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Abstract: Brain tumor detection and categorization of its subtypes are essential for early diagnosis
and improving patient outcomes. This research presents a cutting-edge approach that employs
advanced data augmentation and deep learning methodologies for brain tumor classification. For
this work, a dataset of 6982 MRI images from the IEEE Data Port was considered, in which a total of
5712 images of four classes (1321 glioma, 1339 meningioma, 1595 no tumor, and 1457 pituitary) were
used in the training set and a total of 1270 images of the same four classes were used in the testing set.
A Wasserstein Generative Adversarial Network was implemented to generate synthetic images to
address class imbalance, resulting in a balanced and consistent dataset. A comparison was conducted
between various data augmentation metholodogies demonstrating that Wasserstein Generative
Adversarial Network-augmented results perform excellently over traditional augmentation (such as
rotation, shift, zoom, etc.) and no augmentation. Additionally, a Gaussian filter and normalization
were applied during preprocessing to reduce noise, highlighting its superior accuracy and edge
preservation by comparing its performance to Median and Bilateral filters. The classifier model
combines parallel feature extraction from modified InceptionV3 and VGG19 followed by custom
attention mechanisms for effectively capturing the characteristics of each tumor type. The model was
trained for 64 epochs using model checkpoints to save the best-performing model based on validation
accuracy and learning rate adjustments. The model achieved a 99.61% accuracy rate on the testing set,
with precision, recall, AUC, and loss of 0.9960, 0.9960, 0.0153, and 0.9999, respectively. The proposed
architecture’s explainability has been enhanced by t-SNE plots, which show unique tumor clusters,
and Grad-CAM representations, which highlight crucial areas in MRI scans. This research showcases
an explainable and robust approach for correctly classifying four brain tumor types, combining
WGAN-augmented data with advanced deep learning models in feature extraction. The framework
effectively manages class imbalance and integrates a custom attention mechanism, outperforming
other models, thereby improving diagnostic accuracy and reliability in clinical settings.

Keywords: attention mechanism; brain tumor; convolutional neural network; deep neural network;
WGAN
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1. Introduction

Brain tumors pose a crucial challenge in the area of medical science due to their com-
plicated nature and deadly effects on the human brain which is a sophisticated organ [1].
These tumors arise from the uncontrolled growth of cells and rapid spreading within the
brain or its peripheral structures which become life-threatening [2]. Quick and proper
detection of this fatal disease is essential to ensure the right treatment, otherwise, the death
rate cannot be decreased [3]. The ability to detect brain tumors is progressing on a daily
basis with the advancement of technology. Magnetic Resonance Imaging (MRI) plays a
vital role in predicting the presence of brain tumors [4]. Apart from brain tumor detection,
its type classification is also possible through MRI [5]. Although MRI is a modern imaging
technique for brain tumor detection, the interpretation of MRI images still depends on
the expertise of radiologists which is time-consuming and complicated. To classify brain
tumors properly, radiologists must be very careful to avoid errors and this process requires
extensive experience [6]. However, there is still a great necessity to automate this crucial
process to ensure the highest possible accurate and consistent assessment, prediction, and
classification [7].

Recently, the automatic detection and classification of brain tumors have greatly pro-
gressed with the advent of deep-learning model implementation [8]. Among the different
types of deep learning models, convolutional neural networks (CNN) show promising
results in the field of medical image processing [9]. Deep learning models can easily extract
different types of features, and recognize complex patterns, hence detection and classifica-
tion of different types of diseases are now easily possible through training different types
of datasets [10]. In a similar way described earlier, brain tumor detection and classification
are becoming easier through the development of deep learning models [11]. The implemen-
tation of such models is reducing the possibility of human error and saving the diagnosis
time for radiologists and physicians [12]. As a result, the demand for enhanced detection
accuracy and classification of different complex diseases like brain tumors is increasing
daily [13,14]. The proposed research’s fundamental contribution and principal findings are
outlined below:

• A new deep learning framework for brain tumor detection and classification has been
proposed, in which modified VGG19 and Inception v3 architectures, custom attention
mechanism in the feature extraction along with classification layers are implemented.

