predictions and making automatic driving models
suitable for advanced ITSs requires a substantial amount of training data. As the number of
parameters grows, the demand for training data escalates exponentially [12]. Verbraeken, J.
et al. [13] pointed out that due to the limitations of current computing devices in processing
extensive training data, it is crucial to distribute the learning tasks across multiple units and
transition from centralized to distributed learning systems. Investigating and adjusting
distributed learning to suit the particular qualities and needs of ITS applications remains a
challenging task, offering promising research opportunities. Distributed learning allows
mobile devices to protect their privacy by uploading only a limited amount of information
to computational access points. Verbraeken, J. [13] and Peteiro-Barral, D. [14] discussed
the advantages and disadvantages of distributed learning in comparison with centralized
learning, in which privacy and security concerns were thoroughly examined. Vepakomma,
P. et al. [15] investigated the privacy implications of distributed learning. This type of learn-
ing can be beneficial in reducing the considerable communication overhead associated with
centralized learning. Cao, H. et al. [16] developed an algorithm for distributed computing,
allowing for offloading to reduce the overall cost of system execution, while Lin, R. et al.
used distributed learning to minimize the long-term average latency, which is restricted by
computing resources and power consumption [17].

The combination of ITS and ML technologies has led to significant advancements,
with ML facilitating precise predictions and decision-making, bolstering the security of
vehicle networks. The integration of ML into ITS functions has notably risen in the last
ten years, underscoring the necessity for substantial training data and the shift toward
distributed learning systems to manage the escalating requirements. Distributed learn-
ing not only tackles privacy issues but also lessens communication overhead and system
expenses. Explorations in this field present encouraging prospects for refining ITS applica-
tions and ensuring the confidentiality and protection of data. The motivation for surveying
distributed learning in ITSs includes enhancing traffic supervision and control systems [18],
enhancing the efficiency and dependability of transportation networks [19], streamlining
real-time decision-making processes [20], and optimizing the allocation and utilization of
resources in transportation systems [21].

1.2. Related Work

To the best of our knowledge, this is the first survey to investigate distributed learning
in the context of ITSs. While relevant studies have been conducted, they have mainly
focused on autonomous vehicle techniques and their implementation in certain scenarios,
such as autonomous vehicle coordination [22], Level 5 autonomous driving [23], or traf-
fic efficiency applications for intelligent connected vehicles [24], rather than distributed
learning in an ITS.

Recent years have seen a significant increase in ITSs based on autonomous self-driving
vehicle technology [22–24]. In fact, the application of intelligent autonomous vehicles
often relies on two aspects of technology: intelligence and networking [25]. Many automo-
tive companies have conducted tests while researching integrated sensors for intelligent
vehicles [26–28].

Networking is a key element in the development of unmanned driving for ITSs. For
example, J. Pereira et al. conducted an interoperability test for connected and autonomous
vehicles (CAVs) incorporated into a connected ITS [29]. In a different investigation [30–33],
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the authors explored a variety of issues related to the coordination of activities between
two or more autonomous vehicles and an ITS. D.B. Abeywickrama et al. [24] examined
several technology-based approaches to a vehicular network that can be used to improve
traffic flow in urban areas. At present, the development of self-driving vehicles is highly
dependent on the overall structure of the ITS. To achieve autonomous Level 5 driving, it is
necessary not only to strengthen research on the hardware and software of autonomous
vehicles, but also to advance the development of its vehicle-to-infrastructure (V2I) and
vehicle-to-everything (V2X) technologies—that is, technologies that allow for information
to be exchanged between the vehicle and the outside world [34,35].

This section differentiates our survey from previous studies in the literature by pre-
senting related research that has been conducted by others and highlighting the associated
shortcomings, as summarized in Table 1. Research in this field is still in its early stages,
so a systematic review of the literature (SLR) [36] was carried out to conduct a taxonomic
survey to fill this research gap. This study not only offers a thorough examination of what
lies ahead but also provides insights into the recognition of the research topics/tendencies
in this area.

Table 1. Comparison of review articles.

Reference Contributions Limitations

Traffic
efficiency

applications

Younes et al.
[24]

Improving traffic flow.
Predicting traffic conditions.

Challenges in vehicle network.
Various requirements and factors.

Liu et al.
[37]

Based on the real world.
Collaboration with V2I.

No introduction to collaboration.
No introduction to autonomous driving.

Autonomous
driving

Khan et al.
[23]

Advantages of communication
and distributed learning.

No exploration of distributed learning.
Not delving into privacy protection.

Coordination
of autonomous

vehicles

Mariani et al.
[22]

Identify categories of coordination.
Strategies for autonomous vehicles.

Focused on an autonomous vehicle.
Focused on traffic efficiency.
Solutions for autonomous vehicle scenarios.

1.3. Contributions

This study provides an overview of the key issues related to distributed learning in
the context of ITSs. The key contributions of this study are as follows:

• The requirements for distributed learning are analyzed, and the application scenarios
of distributed learning in ITSs are introduced.

• Through an investigation of various distributed learning methods used in the context
of ITSs, the constraints of existing ITS distributed learning applications are recognized.

• Potential research directions that can bridge the identified gaps are identified, and
some additional research challenges for the application of distributed learning in ITSs
are outlined.

The remainder of this article is structured as follows. Section 1 examines topics related
to distributed learning. Section 2 provides a categorization, summary, and analysis of the
application scenarios of distributed learning in ITSs. Section 3 offers an overview and
discussion of distributed learning in ITSs. Section 4 introduces some gaps in the existing
literature and additional open research directions. Section 5 concludes the article.

1.4. Methodology
1.4.1. Research Questions

This study investigates the possibilities of distributed learning in the realm of ITSs
and to answer the following questions.

RQ1: How can distributed learning improve intelligent transportation systems?
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Rationale: We must identify specific ITS applications where the emphasis is placed on
distributed learning.

RQ2: What are the limitations to applying existing distributed learning in intelli-
gent transportation systems?

Rationale: It is essential to analyze the advantages and disadvantages of state-of-the-art
distributed learning approaches, in order to pinpoint research gaps in the field.

RQ3: What are the possible research directions to bridge the identified gaps?

Rationale: We aim to highlight several potential research avenues through which the entire
community can collaborate to close the existing gaps.

The reason for choosing these three research questions is mainly to determine which
scenarios in the specific applications of ITSs are focused on distributed learning. Based on
this, the advantages and disadvantages of distributed learning that are currently applied
in ITSs are analyzed, in order to identify research gaps. Finally, the research directions for
bridging these research gaps are identified, along with other potential research avenues.

1.4.2. Search and Selection Strategy for Primary Studies

We used a systematic literature review (SLR) technique, as suggested by Kitchenham
et al. [36], to address our research questions. This method is objective, clear, and repro-
ducible, and allows us to review the existing literature without bias. The review protocol is
illustrated in Figure 1.

Figure 1. Flowchart for comprehensive analysis of the existing literature on distributed learning in
intelligent transportation systems (ITSs), conducted through a systematic review.

This study involved three distinct phases to achieve its goal. Initially, the research
questions were established, and a search strategy was determined for the primary studies.
The second phase involved the application of inclusion and exclusion criteria to define the
study’s selection process. Finally, a thematic taxonomy of the retrieved approaches was
devised, and the results were reported. To find research papers in the area of computer
science, popular databases were used as the main sources [36]. These databases provide
sophisticated search capabilities with a set of Boolean functions to carry out precise searches
based on certain fields, such as the abstract, title, and keywords, which return more relevant
results than searching all fields.
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We constructed a search query for use in these databases to identify relevant publi-
cations. To ensure a complete overview of the applicable research in the literature and
current studies, we needed to be careful in the selection of keywords. The keywords used
are shown in Figure 2; in the figure, the larger the font size, the more studies related to that
keyword were retrieved.

Figure 2. Word cloud diagram of keywords. In the figure, V2X denotes the vehicle-to-everything
and ADAS denotes the advanced driving assistance system.

We needed to decide on the criteria for evaluating the articles that would be obtained
after using the search string in the following step. Tables 2 and 3 list the inclusion and
exclusion criteria used in our systematic review of the literature.

We executed a search string and applied the inclusion and exclusion criteria to relevant
publications related to distributed learning, resulting in an initial sample of 188 articles.
Then, we performed a stringent selection (secondary selection) of articles based on their ti-
tles, abstracts, and contents, only selecting publications that considered distributed learning
in an ITS and excluding those that discussed the general application of machine learning.
This was because our focus in this study was advancing the development of autonomous ve-
hicles, rather than the technical aspects of machine learning. After this phase, we obtained
44 articles to be systematically reviewed in this study. The trend chart of the literature
publication is shown in Figure 3. The distribution of published literature by country is
shown in Figure 4.