• In the data preprocessing, images in the dataset have been balanced and augmented
using Wasserstein Generative Adversarial Network (WGAN) to generate synthetic im-
ages, and a Gaussian filter has also been used for the noise reduction and enhancement
of the quality of MRI images.

• After training the proposed model, the performance evaluation metrics have shown
excellent results which will be very promising with the comparison of the existing
models for brain tumor detection and classification.

• The model’s explainability through t-SNE plots shows distinct tumor clusters and
Grad-CAM highlights crucial areas in MRI scans.

This paper is organized into different sections to present the total research work sys-
tematically using the proposed model. In Section 2, a significant number of research works
related to brain tumor diagnosis are described briefly which are currently available. Then,
in Section 3, the introduction of the dataset, data preprocessing, description of proposed
frameworks, and metrics for performance evaluation are presented. In Section 4, perfor-
mance evaluations of the proposed work are shown both numerically and graphically.
Model explainability is also described using GradCAM. In Section 5, an overall perfor-
mance comparison along with the impacts after implementation are demonstrated. Finally,
concluding remarks are provided in Section 6.
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2. Related Works

Related Works: Recent developments in deep learning models for medical imaging,
particularly for brain tumor detection and classification are showing gradual improvements.
Different types of Convolutional Neural Network (CNN)-based methods, hybrid, custom
models, and lightweight models were developed for brain tumor diagnosis which are
illustrated in the following sub-sections.

2.1. Convolutional Neural Network (CNN)-Based Methods

Recent advancements in Convolutional Neural Networks (CNNs) have significantly
influenced medical image processing, including the detection and classification of brain
tumors. The application of CNNs extends beyond brain tumor research, as demonstrated
in [15], which explored CNN architectures. This work highlights the importance of CNNs
in identifying complex patterns in medical images and reinforces the potential benefits of
transferring these architectural innovations to cancer research. the difficulties of human-
oriented brain tumor classification were reduced through the model development using
Fuzzy C-Means clustering followed by conventional supervised machine learning models
and CNN [16]. However, a manual feature extraction process was involved and hence
the feasibility of this work was limited. In addition, in another study 23-layer CNN with
VGG16 was used for brain tumor detection with good results, but the limited data showed
overfitting issues [17]. CNN method was used in another work through the fine-tuning
of EfficientNet-B0 with additional layers [18]. This method enhanced the classification
performance, but image enhancement with augmentation was not up to the mark. A 2D
CNN and convolutional auto-encoder network were developed and declared as superior
models for tumor detection for configuration in [19], but the performance was underscored
concerning traditional models. Improved ResNet50 was also presented as a potential model
for brain tumor classification in another study [20] in which adequate comparative analysis
was not justified properly. In [21], CNN architecture with ensemble learning was proposed
and achieved good results with VGG16 applied in a small dataset.

2.2. Hybrid Models

Hybrid models that combine CNNs with other machine learning techniques have
shown significant potential in improving classification accuracy and robustness. A hybrid
CNN-LSTM for the same purpose was introduced by other researchers though the pro-
gression of the accuracy was not so high to implement [22]. Combined segmentation with
feature extraction using Histogram of Oriented Gradients (HOG) and ResNet-V2, followed
by classification using a BiLSTM network was proposed for classification in the work [23],
but the validation was not enough for the practical implementation. An application-based
system was deployed for automatic brain tumor detection and segmentation using deep
learning models [24]. The system was designed using CNN, U-Net, and U-Net++ for brain
tumor detection and segmentation from 2D and 3D MRI scans. The main objective of
this system was to improve the model’s performance based on user feedback through an
iterative process which could not bring a good result. In another work, CNN with ResNet50
and U-Net based on improved fine-tuning was implemented in [25], in which the results
were not promising enough. Another user-focused system was developed using the hybrid
model in which accuracy was also not good enough to implement [26]. In another study, a
hybrid model using machine learning and deep learning models was presented, but the
performance was still satisfactory [27].

2.3. Lightweight Models

The demand for models suitable for real-time applications has led to the development
of lightweight CNN architectures. To mitigate the complexity of the model, a simple
model based on lightweight CNN was introduced [28]. However, the accuracy was not
satisfactory compared with other models despite being a simple model. Lightweight CNN
was also taken into consideration in another study in which a combination of Internet of
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Medical Things (IoMT) and CNN models was used [29]. However, the limited training data
showed the potential possibilities of biasing the performance. Besides these works, a clean-
energy cloud-based light-weight deep-learning platform was proposed for brain tumor
classification [30]. However, its performance and operational efficiency were questionable
regarding implementation in clinical settings.

In summary, it is seen that numerous models were proposed and used in several
datasets. However, there is still a necessity to build a model that will outperform those
models in all respects and hence this proposed model can be a suitable choice for clinical
implementation. A summary comparing key studies, their methods, and their performance
metrics is given in Table 1.

Table 1. Comparison of key studies on brain tumor detection and classification.

Reference Methods Performance Metrics

Hossain et al. [16] Fuzzy C-Means clustering, traditional classifiers
(SVM, KNN, MLP, etc.), CNN CNN accuracy: 97.87%

Khan et al. [17] 23-layer CNN, transfer learning with VGG16 Accuracy: 97.8% (binary), 100% (multiclass)

Shah et al. [18] Fine-tuned EfficientNet-B0, data augmentation,
image enhancement Accuracy: 98.87%

Saeedi et al. [19] 2D CNN, convolutional auto-encoder, traditional
ML methods (MLP, KNN, etc.)

2D CNN Accuracy: 96.47%, Auto-encoder
Accuracy: 95.63%, AUC: 0.99, Recall: 95%

Aggarwal et al. [20] Improved ResNet for segmentation >10% improvement in accuracy, recall, F1-score

Khaliki et al. [21] CNN, Inception-V3, EfficientNetB4, VGG19,
transfer learning

Best accuracy: 98% (VGG16), F-score: 97%, AUC:
99%, Recall: 98%, Precision: 98%

Alsubai et al. [22] Hybrid CNN-LSTM, data preprocessing, CNN
feature extraction

Accuracy: 99.1%, Precision: 98.8%, Recall: 98.9%,
F1-score: 99.0%

Mahum et al. [23] Mayfly optimization, ResNet-V2, BiLSTM High accuracy, precision, recall, F1 score, AUC

Sailunaz et al. [24] CNN, U-Net, U-Net++ for 2D and 3D MRI
segmentation Accuracy and Dice scores above 90%

Asiri et al. [25] Fine-tuned CNN with ResNet50, U-Net for
segmentation IoU: 0.91, DSC: 0.95, SI: 0.95

Saad et al. [26] Hybrid algorithm for brain tumor detection, CAD Detection accuracy: 96.6%

Anantharajan et al. [27] Ensemble Deep Neural SVM, Fuzzy C-means,
GLCM

Accuracy: 97.93%, Sensitivity: 92%,
Specificity: 98%

Mahmud et al. [28] CNN architecture compared with ResNet-50,
VGG16, Inception V3

Accuracy: 93.3%, AUC: 98.43%, Recall: 91.19%,
Loss: 0.25

Hammad et al. [29] CNN-based model for IoMT applications,
lightweight design Accuracy: 99.48% (binary), 96.86% (multi-class)

Ghauri et al. [30] Clean-energy cloud-based DL platform,
multi-layer CNN Precision: 96.8%

3. Materials and Methods

The methodology of this research is carried out in multiple steps. At first, the brain
tumor MRI dataset was collected from the IEEE Data port [31], which included separate
training and testing sets, and all images were preprocessed (filtering and normalization)
as well after loading the dataset. During the augmentation process, the WGAN is used to
make balanced classes, and the custom architecture is then employed for classifying the
dataset into four types of brain tumors. Finally, performance is analyzed through different
metrics. Visualization techniques like confusion metrics, t-SNE, and Grad-CAM were used
to illustrate the effectiveness of the model. Figure 1 depicts a summary diagram of the
brain tumor classification process.