Table 2. List of inclusion criteria.

Criteria Description

Reviewed by peers. Opted for peer-reviewed articles, including conference,
workshop, and journal papers, as well as book chapters.

Recommended by important organizations. Highly recommended by ACM, IEEE, CCF, and so on.
Conducted between 2018 and 2024. Investigated all publications between 2018 and 2024.

Table 3. List of exclusion criteria.

Criterion Description

The study was not on ITSs. We only analyzed the literature related to ITSs.

The study did not go through a peer-review process. Exclusion of those that were only available as an abstract,
not published in a full paper, or not peer-reviewed.

Duplicate publication. Eliminated duplicates that appeared in different databases.
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Figure 3. Trend chart of literature publications (2018–2024).

Figure 4. Country distribution of literature publications.

1.4.3. Data Extraction and Synthesis

We analyzed the primary research documents, which resulted in a thematic taxonomy
of distributed learning in ITSs (Figure 5). Detailed descriptions of the components of the
proposed taxonomy are provided below.

• Scenarios: This element examines the behavior of single cars (e.g., when they pass
through an intersection) a group of vehicles (e.g., allocating parking spaces to a
business’s fleet), or the traffic system as a whole (e.g., regulating the flow of traffic in
a city). The topic of distributed learning in ITSs is very extensive, encompassing a
variety of scenarios from intersection control to car sharing.

• Approaches: This element examines approaches based on existing technology. Common
machine learning techniques include centralized learning, federated learning, and dis-
tributed learning. Distributed learning encompasses opportunistic federated learning,
edge computing, gossip learning, and other approaches. Furthermore, autonomous
communication, privacy, and security must also be considered in the considered con-
text.

• Challenges: In the realm of ITSs, distributed learning applications can be used to
ensure that autonomous driving requirements are met in particular or more general
scenarios. This may involve one or more challenges, such as privacy and security,
data, communication, and trust.



Information 2024, 15, 550 7 of 38

Figure 5. Distributed learning in intelligent transportation systems.

2. Scenarios (in Response to RQ1)

ITSs have a variety of uses, including vehicle networking, intelligent traffic signals,
intelligent parking, intersection control, merging ramps, platooning, and optimizing traffic
flow. Junyao Guo et al. [38] proposed that an autonomous driving system can adapt to any
driving conditions through learning and generalizing from sample scenarios. Therefore,
in this study, based on the application of distributed learning in ITSs, typical application
scenarios such as intersection management, ramp merging, platooning, and traffic flow
optimization were selected for discussion.

2.1. Intersection Management

Various intersections exhibit distinct features, including varying lanes, traffic lights,
road conditions, and road signs. The knowledge gained by a car navigating a specific
intersection can be transferred to another vehicle, significantly enhancing the efficiency
of the latter’s traversal through the intersection. An autonomous vehicle that has never
been to an intersection can benefit from updating its autonomous driving model to one
that is more suitable for the intersection. This can make it easier to manage self-driving
cars, enabling the function of ITSs at crossroads.

Hence, the utilization of distributed learning is feasible for sharing experiences among
autonomous vehicles, enabling them to enhance their understanding of intersection traffic
through model updating. Distributed learning is deemed more appropriate for intricate
intersection situations than centralized learning. Notably, in contemporary distributed
learning approaches, roadside units (RSUs) are also involved in updating models. Sama-
rakoon et al. [39] examined a network that utilized a 250 m × 250 m Manhattan mobility
model containing nine intersections. The illustration in Figure 6 depicts a structure that
integrates federated learning, allowing vehicles to share local and global models with RSUs
through this approach. This model utilizes the extreme value theory (EVT) [40] principle of
the generalized Pareto distribution (GPD) [41] to gather statistical information on queue
lengths that exceed high thresholds. It also imposes local restrictions on extreme events
associated with queue lengths that exceed predetermined thresholds for each vehicular user
(VUE). The GPD’s feature parameters (i.e., the scale and shape parameters) are determined
through maximum likelihood estimation (MLE) [42]. In contrast to the conventional MLE
method, which requires a central controller (e.g., an RSU) to gather samples of queue
lengths surpassing a threshold from all VUEs in the network, federated learning allows
each vehicle to create and exchange its own local model (comprising two gradient values)
with the RSU. In Figure 6, the communication between VUEs and RSUs involves the fol-
lowing steps: (1) Queue sampling (as described above); (2) estimation of GPD parameters;
(3) allocation of transmission power and resource blocks (RBs); and (4) swapping local and
global models with RSUs. In step A, the VUE assesses the gradients and GPD parameters lo-
cally. Following the local calculation of gradients and GPD parameters, each VUE transmits
its model to the RSU in step B. Subsequently, the RSU conducts model averaging across
the network, concurrently computing global GPD parameters and gradients in step C.
Finally, in step D, the global model is disseminated throughout the network. The results of
experiments indicated that VUEs can independently grasp the tail distribution of the entire
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network queue without the need to exchange specific queue-length data, thus minimizing
superfluous overhead. This method demonstrates substantial improvements in mitigating
instances of extreme events where the queue length exceeds predetermined thresholds.

Figure 6. Swapping of the local and global models between vehicles and RSUs [39]. In the figure, RSU
denotes the roadside unit, RB denotes the resource block, VUE denotes the vehicular user, and FL
denotes federated learning.

2.2. Ramp Merging

Merging from a ramp into a main lane is similar to an intersection where there are
no signal lights and vehicles that are moving straight have the priority to pass. On-ramp
vehicles must merge into the main lane smoothly and safely to prevent collisions. Ideally,
these vehicles should adjust their speed and merge quickly to avoid traffic jams [43,44].
It is clear that understanding the traffic flow and speed in the main lane, as well as the
length of the ramp (in order to appropriately adjust the speed of the vehicles on the ramp),
provides valuable insights for the model. Learning from this information, autonomous
vehicles can quickly adapt their speed and merge efficiently, even without prior experience
in ramp merging. This approach can help to prevent traffic congestion and improve the
overall flow of traffic.

Each vehicle locally stores its own data and model, which can be enhanced through
learning to better handle various merging situations on ramps. Figure 7 illustrates a traffic
scenario involving vehicles merging from a ramp onto a highway. Considering this scenario,
Rihan et al. designed a distributed learning framework centered around fog computing [45].
This framework enables the sharing of learning experiences among network nodes through
the exchange of model updates. As illustrated in Figure 8, every node can store its own
data locally, and a common model is created using these data. This process is depicted in
Figure 8, where the local parameters µi and βi are uploaded. Subsequently, the node can
distribute its acquired knowledge to other nodes in the network through exchanging model
updates, which include deep learning model weights and biases. This is illustrated in
Figure 8, as a two-fold procedure: downloading global parameters and controlling design
parameters.
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Figure 7. Traffic situation involving vehicles using an entrance ramp to merge onto a highway [46]. In
the figure, CAV denotes the connected and autonomous vehicle and HDV denotes the human-driven
vehicle.

Figure 8. Federated learning for dependable vehicle-to-vehicle (V2V) communication [45].

2.3. Platooning

Platooning involves the formation of a queue of autonomous cars for long-distance
driving. For vehicles that must travel long distances, platooning can help to achieve goals
such as reducing energy use, reducing CO2 emissions, and alleviating traffic jams. With the
gradual popularization of intelligent network vehicles, platooning is expected to become a
common vehicle-driving method. After vehicles form a platoon, they drive in formation
for a period of time, during which the local model can be updated through distributed
learning among vehicles [47].

It is important to note that methods for the platooning of vehicles are constantly
evolving. Various types of platooning arise from factors such as the speed at which
the leading vehicle travels, the platoon length, and the entry and exit of vehicles. It
is evident that transferring the knowledge gained through vehicle platooning to new
vehicles via learning is challenging. The authors of [48] improved the speed of learning
convergence through the use of a combined bandwidth allocation and scheduling scheme
within a specific training time limit. In contrast, the scheduling policy design reported
in [49] considered not only the device’s channel conditions but also the significance of
its local model update, as indicated by the l2-norm of the model update. As a result,
autonomous vehicle models can adapt and learn new scheduling strategies in vehicle
scheduling scenarios, leading to improved traffic efficiency. In the IRS-assisted multi-
platoon cooperation scenario depicted in Figure 9, a vehicle queuing network is established,
with the queue that requests the learning service being designated as the requester (SP),
while the queue that intends to train the shared learning model is considered as the
provider (DP). Each row comprises a leading car and a sequence of subsequent cars.
As illustrated in Figure 10, a distributed learning system is composed of a demand-driven
queue (i.e., the requester), K service-oriented queues (i.e., the provider), and an intelligent
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reflecting surface (IRS) with N reflection elements. The collection of rows is denoted by
K = {0, 1, 2, . . . , K}, where k = 0 signifies the requester, and the others are the k providers.
All collaborative training approaches involve shared learning models ω in the collection,
with all training data stored locally for each end user. The objective of distributed learning
is to determine the model parameter ω that minimizes the loss function L(ω) across the
entire dataset. Optimization challenges can be formulated as follows:

min
ω

L(ω) ≜ min
ω

{ 1
K

K

∑
k=1

Lk(ω)}. (1)

where Lk(ω) denotes the local loss function.