3.1. Dataset

The dataset used in this research was sourced from IEEE Dataport [31], a publicly
accessible repository. It consists of MRI images categorized into four classes: glioma, menin-
gioma, no tumor, and pituitary. The training set contains 1321 glioma, 1339 meningioma,
1595 no tumor, and 1457 pituitary images, while 300 glioma, 306 meningioma, 405 no tumor
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and 300 pituitary images in the testing set. The images were acquired and processed accord-
ing to the standards outlined in the dataset documentation. Table 2 shows the distribution
of the image dataset. This results in a total of 6982 MRI images and images are then loaded
and preprocessed (as shown in Figure 2). Furthermore, the whole dataset was tested by
5-fold cross-validation, which means the data were divided into five subgroups. For each
fold, the model was trained on four of these subsets and evaluated on the remaining one.
The same procedure was carried out five times, once with each subgroup as the test set. By
applying this rigorous method, the model demonstrated robust learning and validation by
adhering to the established machine practices.

Figure 1. Detailed Workflow Diagram of the Brain Tumor MRI Classification Process.

Table 2. Distribution of data within each class into training and test sets.

Type of Brain Tumor Training Set Testing Set

Glioma 1321 300
Meningioma 1339 306

No tumor 1595 405
Pituitary 1457 300

Total 5712 1270

Figure 2. The sample collection includes axial, coronal, and sagittal images of four brain tumor types:
(a) gliomas, (b) meningiomas, (c) no tumor, and (d) pituitary tumors.

3.2. Data Loading and Preparation

The image dataset from testing and training directories for each class was loaded
and resized to 224 × 224 pixels using a custom function. The images were then converted
into arrays with NumPy, a Python library for further data preprocessing. The framework
then tested individually by Gaussian, Median and Bilateral filtering methods for noise
removal to evaluate their impact on brain tumor classification. Figure 3 shows that Gaussian
filtering effectively reduces noise while preserving tumor boundaries and region, essential
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for accurate classification. On the other hand, Median filtering blurs the edges while
removing “salt-and-pepper” noise, and Bilateral filtering is better at maintaining edge
properties, but still leads to some form of blur and darker image. Comparing these filters
results, Gaussian filter using Gaussian blur function is applied to each image to reduce noise
and smooth out images, reducing small, irrelevant intensity variations while highlighting
tumor boundaries.

Figure 3. Effects of Different Filtering Methods on Sample Brain Tumor Image.

Mathematical expression of Gaussian filter is as follows:

G(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (1)

where σ is the standard deviation of the Gaussian distribution.
After filtering, the following normalization is performed:

1. Standard Normalization:

Normalized pixel =
pixel − µ

σ
(2)

where µ is the mean and σ is the standard deviation of the pixel values. This helps
in faster convergence during training by ensuring the data distribution is centered and
scaled properly.

2. Min-Max Normalization:

Normalized pixel =
pixel − min
max − min

(3)

where min and max are the minimum and maximum pixel values in the image, scales the
pixel values to the range [0, 1], which helps in reducing the impact of outliers and ensures
the data falls within a specific range, making it easier for the model to learn.

3. GAN Normalization:

Normalized pixel =
(

pixel
127.5

)
− 1 (4)

modifies the values of pixels to the range [−1, 1]. This is particularly beneficial for Gen-
erative Adversarial Networks (GANs), because they perform better when the data is
normalized to this range, resulting in more reliable and efficient training.

Finally, the class labels are converted into one-hot encoded vectors where each label is
represented as a binary vector with a 1 in the position corresponding to the class and 0 s else-
where returning the processed images and labels as NumPy arrays for model training and
evaluation. Normalization steps played a key role in the increased model performance by
making sure that our input data was same scaled. The Standard Normalization converged
the results for training faster, Min-Max Normalization helped in reducing the outlier effect
and GAN normalization was able to stabilize a GAN Training. The generalization capability,
stability and also accuracy improved together through these normalization techniques.
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3.3. WGAN for Data Augmentation

Data augmentation technique is very popular for enhancing the diversity of datasets.
In this research, A Wasserstein Generative Adversarial Network (WGAN) is being em-
ployed in to brain tumor image dataset to enrich the training dataset and address class
imbalance. The WGAN consists of a generator and a discriminator (critic) that work
together to generate realistic synthetic images. Using the layers of transposed convolu-
tions and LeakyReLU activation functions, the generator creates new training images
from random noise, while these images are evaluated by the critic against real ones using
convolutional layers with weight clipping to ensure stability. Wasserstein Loss function
(loss = mean(ytrue × ypred)) is implemented to produce smoother gradients and improve
GAN training. The discriminator is updated multiple times per generator iteration during
training to improve its evaluation using both actual and generated images. In this way, the
generator gains the ability to produce images that are identical to real ones. By applying the
trained WGAN, the number of additional images needed to balance each class and generate
these is determined. The new synthetic images were combined with the original training set
and labeled using one-hot encoding. This augmented and balanced training dataset, which
contained both real and fake images, was used to train a proposed classification model
to improve its performance. The following bar chart (Figure 4) illustrates the distribution
of samples per class before and after WGAN augmentation, clearly demonstrating how
WGAN effectively balanced the dataset and contributed to a more robust model. The addi-
tion of these generated images in the training dataset helped minimize the class imbalance,
resulting in enhanced model effectiveness. WGAN effectively generates synthetic MRI
scan-like images, preserving structural features for accurate classification, despite varying
augmentation strategies, demonstrating significant differences in model performance, as
shown in Figure 5. This WGAN-generated images represent a sample visualization of
the WGAN’s output which captures essential features for accurate classification like real
trained images. The model is also tested on Traditional augmentation (such as rescaling
(1/255), width and height shifts (up to 20%), rotation (up to 20 degrees), zooming (up to
20%), and horizontal flipping) with as well as no augmentation but WGAN achieves better
performance. This innovative approach of choosing WGAN-augmentation for brain tumor
classification helps create a robust system capable of accurately diagnosing all classes.

Figure 4. Distribution of samples per class before and after WGAN augmentation.
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Figure 5. Sample WGAN genarated images.

3.4. Proposed Classifier Model

This research introduces a classifier model tailored for brain tumor classification, spe-
cially designed to distinguish between glioma, meningioma, no tumor, and pituitary classes.
In the proposed model, the input (224 × 224) simultaneously enters into two well-known
deep learning architectures, such as VGG19 and InceptionV3. VGG19 captures small details
through the use of compact convolutional filters, while InceptionV3 utilizes inception
modules at different scales for detecting multi-scale features, making them good choices
especially since brain tumors can be classified through multiple types. The model harnesses
the blended strength of the InceptionV3 and VGG19 architectures because of their powerful
feature extraction capabilities. The models are not used fully; instead, they are taken
up to their intermediate layers, such as ’mixed5’ from InceptionV3 and ’block3_conv4’
from VGG19. To further optimize the feature extraction process, VGG19 is truncated at
’block3_conv4’, allowing us to focus on essential features. After that, those layers were
further refined parallelly with additional convolutional layers and max pooling opera-
tions to capture detailed features of the images. For example, the convolutional layer
applies a 3 × 3 kernel to extract spatial hierarchy, followed by ReLU activation function
f (x) = max(0, x) to introduce non-linearity, then max pooling down samples the feature
maps while maintaining the most critical information.

Both outputs were applied into a custom attention mechanism block to enhance
the model’s focus on the most prominent regions with the MRI images of the Human
Brain. This block included convolution layers that project the input lower-dimensional
spaces ( f = W f · X, g = Wg · X, h = Wh · X), where W f , Wg, Wh, etc. are learnable weights.
The attention mechanism computes a similarity matrix s = softmax( f · gT) and then
aggregates the information back, weighted by the attention scores (o = softmax(s) · h).
This process assures that the model focuses on the most informative areas, which improves
feature discrimination.