Figure 9. A situation involving IRS-supported collaboration among multiple platoons [47]. In the
figure, IRS denotes the intelligent reflecting surface, SP denotes the platoon that requests a learning
service, DP denotes the platoons scheduled to train a shared learning model, G denotes the channel
responses from the IRS to SP, hr denotes the channel responses from DP to the IRS, and hd denotes
the channel responses from DP to SP.

Figure 10. A distributed learning system based on an IRS [47].

Vehicle-to-vehicle (V2V) communication can reduce the gaps between vehicles, thus
decreasing their air resistance and increasing road traffic efficiency. The development of
platoon control technology has allowed for basic driving functions to be performed, which
is essential for industrial applications and brings considerable economic benefits [50].

2.4. Traffic Flow Optimization

Traffic flow optimization is traditionally achieved through adjusting traffic lights and
digital signals [22]. However, new solutions have been presented for autonomous vehicles.
Generally, congestion can be predicted through a centralized traffic management system,
allowing autonomous vehicles to formulate and implement congestion avoidance plans. In
urban areas, traffic congestion frequently arises at specific points during set times, such as
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during rush hours, in tunnels, and on bridges. Having expertise in optimizing traffic flow
at these spots can help new vehicles avoid congestion, thus enhancing urban road traffic
flows. Consequently, incorporating learning-based techniques into traffic flow optimization
scenarios can further enhance vehicle models.

Ye et al. [51] investigated the application of federated learning in vehicular edge
computing (VEC) to address traffic flow optimization issues. In their study, as depicted in
Figure 11, each vehicle client performs local deep neural network (DNN) training using
images captured with its onboard camera. Image classification is seen as a common use of
artificial intelligence in vehicular edge computing (VEC). The model relies on DNN image
classification, which has been extensively applied in autonomous driving and interactive
navigation of intelligent connected vehicles (ICVs), along with target tracking and event
detection in ITSs. For example, the client within the vehicle utilizes the in-car camera
for image capture, followed by classifying and labeling images using automated labeling
technology [52]. Subsequently, the central server designates the vehicle client to engage in
supervised federated learning, producing global and local updates for DNN models. To
address variations in image quality and computational capabilities among vehicle clients
during federated learning for image classification, a selective model aggregation approach
was suggested. Through experiments conducted on the MNIST and BelgiumTSC datasets,
the proposed selective model aggregation approach demonstrated superior performance,
in terms of accuracy and efficiency, compared with the original FedAvg method.

Figure 11. A comprehensive framework for federated learning in the context of edge computing in
vehicular environments [51].

2.5. Summarizing Discussion

Selecting the most appropriate approach for a specific situation can be difficult, consid-
ering the variety of possible scenarios and options. We outlined various machine learning
models and investigated how vehicles acquire model parameters from one another or
central servers in different situations.

- Each vehicle is equipped with a unique model tailored to various scenarios. Through
incorporating distributed learning among vehicles and implementing specific strate-
gies, a more effective adaptation to varying traffic patterns in ITSs can be achieved.

- Distributed methods enable the sharing of computational resources among various
entities, in order to distribute the global computing workload evenly. This approach
helps to minimize the risk of individual system failures and ensures that programs
are executed on the most appropriate computing nodes. In the context of advanced
autonomous driving systems, such as those found in intelligent transportation systems,
there is a growing need for complex environmental sensing capabilities. As a result,
distributed methods have gained significance in this domain. Consequently, intelligent
networked autonomous driving has emerged as a crucial technological pathway,
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leading to the development of sophisticated transportation systems that seamlessly
integrate vehicles, road infrastructure, and cloud computing resources.

- Federated learning is a decentralized approach to machine learning, in which numer-
ous users work together to train a model without centralizing the original data onto
a single server or data center. This method utilizes either raw data or data that have
been processed securely based on the raw data for training purposes. In the realm
of autonomous driving, federated learning allows vehicles to learn from one another
while on the road, facilitating collaborative model training for autonomous vehicles
without requiring all data to be stored on a single vehicle.

- Edge computing involves relocating computing tasks from the central server to the
network edge devices. Implementing this technology in autonomous vehicles allows
them to instantly analyze extensive sensor data, leading to prompt and precise op-
erational decisions. Consequently, this enhances driving safety and efficiency. For
instance, in intricate traffic scenarios, autonomous vehicles must swiftly detect and re-
act in diverse situations. Utilizing edge computing, vehicles can analyze camera image
data in real-time; recognize pedestrians, vehicles, and obstacles; and take appropriate
actions accordingly.

- The peer-to-peer distributed learning algorithm with parameter duplicates for every
node enables direct communication among nodes. This approach offers excellent
scalability and eliminates any centralized failure point. Peer-to-peer distributed learn-
ing shows promising application potential in various scenarios, such as intersection
management, ramp merging, platooning, and traffic flow optimization.

3. Approaches (in Response to RQ2)

Based on the discussion in Section 2, we believe that distributed learning using
parameter servers in ITSs significantly enables decentralized distributed learning and
peer-to-peer distributed learning. In the following sections, we will present a few relevant
approaches. They can be seen in Figure 12.

Figure 12. The approaches to distributed learning.
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3.1. Decentralized Distributed Learning

Federated learning is a form of global modeling that is achieved by combining the
results of training distributed models from multiple data sources without the need to
exchange individual local or sample data [53–56]. Such a model is based on the virtual
fusion of data, striking a balance between protecting data privacy and enabling data-sharing
computation by exchanging only model parameters or intermediate results [57,58]. In an
ITS, interactive learning between vehicles and the system environment can help to integrate
different sources of information while ensuring privacy protection, further improving the
autonomous driving experience through vertical federation using other urban information
such as that obtained from city cameras, traffic lights, and smart roads [59]. Kan Xie
et al. [60] utilized federated learning to tackle the problem of traffic sign recognition,
enabling cooperative training of accurate recognition models without having to exchange
the original data of the traffic sign. The spike neural network (SNN), when combined with
a traditional federated convolutional neural network, provided greater accuracy, noise
resistance, and energy efficiency.

At present, in order to successfully adapt to the application scenarios of ITSs, federated
learning must make breakthroughs in terms of efficiency and computational/time costs, as
detailed in the references reported in Table 4.

Table 4. Research on federated learning: bi-dimensional taxonomy.

Efficiency Low Cost

Federated
Learning

Liu et al. [61],
Mills et al. [62], Wang et al. [63]

Wu et al. [64],
Luo et al. [65]

The references in Table 4 have illustrated the advantages of the HybridFL, MFL
(momentum federated learning), CFL (cluster-based federated learning), and MTFL (multi-
task federated learning) algorithms, in terms of their high efficiency.

HybridFL: Wu et al. [64] proposed a HybridFL federated learning protocol to provide
privacy protection and efficiency in a mobile edge computing architecture. This algorithm
involves clients Cr(t)nr setting the region selection ratio Cr(t) in round t, with the expecta-
tion that C · nr will not drop out or opt-out. The desired proportion of clients who submit
their local models in a round is denoted as C, which is determined by the cloud. Xr(t)
refers to the clients in X(t) that are part of region r. Meanwhile, nr represents the number
of clients that are connected to the edge node r. Consequently, the selected targets in this
region-wise manner are as follows:

E[|Xr(t)|; Cr(t), nr] =
Cr(t)nr

∑
k=0

k · P(|Xr(t)| = k)

= Cr(t)nrθr(t).