The results from parallel modified blocks (intermediate layers from InceptionV3
and VGG19, along with additional layers and custom attention blocks), become more
detailed, and focused feature extractors are concatenated, forming a comprehensive feature
representation. After being concatenated, the output passed through dense layers with
ReLU activations, followed by batch normalization layers, which stabilize and accelerate
the training process. The dense layers, represented as f (x) = W · x + b, where W and b
are weights and biases, respectively, by capturing intricate patterns. Dropout layers are
used to prevent overfitting, alongside early stopping based on validation loss, monitoring
of learning curves for signs of overfitting, and the application of data augmentation to
enhance model generalization. The final ‘softmax’ activation function provides a probability
distribution over four classes. Figure 6 depicts the proposed architecture in detail. This
architecture leverages the deep feature extraction of two known models, combined with a
custom attention mechanism, ensuring superior performance in brain tumor classification.
The improved feature extraction, attention mechanism, and strong dense layers outweigh
conventional models, resulting in a state-of-the-art solution in medical imaging.

3.5. Training and Evaluation

The training process was performed using Nadam optimizer as an optimization
method, set to a learning rate of 0.002, and was conducted throughout 64 epochs with a
batch size of 16. As illustrated in Table 3, the performance of the classifier is evaluated
using several metrics, including accuracy, loss, precision, recall, and Area Under the Curve
(AUC) [32,33]. During the training phase, the model is trained on the augmented dataset,
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which contains both original and generated images. Model checkpoints are used to store the
highest-performing model depending on validation accuracy. In addition, if the validation
accuracy does not increase for 10 consecutive epochs, the learning rate is reduced by
0.5 times.

Figure 6. Block Diagram of the Proposed Model for Brain Tumor Classification.

Table 3. Evaluation Metrics and Equations.

Metric Equation Notes

Accuracy Accuracy =
TP + TN

TP + TN + FP + FN TP: True Positives

Precision Precision =
TP

TP + FP TN: True Negatives

Recall (Sensitivity) Recall =
TP

TP + FN FP: False Positives

F1 Score F1 Score = 2 · Precision · Recall
Precision + Recall

FN: False Negatives

4. Results
4.1. Experimental Setup

The proposed classifier model was trained and executed using a desktop computer
equipped with an NVIDIA Geforce RTX 3060 GPU, featuring 12.0 GB of RAM, and powered
by an Intel(R) Core (TM) i7-8265U processor operating at 1.60 GHz, with a boost-up
to 1.80 GHz. These computational resources were adequate for training the model and
evaluating its performance, ensuring both efficient operation and results.

4.2. Data Filtering Impact

After loading the training and testing datasets, for dataset preprocessing the frame-
work is trained individually with three filterings such as Gaussian, Median and Bilateral as
well as no filtering. As a result, Gaussian filter achieved the highest classification accuracy
at 99.61%, compared to 96.67% with Median, 97.53% with Bilateral, and 94.32% with no
filtering. Gaussian filtering obtained excellent results and visualization for noise reduc-
tion and edge preservation, which is why it was selected as the preferred method in this
framework to enhance classification accuracy.
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4.3. Data Augmentation Results

To resolve the problem of class imbalance, a WGAN was used to generate synthetic
images. A total of 688 synthetic images were created, which balanced the class distribution
and provided a more robust training set, resulting in 1600 images per class (total training set:
6400 images). The proposed architecture was trained on different augmentation strategies,
including WGAN augmentation, traditional augmentation, and no augmentation separately
in order to choose suitable augmentation technique for brain tumor classification. Based
on the performance metrics, these three augmentation techniques have been compared in
Table 4. At first, without applying any augmentation technique achieved accuracy 93.12%,
whereas traditional augmentation techniques improved model accuracy, while the WGAN
approach led to even greater improvements. The model with WGAN-augmented data
achieved 99.60% accuracy and a 0.9999 AUC, outperforming traditional augmentation,
highlighting WGAN’s superior enhancement of model robustness and generalization.

Table 4. Model Performance with Different Data Augmentation Techniques.

Augmentation Method Loss Accuracy Precision Recall AUC

No Augmentation 0.1889 93.12% 0.9348 0.9304 0.9923
Traditional Augmentation 0.1666 95.50% 0.9561 0.9525 0.9936

WGAN Augmentation 0.0153 99.60% 0.9960 0.9960 0.9999

4.4. Classifier Performance

The proposed architecture was evaluated on the testing set representing a total of
1270 images of all types of brain tumor classifications. It achieved the following perfor-
mance metrics:

• Loss: 0.0153
• Accuracy: 0.9961
• Precision: 0.9960
• Recall: 0.9960
• AUC: 0.9999

Figure 7 depicts the evolution of overall performance measures across 64 training
epochs, providing insights into testing accuracy (99.6%), AUC (99.99%), loss (1.53%),
precision (99.6%), and recall (99.6%). These findings show that the proposed approach is
very accurate and robust, with all metrics exceeding 99.5%. To ensure the robustness and
generalizability of the proposed framework, 5-fold cross-validation has been performed
on the training dataset. In this process, the dataset is split into five subsets, with the
model trained on four subsets and validated on the remaining one, iterating through all
subsets. The results for each fold are presented in Table 5. The classification performance
obtained from the separate training and testing sets (99.6% accuracy) have been found to
be consistent with those from the 5-fold cross-validation showing robustness of the model
based on different data splits. This comprehensive evaluation offers a reliable estimate of
the model’s performance on unseen data, preventing over fit.

Table 5. Model Performance Across 5-Fold Cross-Validation.

Fold Accuracy Loss Precision Recall AUC

Fold 1 0.9920 0.0375 0.9910 0.9905 0.9990
Fold 2 0.9875 0.0405 0.9860 0.9880 0.9980
Fold 3 0.9905 0.0380 0.9880 0.9920 0.9996
Fold 4 0.9915 0.0380 0.9900 0.9890 0.9998
Fold 5 0.9890 0.0395 0.9885 0.9875 0.9995

Average 0.9902 0.0389 0.9889 0.9894 0.9996
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(a) Accuracy

(b) Loss

Figure 7. Cont.
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(c) Precision

(d) Recall

Figure 7. Cont.
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(e) AUC

Figure 7. Performance metrics of the proposed architecture over 64 epochs, including (a) accuracy,
(b) loss, (c) precision, (d) recall, and (e) AUC.

4.5. Confusion Matrix and Visualization

Figure 8 depicts the overall confusion metric, which measures the model’s ability
to differentiate between different types of brain tumors. The model has an overall accu-
racy of 99.61 percent. It properly categorized 299 glioma patients, 302 meningioma cases,
405 non-tumor cases, and 259 pituitary cases. However, there were occasional misclassifi-
cations, such as one case where glioma was mistakenly identified as meningioma.

Additionally, the t-SNE projection of the softmax layer outputs, shown in Figure 9,
highlights how well the model distinguishes between different types of brain tumors.
Each dot in the plot represents an MRI image, with colors indicating the class: glioma,
meningioma, no tumor, and pituitary tumors. The clear separation into distinct clusters
shows that the model has effectively learned the unique features of each tumor type,
resulting in well-defined groups. This visualization underscores the robustness of the
model’s classification capabilities.

Figure 10 depicts an essential feature of the study: employing Grad-CAM to improve
model transparency and explainability. These visualizations highlighted the regions the
model focused on for predictions, adding clarity to its decision-making process. The results
indicated a robust and precise model for classifying brain tumor types, also providing
valuable insights into its analytical approach.
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Figure 8. Confusion matrix showing the classification accuracy across different brain tumor types.

Figure 9. t-SNE projection illustrating the separation of different brain tumor classes.
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Figure 10. Grad-CAM visualization highlighting important regions in the MRI images for model predictions.
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5. Discussion

To implement a deep learning model, it has to satisfy requirements concerning all
important aspects like balanced class, no biasing, highest accuracy, and statistical validity.
Table 6 shows a comparison among the existing models which were experimented with
the proposed model. The existing models shown in Table 6 were experimented with in
the same dataset used for this research. For data preprocessing, these models were used
by several methods like traditional augmentation (rotation, zoom, shift, flip, etc.), fuzzy
inference systems, and different types of filters, etc. These works were analyzed using
different types of deep learning architectures. The accuracy of these models ranged from
75% to 98.5%. WGCAMNet model exhibited excellent performance in all respects which
can contribute a significant contribution to brain tumor detection and classification. Though
the existing models showed good accuracy, there were some significant limitations that
must be resolved. The proposed model improves not only the accuracy but also major
limitations have also been improved. Moreover, the statistical evaluation of the proposed
model shows great superiority over the existing models which ensure critical cases and
maintain model robustness.