(2)

In HybridFL, a quota-triggered aggregation system is utilized. Once the C · n client
models have been sent to the mobile edge computing system, the round is completed in the
cloud. Sr(t) refers to the subsets of clients in S(t) that are part of the region r. Consequently,
the following steps are carried out:

|Sr(t)| = E[|Xr(t)|; Cr(t), nr] ·
|Xr(t)| · q∗r (t)

E[|Xr(t)|; Cr(t), nr]
, (3)

qr(t) ≜
|Xr(t)| · q∗r (t)

E[|Xr(t)|; Cr(t), nr]
, (4)
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From Formulas (2)–(4), we have the following:

|Sr(t)| = E[|Xr(t)|; Cr(t), nr] · qr(t)

= Cr(t)nrθr(t) · qr(t).
(5)

In addition,

Cr(t) = C · nr
∑t−1

i=1(Cr(i)qr(i))2

∑t−1
i=1 Cr(i)qr(i)|Sr(i)|

, t > 1. (6)

An experimental evaluation revealed that HybridFL outperformed FedAvg and Hier-
FAVG in terms of global model accuracy. In particular, it was able to achieve the best global
model with the lowest number of federated rounds, making it suitable for mobile edge com-
puting in ITSs. This can reduce the average length of training, speed up the convergence of
the global model, improve the model’s accuracy, and reduce energy consumption on the
device side. However, the HybridFL algorithm requires different environmental settings,
such as E[dr] and the proportion C of client selection in the Airfoil and MNIST datasets,
resulting in a total time consumption of 3143–15,978.4 s to obtain Acc = 0.90, which is too
long for deployment in autonomous vehicles in an ITS.

MFL: Liu et al. [61] proposed an alternative to HybridFL called momentum federated
learning (MFL), which integrates momentum gradient descent (MGD) into the local update
step of the federated learning system. This algorithm takes the momentum term of the
previous iteration into account. An experimental evaluation based on the MNIST dataset
demonstrated that momentum federated learning is globally convergent. It was confirmed
that the use of MFL leads to accelerated convergence. Accelerated federated learning is
crucial in ITSs, as vehicles travel at very fast speeds and have a limited time to complete
federated learning. Selecting a value of γ of around 0.9 in MFL can allow the optimal
convergence speed to be achieved; however, at this point, the number of iterations is still
greater than 1000—relatively long compared to The duration required by autonomous
vehicles in ITSs.

CFL: Wang et al. [63] proposed an algorithm, referred to as cluster-based federated
learning (CFL), in order to address the resource-efficient federated learning problem (RFL-
HA) with hierarchical aggregation. Compared with traditional federated learning, CFL can
reduce the time needed to complete the task by 34.8–70% and communication resources
by 33.8–56.5% while maintaining similar precision. The architecture of the algorithm is
shown in Figure 13. In an ITS, clustering analysis and hierarchical aggregation using this
algorithm can accelerate the model learning rate. Consider a scenario where we have a
total of N edge nodes, which are further categorized into K distinct clusters. The RFL-HA
problem can be reformulated as follows:

L(K) = [
K− 1

N
+ α(1 − ηµ)H ]

RmK
N(cm+bm) [F(ω0)− F(ω∗)]

+
(Q1 + Q2)[1 − (K−1

N + α(1 − ηµ)H)
RmK

N(cm+bm) ]

2ηµ2 .

(7)

The optimal value of K can be ascertained as follows:

K∗ = arg min
K∈1,2,...,N

L(K). (8)

This algorithm can achieve excellent performance under resource constraints and
provide valuable learning solutions for vehicles in ITSs with limited resources. Tests on the
MNIST and CIFAR10 datasets demonstrated that CFL outperformed FedAVG (z = 100) and
FedAsync when different K value time budgets were used (e.g., 600 s for SVM/LR and
1800 s for CNN over MNIST). However, the 600 s and 1800 s time budgets were slightly
longer for the ITS.
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Figure 13. The architecture of RFL-HA [63]. In the figure, PS denotes the parameter server and LN
denotes the leader node.

MTFL: Mills et al. [62] proposed a multi-task federated learning algorithm (MTFL)
that incorporates a non-federated batch normalization layer (BN) into federated deep
neural networks. This allows users to carry out customized model training based on their
own data, thus improving the accuracy of the user model and the convergence speed. The
illustration in Figure 14 depicts the functioning of the MTFL algorithm in the context of
edge computing.

Figure 14. The multi-task federated learning (MTFL) algorithm utilized in edge computing [62].
In the figure, ML is machine learning.

Federated learning aims to minimize the objective functions to the greatest extent
possible:

FFL =
K

∑
k=1

nk
n
ℓk(Ω). (9)
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The federated learning model can be modified by incorporating a different client patch,
which will alter the objective function of MTFL, as follows:

FMTFL =
K

∑
k=1

nk
n
ℓk(Mk), (10)

Mk = (Ω1 . . . Ωi1 , Pk1 , Ωi1+1 . . . Ωim , Pkm , Ωim+1 . . . Ωj). (11)

Batch normalization (BN) layers can be used as a patch for multi-task learning (MTL)
in a centralized setting. The BN layers are expressed using the following equation:

x̂i =
zi −E(zi)√
Var(zi) + ϵ

BN(x̂i) = γi x̂i + βi.
(12)

The average and variance of neuronal activation (zi, post-nonlinearity) in the mini-
batch, E(zi) and Var(zi), are used to determine the learning parameters γi and βi during the
training process. For ITS, the MTFL algorithm can achieve the highest average user model
accuracy with a limited number of vehicle communication cycles. Through conducting
experiments on the MNIST and CIFAR10 datasets, it was determined that the average times
for one MTFL cycle were 38 and 136 s, respectively. This time consumption was much less
than that of the HybridFL and MFL algorithms and, so, it should be applicable in ITSs.

Self-adjusting federated learning: Luo et al. [65] proposed the self-adjusting federated
learning approach in mobile edge networks to optimize the selection of essential control
variables, thus decreasing total costs while ensuring convergence. This can provide cost-
effective solutions for large-scale applications in ITSs. We aim to reduce the overall cost as
much as possible while ensuring that the process converges. This can be expressed as the
following problem:

minE,K,R E[Ctot(E, K, R)]

s.t. E[F(WR)]− F∗ ≤ ϵ; K, E, R ∈ Z+; and 1 ≤ K ≤ N.
(13)

Satisfying the convergence constraint on the upper bound, Equation (13) can be
approximated as follows:

minE,K,R (
(1 − γ)∑N

i=K CK−1
i−1 ti

CK
N

+ γK(epE + em))R

s.t.
1

ER
(A0 + B0(1 +

N − K
K(N − 1)

)E2) ≤ ϵ,

K, E, R ∈ Z+ and 1 ≤ K ≤ N.

(14)

Substituting Ẽ[Ctot] for E[Ctot], we obtain the following approximation:

minE,K

((1 − γ)(tpE + tm) +
γK(epE + em)) · (A0 +

B0(1 + N−K
K(N−1) )E2)

ϵE
s.t. E ≥ 1 and 1 ≤ K ≤ N.

(15)

The performance and efficacy of the algorithm were confirmed through a federated
learning test using a laptop as the central server, 20 Raspberry Pis, and approximately
10 Jetson Nanos as edge devices. This design differed from most resource allocation tasks
in federated learning systems and can help reduce expenses.
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Similarly, Sha Liu et al. [66] used federated learning to achieve collaboration among
connected autonomous vehicles (CAVs) without revealing local data. A local decision-
making model was proposed for typical rear-end collision scenarios, and the accuracy of
the global model was enhanced using federated learning.

In general, federated learning only shares gradients and does not share local data and
models, providing it with wide application prospects in many scenarios [57]. However,
to apply federated learning in ITSs, a balance must be achieved between efficiency and
cost [67]. Many scholars have performed research in this regard, but there is still no
sufficiently good approach. At the same time, the use of federated learning gradient
aggregation servers still poses risks related to privacy and security.

3.1.1. Edge Computing

The correlation between edge computing and distributed learning within the realm of
ITSs is pivotal in attaining effective and flexible solutions. In this context, edge computing
denotes the practice of conducting computations in proximity to a data source; which,
in this instance, would be the vehicles within the ITS. Through the utilization of edge
computing, each vehicle can be furnished with a customized model suited for diverse situ-
ations, facilitating localized decision-making and diminishing the necessity for continuous
communication with a central server. This configuration fosters distributed learning among
vehicles, enabling them to exchange insights and cooperate to enhance their individual
models. Through incorporating specific methodologies for distributed learning, such as
federated learning or collaborative filtering, vehicles can collectively assimilate knowledge
from each other’s encounters and adjust more efficiently to fluctuating traffic conditions.
Overall, the amalgamation of edge computing and distributed learning elevates the in-
telligence and responsiveness of ITS systems, resulting in enhanced traffic control and
safety.

Edge computing is an alternative to traditional cloud computing, which involves pro-
viding services on the network edge and performing computing and data generation [68].
It is distinct from the conventional cloud computing approach. For the ITS, it is necessary
to improve vehicular services by distributing computing tasks between the remote cloud
and the local vehicular terminals [69]. To further reduce the latency of computing off-load
and transmission costs, edge computing is a potential solution approach. There are many
discussions about the application of edge computing to ITS. Some discuss edge computing
architecture [70], some discuss performance [71], some discuss edge server layout [72,73],
and some discuss resource allocation [74].

Baidya et al. [70] studied the potential of edge computing architectures for vehicular
computing and showed the pros and cons of different offloading strategies. They discussed
lightweight, high-performance, and low-power computing paradigms, architecture, and
design space exploration tools to meet the changing needs of connected and autonomous
vehicles. Experimental results showed that the computing power of vehicular local comput-
ing (VLC) is only half that of vehicular edge computing (VEC). When the communication
speed was low (5 Mbps), the most efficient approach was not to offload, as it had the least
end-to-end delay. As the communication speed increased (10–20 Mbps), partitioning and
offloading became the most suitable choices, as full offloading still had a relatively high
communication latency. Of course, when the quality of the network is further improved
(>30 Mbps), full offload is the best option.

Galanopoulos et al. [71] proposed an automated machine learning (AutoML) frame-
work to tackle the difficulty of optimizing the accuracy of the analysis while still adhering
to the minimum frame rate requirement in a situation where a large number of configura-
tion parameters are unknown and can vary over time, which affects the performance of
multi-access edge computing (MEC). The aim is to maximize users’ cumulative confidence
(CC) while meeting their frame rate requirements.
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3.1.2. Summarizing Discussion

Due to its particularity in protecting privacy, federated learning has gradually received
more applied research in the ITS field [75]. In particular, edge computing provides an
effective approach to reducing latency and transmission costs in ITSs.

Scholars have conducted research on the distributed application of federated learning
and edge computing in vehicles, with Takayuki Nishio et al. [76] proposing a mobile edge
computing framework for federated learning (FedCS) that utilizes distributed learning to
create high-performance models while preserving client privacy. Other studies in this area
include those of Ye et al. [51], Chi et al. [77], Mo et al. [78], Liu et al. [79], and Lim et al. [80].
These studies demonstrated the possibility of effective training in resource-constrained
environments. Simultaneously, Wei Yang Bryan Lim et al. [80] examined federated learning
in mobile edge networks. In particular, topics that require further exploration are related to
communication expenses, resource distribution, data confidentiality, and data safety.

3.2. Peer-to-Peer Distributed Learning

There are several types of distributed learning: one type is encounter-based learning
(e.g., opportunistic federated learning), while another type is clustering-based learning
(e.g., gossip learning). In the context of an ITS, a multitude of self-driving vehicles can be
expected to join the system in a sequential manner. Learning new data models without
revealing local data models is within the application scope of distributed learning.

3.2.1. Encounter-Based Learning: Opportunistic Federated Learning

Encounter-based learning approaches are algorithms that carry out learning from
models when they meet each other. A typical algorithm in this category is opportunistic
federated learning [81]. In an ITS, all autonomous vehicles have the opportunity to en-
counter one another. Through the exchange and learning of data from a vehicle model
during an encounter, the updated autonomous vehicle model can be adapted to more
application scenarios. Therefore, ITSs are a typical field in which encounter-based learning
applications can be applied.

Sangsu Lee et al. [81] proposed an approach to federated learning known as oppor-
tunistic federated learning (OppCL). This method does not require the aggregation of
gradients through a server, as is the case in traditional federated learning. Instead, each
client exchanges gradients and updates their models during encounters. An opportunistic
momentum was introduced to integrate the experience of others. This approach has two
obvious characteristics: one is learning from encounters, and the other is its decentralized
nature. Opportunistic momentum is a technique that utilizes the summary of data from
neighboring devices to determine whether it is advantageous and possible to request learn-
ing support. If advantageous and practicable, the device can share model gradients and
generate new local models for learners. The system architecture of opportunistic feder-
ated learning is depicted in Figure 15. Devices use locally obtained data to continuously
refine the personalized model. Each device applies mobility and contact prediction to
the device, in order to determine when to participate in opportunistic federated learning
with the encountered device. This technique is highly suitable for the learning situation of
autonomous vehicles in ITSs.
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Figure 15. System architecture of opportunistic federated learning [81].

Consider a set of N devices, C = {C1, . . . , Ci, . . . , CN}, each with its own dataset Di
and with each sample having a label. We can measure the distribution of the data label Li
for device Ci as the relative frequency of each label in the local dataset. Each device has a
desired distribution of labels Gi that it hopes its model can accurately classify. Each device
Ci builds its own local model ωi, which is associated with a local clock ti related to the
model ω

ti
i . Every time the local model of Ci is updated, ti increases. The initial model for

the device Ci is ω0
i . Opportunistic federated learning updates the local model based on

the combination of the device’s local data and the gradient obtained from the encounter to
optimize the local model toward the target distribution Gi.

min
Ei

|Ei |

∑
ti=0

ℓ(ωti
i ;DGi ). (16)

This algorithm first evaluates the similarity between the target distribution of the
learners and the data label distribution of the neighbors to decide whether the encounter
will be beneficial for learning. To do this, it takes into account the set of encounters
experienced by the device Ci, denoted as Ei, and a hypothetical dataset DGi whose data
label distribution matches the target distribution Gi.

sim(P1,P2) = ∑
l∈L

min(P1(l),P2(l)). (17)

Greedy aggregation directly averages the gradient of neighbor learning after adding a
round of local learning, as follows:

ω
′
=

ω(Li ,Gi)
(▽ℓ(ω

′
;Di)) + ω(Lj ,Gj)

(▽ℓ(ω
′
;Dj))

ω(Li ,Gi)
+ ω(Lj ,Gj)

. (18)

We consider the similarity between the data label distribution and the target distri-
bution when weighing both the local and adjacent gradients. The weights are determined
as follows:

ω(L,G) = exp(−λ × (1 − sim(G,L))). (19)



Information 2024, 15, 550 20 of 38

The parameter λ reflects the tendency of the model to overfit datasets with a limited
number of labels, which can also be seen as the model’s preference for datasets that are
well-balanced. Every time the model interacts with its neighbors, Γ is updated, connecting
the neighbor’s data label set to the gradient that was learned from that set. When a new
encounter occurs, the technique averages all stored gradients before making changes to ω

′
.

In each device Ci, the learning rate is determined independently. The learning rate of
Ci at time ti is η

ti
i = ηα

ti
i , where η denotes the initial learning rate and α

ti
i denotes the decay

factor.

αti =
exp(k × (ϕ − ∥ω0

i − ω
ti
i ∥2))

exp(k × (ϕ − ∥ω0
i − ω

ti
i ∥2)) + 1

, (20)

where
αti < min{α0, . . . , αti−1}, 0 < ϕ, 0 < k, (21)

where ϕ and k are constants, and the decay factor α is a sigmoid function that takes the
L2 distance from the initial weight and transforms it to be used as input. This design
encourages the model of Ci to look for solutions that are close to the bootstrap model.

Based on the MNIST and CIFAR-10 datasets, learning to navigate opportunistic
WiFi and Bluetooth connections took a total time of 19.14 s for MNISTWIFI , 55.50 s for
MNISTBluetooth, 73.40 s for CIFAR-10WIFI , and 300.77 s for CIFAR-10Bluetooth when using
opportunistic momentum to achieve better accuracy. The use of WiFi can be considered
more suitable for various scenarios of autonomous vehicles in an ITS. These results can be
positively related to the intended application.

Lee et al. [82] investigated the promotion of decentralized and opportunistic learning
in distributed computing. OppCL expands from homogeneous device networks to het-
erogeneous device networks, and we believe that it can improve negative impacts when
dealing with unpredictable mobility patterns. Generally, it is advantageous to conduct
extensive research on encounter-based learning algorithms, such as opportunistic federated
learning, to teach vehicle models encountered in ITSs. Furthermore, Parijat Dube et al. [83]
proposed a technique known as AI Gauge, which can be used to calculate the running time
and cost of training deep learning models under various cloud configuration options (with
an average relative error of 7–8%). This method can also be used to estimate the time and
cost of autonomous vehicle learning models, which helps analyze whether an autonomous
vehicle in an ITS can complete distributed learning within a specified encounter time.

3.2.2. Clustering-Based Learning: Gossip Learning

Clustering-based learning refers to clustering the clients to more effectively learn the
model data. The most typical algorithm in this category is gossip learning [84]. Clustering-
based learning is similar to the behavior of autonomous vehicles in ITSs, as it is fully
distributed and decentralized. Therefore, ITSs are a common application area for this type
of learning approach.