The uniqueness of the proposed model lies in several key aspects. Integration of
WGAN enhanced the data augmentation significantly and hence class imbalance and bi-
asing problems were removed, which are usually seen in the existing models. Through
WGAN implementation, the proposed model produced synthetic images that enhance
the training dataset and thereby create a more balanced and comprehensive dataset. This
improves the model’s learning capability along with the enhancement of generalizability
to unknown data. Furthermore, the integration of a custom attention mechanism in the
WGCAMNet framework drives the model to focus more on the most relevant features of
images, especially the tumor regions which are essential for proper classification. This
contrasts with the traditional feature extraction methods used in other models. The perfor-
mance metrics of the proposed model show great advancement, especially AUC of 99.99%,
ensuring the greatest effectiveness in distinguishing among the different types of brain
tumors with high precision. This is crucial for clinical applications since misclassification
can negatively impact appropriate and timely treatment of the patient. The proposed
framework is robust and generalizable across various data splits as well, ensuring reli-
able performance in diverse scenarios, as demonstrated by consistent results across 5-fold
cross-validation and dedicated datasets. In addition, the use of explainability models,
like Grad-CAM, and correct detection and classification increase model performance. So,
comparing all the factors, the proposed model can be a significant advancement for brain
tumor detection and classification if it is implemented in real applications.

Table 6. Comparison between the proposed model and state-of-the-art models.

Reference Dataset Preprocessing Method Model Architecture Performance Metrics

Chaki et al. [34] [31] Fuzzy Inference System
Deep Brain INCEP Res
Architecture 2.0 Based

Reinforcement Learning Network
Accuracy: 97.5%

Arumugam et al. [35] [31] Cropping and denoising by
Gaussian filter CNN with Multi Layer Perception Accuracy: 98.5%, Sensitivity:

98.6%, Specificity: 98.4%
Amarnath et al. [36] [31] Traditional Augmentation ResNet50 Accuracy: 87.9%, F1 Score: 79.6%
Amarnath et al. [36] [31] Traditional Augmentation Xception Accuracy: 98.1%, F1 Score: 98.1%
Amarnath et al. [36] [31] Traditional Augmentation EfficientNetV2-S Accuracy: 96.1%, F1 Score: 96.2%
Amarnath et al. [36] [31] Traditional Augmentation ResNet152V2 Accuracy: 78.5%, F1 Score: 79.9%
Amarnath et al. [36] [31] Traditional Augmentation VGG16 Accuracy: 76.8%, F1 Score: 77.5%

Vu et al. [37] [31]
Smoothing with a Kernel, Bilateral

Filtering, Gray scale conversion
and Traditional Augmentation

Modified ResNet50 Accuracy: 75%

Proposed Model [31] WGAN and Gaussian Filter WGCAMNet
Accuracy: 99.61%, Precision:
99.60%, Recall: 99.60%, AUC:

99.99%, Loss: 0.0153
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6. Conclusions

There is no doubt that brain tumors have become one of the deadliest diseases globally,
making early and accurate detection along with precise classification crucial for providing
the right treatment and improving patient outcomes. Rapid advancements in artificial
intelligence, particularly deep learning, have become vital in addressing these challenges in
medical science. The proposed architecture, which combines WGAN for data augmentation,
custom attention mechanisms, and modified VGG19 and InceptionV3 models, overcomes
the limitations of existing models and also sets a new benchmark for accuracy and reliability
in brain tumor diagnosis. This model holds great potential for contributing to more accurate
and timely diagnoses in clinical practice, significantly enhancing patient outcomes. Looking
ahead, the proposed model could form the foundation of a comprehensive system for real-
world clinical implementation, accelerating research on drug and treatment protocols and
potentially reducing the global mortality rate from brain tumors.
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