Gossip learning was first proposed by Ormandi et al. [84], and is known for its
flexibility, privacy-preserving nature, and scalability [85]. The key protocol underlying
gossip learning is called peer sampling, which provides each node with a set of peers (called
views) for gossiping. This protocol is essential for enhancing the speed of information
dissemination, and can even affect the performance of the learning model [86]. In fact,
the peer sampling protocol can create an unstructured network, following a well-defined
expression logic to accelerate the convergence time, reduce communication overhead,
and/or improve overall system performance [87].

The gossip learning architecture is illustrated in Figure 16. In this algorithm, the nodes
periodically transmit their local models to their views P. When receiving a model m from
one of its neighbors, the node combines the model using a predefined model aggregation
function. Subsequently, the resulting model is updated by training it on the local dataset
D. This updated model is then taken as the new current model. The model aggregation
function is a key element of gossip learning, as it allows nodes to learn from data from
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other nodes without actually having to train the model. This function usually involves a
weighted average of the parameters of the model or a subset of these parameters.

Gossip learning assumes that data are stored on the edge device, without the need
for a central server or component. Research has shown that gossip learning is superior to
federated learning in scenarios where the training data are evenly distributed among nodes,
and its overall performance is comparable to that of federated learning [88]. However,
existing gossip learning approaches only apply to static nodes or fully connected graphs,
making them vulnerable to node churn and any changes in the network configuration. Mina
Aghaei Dinani et al. [89] proposed a novel decentralized architecture for gossip learning
suitable for dynamic nodes. This algorithm was applied to estimate the short-term trajectory
of vehicles in real-world urban settings. There are two key differences between gossip
learning and opportunistic federated learning: the first is that gossip learning aggregates
models rather than gradients; and the second is that gossip learning is a diffusion method,
whereas opportunistic federated learning involves learning through encounters. These two
techniques are likely to be used to stimulate the education of self-driving cars in ITSs.

Figure 16. Overview of the gossip learning architecture. In the figure, each device represents a node.
A bidirectional arrow indicates bidirectional communication, while a unidirectional arrow indicates
unidirectional communication. In gossip learning, a node becomes active upon receiving new data
and then periodically disseminates the data to other nodes. These nodes, in turn, propagate the data
until all nodes have the updated information.

3.2.3. Summarizing Discussion

Encounter- and cluster-based learning approaches can be considered analogous to the
behaviors of autonomous vehicles in ITSs and, so, can be applied to the corresponding
autonomous driving scenarios, allowing for vehicle model learning. When autonomous
vehicles encounter one another, they can update their autonomous driving models through
gradient exchange and opportunistic federated learning to adapt to more autonomous
driving scenarios. Some autonomous vehicles may also exchange applicable gradients to
vehicles, as needed, through small-scale gradient exchange and model updates, which is
the application scope of gossip learning.

4. Challenges and Research Directions (in Response to RQ3)
4.1. Challenges

In view of some of the difficulties and challenges of distributed learning in ITSs,
scholars have performed analyses focusing on privacy and security, data, communication,
and trust. The relevant literature is listed in Table 5.
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Table 5. Relevant literature on the challenges of distributed learning in ITSs.

Challenges Approach Scenarios

Privacy and Security Yin et al. [90], Wang et al. [91] Cheng et al. [92], Mohseni et al. [93],
Gautam et al. [94], Zhu et al. [95], Ren et al. [96]

Data intelligence sharing Prakash et al. [97] Paardekooper et al. [98], Prakash et al. [97]

Communication quality & speed
Naghsh et al. [99], Zhang et al. [100],
Ding et al. [101], Situ et al. [102]

Zhou et al. [103], Wright et al. [104],
Tang et al. [105], Zhou et al. [106]

Trust Situ et al. [102]
Paardekooper et al. [98], Wang et al. [107],
Hu et al. [108], Prakash et al. [97], Cao et al. [109],
Liu et al. [37], Quinonez et al. [110]

4.1.1. Privacy and Security in Data Intelligence Sharing

Investigating data intelligence sharing for distributed learning in ITSs is a critical
issue. Jan Pieter Paardekooper et al. [98] proposed that as data-driven artificial intelligence
(AI) systems become increasingly common in self-driving cars, it is essential to improve
the safety of autonomous driving functions by combining data-driven AI systems with
knowledge-based AI into a hybrid AI system. Aditya Prakash et al. [97] studied data
aggregation in learning visual-based urban autonomous driving policies. Although they
studied the means of data aggregation, it is still a challenge to show what kind of data are
shared in an ITS. Facilitating the exchange of data between vehicles and infrastructure to
enable vehicles to act as cooperative learners, exchange knowledge from their sensor data,
and promote smart data sharing poses notable challenges. Through data sharing, vehicles
that have not experienced certain conditions can gain understanding and become more
knowledgeable about those environments, ultimately improving their driving capabilities.
However, enabling vehicles to participate in data sharing presents another barrier that
requires attention.

The exploration of privacy and security in data intelligence sharing has been a popular
topic. Jiahui Geng et al. [111] developed a versatile gradient reversal attack framework,
which is capable of targeting both FedSGD and FedAVG simultaneously. Furthermore,
they introduced a defense mechanism through numerous experiments that effectively
mitigates attacks without compromising utility. Jingyang Zhang et al. [112] developed a
privacy breach technique that enables attackers to precisely reconstruct a user’s private
training image using the adversarial training (AT) model of federated learning, even when
dealing with a substantial training batch. Junbo Wang et al. [91] conducted a thorough
investigation of the various privacy, security, and robustness issues in distributed learning.
They identified three main types of attack in federated learning: membership inference, un-
intentional feature inference, and representative sample reconstruction. To protect against
privacy leakage [113], techniques that reduce the overall model or its convergence (e.g.,
adding noise to the data [96]) are usually used, and computationally intensive operations—
such as homomorphic encryption or secure multiparty computation—may be necessary.
Finding a way to preserve privacy while detecting and avoiding malicious training or
updates in an economical manner is a major challenge that requires further research. Xue-
fei Yin et al. [90] proposed a generic privacy preservation mechanism that encompasses
three types of privacy-preserving techniques: cryptographic techniques, perturbative tech-
niques, and anonymization techniques. Their classification, based on the 5W-scenario
taxonomy, examines the potential privacy risks in federated learning from five perspec-
tives: “who” (internal and external participants), “what” (active and passive participants),
“when” (training phase and invitation phase), “where” (weight update, gradient update,
and the final model), and “why” (four types of investment participants). The privacy-
preserving federated learning (PPFL) method was studied and summarized based on four
privacy-preserving schemes: encryption-based, perturbation-based, anonymization-based,
and hybrid PPFL methods. Despite the recent surge in PPFL, this field of research faces
many challenges, including the need to improve existing frameworks and develop new
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methods to enhance both the privacy and utility of data. In particular, in the field of
intelligent transportation, low cost, and high efficiency have always been two directions
worth exploring for PPFL. Since its introduction in 2016, federated learning has been widely
acknowledged as a crucial approach to addressing privacy and security issues in machine
learning [114,115], including in the context of ITSs. However, numerous investigations
have highlighted that the transmission of shared gradients can also inadvertently disclose
local data [113], underscoring the persistent complexity of the PPFL technique as a research
avenue [116].

In any intelligent driving application scenario, distributed learning has significant
and extensive potential applications. The efficient sharing of data is a crucial aspect of
distributed learning that impacts its effectiveness. A key challenge lies in determining
the type of data to be exchanged among vehicles and incentivizing participation in data
sharing. Moreover, ensuring privacy and security is essential during data and intelligence
sharing. Numerous studies have highlighted various attack techniques and the risk of
privacy breaches in data sharing for distributed learning. Several scholars have introduced
defense mechanisms and approaches, with the PPFL technique currently being among
the most favored methods for privacy and security in federated learning. However, the
integration of distributed learning techniques into ITSs continues to present notable privacy
and security challenges in the realm of data intelligence sharing.

4.1.2. Communication Quality and Speed

Vehicle encounters in an ITS are limited in time and, therefore, must be taken advan-
tage of. The successful completion of distributed learning depends on the quality and
speed of communication. Therefore, research on communication methods will seriously
affect the implementation of distributed learning.

Generally, two main factors restrict ITS communication technologies. The first is the
advancement of V2X technology, and the second is the achievement of cooperative com-
munication. Improving reliability and reducing latency have always been the main goals
of communication problems. Yuntao Zhu et al. [117] proposed a Stackelberg game of IoV
and a federated-learning-assisted spectrum-sharing framework to address the spectrum
allocation issue caused by the rapid growth of IoV traffic. This framework is illustrated in
Figure 17, and the simulation results demonstrated that this method can provide consider-
able performance enhancements. Furthermore, Sumudu Samarakoon et al. [39] proposed a
distributed approach based on federated learning to address the joint problem of power
allocation and resource allocation (JPRA) for ultra-reliable low-latency communication
(URLLC) in-vehicle networks. Yang Chen et al. [118] proposed an asynchronous feder-
ated learning technology with temporally weighted aggregation to reduce communication
overheads in federated learning. This is illustrated in Figure 18, which depicts federated
learning using an asynchronous layer-wise model update and temporally weighted ag-
gregation. A comparison of the MNIST and human action recognition datasets revealed
that the algorithm was more effective than traditional federated learning, in terms of
performance and communication cost.
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Figure 17. The Stackelberg game and federated learning-assisted spectrum-sharing framework for
the Internet of Vehicles (IoV) proposed in [117].

Figure 18. The method for federated learning, which utilizes a layer-wise asynchronous model
update and a temporally weighted aggregation approach, proposed in [118].

Some studies have focused on researching communication technology [99,100,103].
Zahra Naghsh et al. [99] proposed a novel polynomial-time heuristic algorithm multichan-
nel scheduler (MUCS) through their research on LTE V2X and 5G networks. This algorithm
was found to be 30% more effective than existing methods, although with a moderate (but
manageable) level of complexity. Haibo Zhou et al. [103] explored the potential of V2X
technology and proposed the Internet of Vehicles (IoV) to meet the increasing demand for
ITSs and autonomous vehicles. Figures 19 and 20 illustrate the IoV concept, its relationship
with big data, and cloud-based IoV (CIoV), respectively. The two main development trends
of CIoV are interoperability and trustworthiness. Minglong Zhang et al. [100] proposed a
self-adaptive strategy based on fuzzy logic to address the issue of resource allocation in 5G
cellular networks and V2X communications, which require ultra-low latency and ultra-high
reliability. Yi Liu et al. [119] discussed the integration of 6G and federated learning, as well
as the challenges, methods, and future directions associated with it. Figure 21 provides an
overview of federated learning processes in the 6G context.
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Figure 19. Illustration of IoV concept [103]. In the figure, IoV denotes the internet of vehicles, V2I
denotes the vehicle to infrastructure, V2V denotes the vehicle to vehicle, V2P denotes the vehicle to
pedestrian, V2N denotes the vehicle to network and RSU denotes the roadside unit.

Figure 20. Mutual relationship between IoV and big data [103]. In the figure, DSRC denotes the
dedicated short-range communications, C-V2X denotes the cellular vehicle to everything and GPS
denotes the global positioning system.
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Figure 21. A summary of federated learning in 6G is presented in [119]. This study outlines the
process of federated learning in the 6G era.

The works of Zuoyin Tang et al. [105], Huiyi Ding et al. [101], and Zhenhui Situ
et al. [102] all focused on non-orthogonal multiple-access (NOMA) technology in V2X. They
aimed to reduce channel load and improve the reliability and latency of communication.
Relevant research has shown that NOMA technology may have good prospects for the
communication aspect of ITSs. Jianshan Zhou et al. [106] studied the fundamental problems
of communication in ITSs. The impacts of vehicle communication and networking on the
advantages of distributed learning in a cooperative vehicle-infrastructure system (CVIS)
were examined, and the optimal reliability collaboration result was determined. An an-
alytical framework for the optimization of reliability-oriented collaborative computing
was presented, as illustrated in Figure 22, based on the cooperative vehicle-infrastructure
system (as depicted in Figure 23).

Figure 22. A structured approach for an implementation framework based on the reliability optimiza-
tion models suggested in [106].
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Figure 23. A cooperative vehicle-infrastructure system that can run a distributed mobile application
in seven distinct modes, each of which is a blend of vehicle- and infrastructure-based executions [106].

Luping Wang et al. [120] proposed communication-mitigated federated learning
(CMFL), which can identify irrelevant updates made by clients and prevent them from
uploading to reduce the occupation of the network. This algorithm can greatly reduce
communication overhead while ensuring learning convergence.

Wu et al. [121] proposed an efficient federated graph neural network (EmbC-FGNN)
based on existing distributed GNN frameworks and research on federated graph neural
networks (FedGNNs). This algorithm, as depicted in Figure 24, introduces an embedded
server (ES) to store potential edge connections and embeddings between devices, broad-
casting additional information between edge connections to expand its local training graph.
The edge device trains the GNN model based on the extended graphic data and uploads the
updates from boundary nodes required by other clients to the ES. A periodic embedding
synchronization test was proposed to enable edge clients to use outdated embeddings
for model training, thereby reducing the communication overhead. Fast asynchronous K
training is also introduced for the parameter server (PS) and the embedded server, thus ac-
celerating the convergence rate. This algorithm uses an embedded server to maintain edge
connections between devices and synchronize the embedding of related nodes shared be-
tween training clients. In order to reduce the high communication cost when synchronous
nodes are embedded, the edge device can employ outdated embeddings for model training
and update them at a lower rate. To speed up the rate of convergence in the heterogeneous
federated learning setting, the embedding server and parameter server are allowed to
update the embedded node and model parameters asynchronously. This algorithm was
found to enhance the overall accuracy in most GNN models and graph datasets. However,
when the hidden size increases or the number of NN layers increases, EmbC-FGNN may
suffer performance penalties. When the model is close to convergence, the performance
of EmbC-FGNN may be inferior to that of FedGCN. The concepts of embedded servers
and asynchronous updates can be combined with other federated learning methods in the
future, which may lead to some beneficial attempts to reduce communication costs.
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Figure 24. An overview of the EmbC-FGNN framework.

In order to facilitate the rapid implementation of distributed learning among vehicles,
effective communication plays a crucial role. Numerous studies have explored advance-
ments in communication technology, with some suggesting more efficient communication
methods. Nevertheless, within the realm of ITSs, ensuring the high quality and speed of
communication remains a significant challenge that warrants further investigation.

4.1.3. Trust

For ITS, trust is a very important issue [4]. This is because, once a network attack
occurs and affects trust, autonomous vehicles may become uncontrollable and incidents that
affect safety may occur. Zisheng Wang et al. [107], Raul Quinonez et al. [110], and Yulong
Cao et al. [109] all suggested that attacking autonomous vehicle sensors through a network
can pose a very serious threat or providing incorrect sensor data to provide untrusted
information, which will have a great impact on the ITS. This impact is particularly evident
in distributed systems, as it is difficult to allocate a large number of resources at each node
for information recognition.

Prior work has aimed to address the issues of trustworthiness and safety through re-
search on autonomous vehicle systems [92–96]. Kun Cheng et al. [92] proposed Guardauto,
a decentralized runtime protection system for autonomous driving. As illustrated in
Figure 25, the system is a partitioning model, which can separate the auto-driving system
and insulate its components through a set of partitions. In the local protection function,
the Guardauto function can alleviate the transmission delay caused by attacks or faults.
In the global collaborative protection function, the average time from collecting beacon
information to completing local recovery and sending clear beacons is 893.0 ms, while the
average time for affected units from receiving beacon information to clearing fault status is
296.1 ms. For distributed learning in an ITS, if attack vehicles are mixed in, the learning
accuracy will be affected. Referring to Guardauto’s design, partition isolation should be
implemented, and the mitigation of transmission delays caused by attacks or faults in local
protection functions should be analyzed. Analysis of the time consumption and learning
accuracy of the global collaborative protection function will also be beneficial.
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Figure 25. The Guardauto architecture [92].

Vibhu Gautam et al. [94] proposed the need to establish antivirus control software to
address uncertainties from multiple sources and ensure the safe operation of autonomous
vehicles. Pengfei Zhu et al. [95] studied the potential security vulnerabilities of the LTE-V2X
protocol and developed six attack models based on malicious nodes. Their simulation
results demonstrated that communication parameters, such as the packet delivery rate
(PDR) and end-to-end delay, can affect the platooning status (leading to instability or even
crashes), confirming the effectiveness of the attack.

Generally, in order to allow autonomous vehicles to adjust to different scenarios in
an ITS, a variety of distributed learning algorithms have been proposed. However, it
is still necessary to investigate how to ensure that the data obtained through distributed
learning are reliable or to ensure that autonomous driving models are not adversely affected
by distributed learning. Qiong Li [122] proposed a blockchain-based edge computing
privacy protection method and federated learning to address the issue of efficiency when
sharing privacy data on the Internet of Vehicles. Furthermore, this integration offers a
partial solution to the issues of data privacy and trust [123,124]. Yunlong Lu et al. [125]
attempted to solve the security and reliability problems of data sharing among vehicles
by developing a hybrid blockchain and federated learning architecture. As illustrated
in Figure 26, the architecture consists of the pre-commissioned blockchain and a locally
directed acyclic graph (DAG). Figure 27 shows the process of the federated learning
program with blockchain authorization. According to the evaluation results on the MNIST
dataset, this scheme is very close to a centralized CNN, in terms of efficiency and accuracy,
and far superior to the local CNN method. However, centralized CNNs have high privacy
and data security risks. Meanwhile, this scheme outperforms the other two schemes with
minimal time cost.

However, these schemes do not yet fully solve the trust problem of distributed learning
in ITSs. Therefore, the problem of trust with distributed learning in an ITS remains a huge
gap and a challenge that is worth further study and analysis.
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Figure 26. The structure of blockchain technology utilized to enable federated learning for the
exchange of data in the Internet of Vehicles (IoV) [125].

Figure 27. The procedure of a blockchain-enabled federated learning system, as explored in [125].

4.2. Research Directions

After the conducted survey and analysis of related challenges, we found that while
distributed learning is indeed suitable for various ITS scenarios, there are still gaps and
challenges relating to privacy and security, data, communication, and trust. As a result of
our analysis of the relevant literature, we believe that the following five aspects are highly
important research directions in this field.

• Fast convergence of models. For autonomous vehicles in an ITS, the time in which an
encounter takes place, as well as the time to complete distributed learning, is limited.
Therefore, developing rapid convergence methods for relevant models will be the key
technical path to solving this problem. Recent studies [121,126] have made efforts and
attempts in terms of gradient compression, acceleration of model convergence, and
reduction of communication costs. Lin Zhang et al. [126] conducted a comparative
study of three gradient compression methods (Sign-SGD, Top-k SGD, and Power-SGD)
in distributed learning and found that, although they can achieve high compression
ratios, they cannot provide performance improvements greater than those of S-SGD.
Consequently, they proposed an alternative compressed Power-SGD (ACP-SGD) algo-
rithm, which uses power iteration to compress each large gradient matrix into two
low-rank matrices (P and Q). Unlike Power-SGD, it does not calculate and aggregate
P and Q in one iteration but, instead, alternately compresses the gradients into P
and Q. System optimization was also carried out through wait-free backpropagation
(WFBP), tensor fusion (TF), buffer size, and other aspects. The results showed that
the algorithm can achieve model accuracy comparable to that of S-SGD and is more
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efficient than S-SGD and Power-SGD. For distributed learning that requires gradi-
ent exchange, this algorithm can be used to enhance communication efficiency and
reduce communication burden while achieving comparable model accuracy. Xueyu
Wu et al. [121] introduced an effective federated graph neural network framework
called EmbC-FGNN. As shown in the framework depicted in Figure 24, they incorpo-
rated an embedding server (ES) to manage potential inter-client node connections and
embeddings, facilitating the exchange of additional information among edge clients
to enhance the local training graph. The GNN models on edge devices are trained
using augmented graph data, and updates of boundary node embeddings required
by other clients are stored in the ES. They also suggested a periodic embedding syn-
chronization test, enabling edge clients to utilize outdated embeddings during model
training to minimize communication overhead. Additionally, they proposed a fast
K-asynchronous training approach for parameter servers and embedding servers to
speed up convergence. Future research directions could focus on achieving swift
model convergence through employing techniques such as low-rank matrix factoriza-
tion, gradient compression, and other methods to address the challenge of learning
speed in distributed learning in ITSs.

• Incentive mechanisms. The use of distributed learning in an ITS requires the partic-
ipation of autonomous vehicles. To encourage them to participate, a reinforcement-
learning-based reward system should be explored. This is a critical step in resolving
the issue. For example, a new method utilizes a blockchain to enable edge computing
with the ability to resist tampering and single-point-of-failure attacks and incorporate
gradient verification and incentive mechanisms into consensus protocols, encouraging
more local devices to contribute computing power and data to federated learning
in an honest manner [124,127]. Li et al. [128] presented a framework that focuses
on preserving privacy while building a reputation based on OppCL. Their research
incorporated a reputation metric within opportunistic federated learning, considering
elements such as time and model loss, in order to incentivize clients interested in
quality data to participate in the training. Additionally, the approach merged OT
with gradient sharing to safeguard the privacy of vehicles. Encouraging high-quality
data-seeking clients to participate in the training process would prove to be a highly
effective approach.

• Benefits of blockchain. The reliability of each node in the system depends on pri-
vacy and trust. Blockchain provides a great solution to the trust issue [129], as its
immutability ensures that the data are secure. In addition, its anonymity can help
to protect privacy and security [130,131]. According to recent research, the combina-
tion of blockchain and OppCL can streamline the process of acquiring knowledge
about autonomous vehicle models [124]. In a recent study, a new architecture called
blockchain-based asynchronous signSGD (BASS) [132] was introduced, which com-
bines a blockchain-based semi-asynchronous aggregation method with symbol-based
gradient compression to enhance communication and aggregation efficiency, as well
as to enhance security against attacks. Xu et al. [133] also suggested a novel dynamic
optimized personal deep learning approach that uses blockchain and federated learn-
ing, enabling edge devices to collectively agree on the best weights for personalized
models. These blockchain-based techniques have enhanced the efficiency of communi-
cation and convergence in federated learning. As a result, research on the combination
of opportunistic federated learning and blockchain is a key area of study.

• Methods of continual learning. In vehicle systems, when new samples are available
as new labels (e.g., new vehicle types or new traffic signs) or new features (e.g., the
same stop sign but with different features from that in the training dataset and the de-
ployment site), the underlying machine learning approach is continual learning [134].
When conducting continual learning, one may encounter catastrophic forgetting,
where old labels or old features for the same label are forgotten [135]. In certain
significant situations, continual learning can be employed to update the model by
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incorporating new data while also maintaining previously acquired knowledge [136].
This approach obviates the necessity of storing training data from past tasks, thereby
addressing issues related to data retention limitations imposed by physical devices
(e.g., machine memory) or learning methodologies (e.g., privacy concerns) while con-
serving memory resources. Simultaneously, the model can retain the insights gained
from prior tasks and effectively leverage this knowledge for future task learning,
thereby enhancing overall learning effectiveness. Therefore, continual learning is also
a very important research direction for distributed learning in ITSs.

• Simulation analysis. SUMO (which stands for Simulation of Urban Mobility) is a
widely used open-source tool for analyzing traffic. Lee et al. [137] introduced SWARM,
a tool designed to perform large-scale simulations for evaluation of the practical
performance of distributed learning algorithms. SWARM is a versatile system that
removes the need to assess intricate distributed learning choices. It can manage the
setup, provisioning, and supervision of numerous working nodes and distribute
tasks to working nodes that operate stateless servers. In SWARM, users can write
code to specify how devices interact with each other, allowing for the simulation of
various algorithms. The framework, known as Flower [138], which is specialized
for federated learning, can conduct extensive FL trials through the introduction of
novel features to accommodate various heterogeneous FL device scenarios. Flower
can conduct FL experiments with a client base of up to 15M using only a set of top-
tier GPUs. Additionally, it can effortlessly transfer experiments to actual devices, to
explore different aspects of the design landscape. A hybrid testing tool, EdgeTB [139],
provides multiple simulation nodes to create comprehensive and flexible testing
environments. Additionally, it integrates physical nodes to ensure the high precision
of the obtained results. This tool facilitates the efficient development and testing of
various distributed machine learning architectures, with a focus on both accuracy and
scalability. Researching method validation is a crucial area of study, which involves
utilizing simulation methods to achieve validation.

5. Conclusions

In this study, we first introduced the taxonomy of different categories of distributed
learning in ITSs and summarized various challenging problems according to these cate-
gories. Then, we formulated key research directions that could be determined for these
challenging issues.

To build an ITS, it is essential to implement distributed learning in each situation
involving autonomous vehicles. This will enable autonomous driving to be carried out
more intelligently in various locations through the acquired models, resulting in more
secure and efficient ITSs.

We hope that this work will be of assistance to both scholars and professionals, al-
lowing them to gain a comprehensive understanding of the use of distributed learning in
ITSs through a single conceptual framework, recognize the similarities and distinctions of
these learning techniques, understand the current challenges in this field, and potentially
identify new research directions through our framework.

Finally, we realize that there may be many additional problems that we have not
discussed regarding the application of distributed learning in ITSs. With the gradual
popularization of autonomous vehicles and the construction of ITSs, further research
challenges can be expected to emerge in the future. However, we believe that our taxonomy,
as well as our discussion of the application of distributed learning in ITSs, is universal
enough and provides a clear basis to which future research issues can be adapted.
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