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Abstract: High-resolution imagery captured by drones can detect critical components on high-voltage
transmission towers, providing inspection personnel with essential maintenance insights and im-
proving the efficiency of power line inspections. The high-resolution imagery is particularly effective
in enhancing the detection of fine details such as screws. The QYOLO algorithm, an enhancement
of YOLOv8, incorporates context queries into the feature pyramid, effectively capturing long-range
dependencies and improving the network’s ability to detect objects. To address the increased net-
work depth and computational load introduced by query extraction, Ghost Separable Convolution
(GSConv) is employed, reducing the computational expense by half and further improving the
detection performance for small objects such as screws. The experimental validation using the Trans-
mission Line Accessories Dataset (TLAD) developed for this project demonstrates that the proposed
improvements increase the average precision (AP) for small objects by 5.5% and the F1-score by
3.5%. The method also enhances detection performance for overall targets, confirming its efficacy in
practical applications.

Keywords: YOLOv8; power transmission line component inspection; multi-scale object detection;
GSConv; query-based detector

1. Introduction

The ongoing enhancement in camera resolutions mounted on Unmanned Aerial
Vehicles (UAVs) [1] captures increasingly detailed information, which is advantageous for
detecting densely packed small targets such as screws, thereby aligning with the neural
network’s requirement for the precise feature extraction of small-scale objects. However,
this progression leads to larger model sizes, substantially increased model depth, and
computational demands [2]. Consequently, there is a pressing need to improve the existing
models’ detection accuracy across multiple scales of objects while balancing inference speed
and detection precision.

In the context of our custom-built power line inspection dataset, observations from
the images captured by UAVs highlight several characteristics: 1. Variability in target
morphology is pronounced due to variations in distance and angle between the camera and
the high-voltage towers during acquisition. Larger recognition targets such as insulators
and vibration dampers are susceptible to obstruction by power lines and the angular steel
structures of the towers. 2. When using UAVs for photography with automatic exposure
enabled, collection time and weather can have an impact on image quality. Vibrations or
sudden changes in the light incident angle can cause the resulting images to be overly
bright. Such overexposure increases the challenge of detecting densely packed objects
because it amplifies the noise during feature learning in deep learning networks. 3. The
dataset comprises high-resolution images in which smaller annotated objects occupy as
little as 1600 pixels, representing merely 0.03% of the image area.
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Recent years have witnessed relentless innovation in deep learning strategies. Pivotal
research [3] strengthens systems’ adaptability to environmental changes via an advanced
fog injection algorithm for dataset enrichment. Nevertheless, ongoing refinements in
datasets are crucial to overcome challenges such as motion blur and variable lighting
in diverse operational settings. To enhance the detection of small-scale objects, CNN-
based detectors have incorporated Transformer-driven feature fusion [2,4] and pioneering
techniques like separable convolutions [5,6], augmenting sensitivity to fine details.

Query-based methods [7] have emerged as powerful techniques to enhance target
localization. QueryDet [8] employs a query mechanism to accelerate inference in feature
pyramid-based detectors while enabling rough target localization on low-resolution maps
before high-resolution refinement for precise outcomes. However, this method requires
deeper networks and increased computation, which compromises real-time responsiveness.
Similarly, CANet (Context Aggregation Network) [9] utilizes a self-attentive mechanism
that incorporates spatial context aggregation. It achieves this by treating features at each
pixel location as a query, calculating similarities with other pixel locations, and performing
weighted feature aggregation. In object detection, the concept of queries has been expanded
by Transformer-based methods like DETR (DEtection TRansformer) [10] to guide the
detection process. These queries act as predefined anchors for potential object locations or
classes and learn during training to improve localization and classification accuracy.

Despite these advancements, there are still challenges in applying these methods to
complex environments, such as high-voltage tower inspections, where substantial depth
variations and intricate backgrounds pose significant obstacles. In such scenarios, it is
crucial to suppress background noise using strategies such as channel and spatial attention
mechanisms that dynamically emphasize important features. However, their effectiveness
in environments with densely packed and frequently obstructed targets remains a chal-
lenge. The requirement to handle such complex conditions underscores the importance of
incorporating cross-semantic context, which is crucial for ensuring the focused detection of
a multitude of object types during power line inspections.

This research adopts a practical, scenario-focused power line dataset to enhance the
precision in detecting objects of various sizes during power line inspections. The research
applies data augmentation strategies involving exposure variations, rotations, and motion
blur methodologies [11]. Introducing QYOLOv8, this study targets explicitly to improve the
recognition of screws, vibration dampers, and insulators in the power grid infrastructure.
The QYOLOv8 network builds upon the foundational YOLOv8 [12,13] architecture and
integrates advanced CNN techniques [14] to enhance feature extraction and detection
precision. Our work mainly introduces the following contributions:

1. This innovative algorithm integrates GSConv [15] and GSCSP [16], mechanisms
that diminish computational demands via grouped computing, optimizing resource
utilization.

2. In the feature fusion neck network, features from different layers are extracted and
fused by using the rows and columns within each layer as queries. This approach
enhances feature flow and interaction within the network.

3. Recognizing that many inspection targets are situated on towering structures, the
algorithm optimizes attention mechanisms for efficient long-range feature modeling.
Strengthened by enhanced inter-class cross-attention, it fosters stronger correlations
among diverse object categories, heightening the overall recognition capability.

The resultant model, QYOLOv8, achieves a harmonious balance of elevated robustness
and accuracy, all while maintaining high-performance standards and computational effi-
ciency. It stands as a testament to the refined approach towards augmenting the automation
capabilities in power line inspection systems.

2. Background Materials

Current object detectors are primarily categorized into single-stage [11,17], two-
stage [18], and Transformer-based multi-head attention mechanism neural networks [4,19].
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Two-stage detectors like the R-CNN series [20] generate candidate regions first, followed
by classification and localization, which, although precise, come with high computational
costs. Ren et al. introduced Faster R-CNN [21], which improves upon its predecessor, Fast
R-CNN [22], by integrating a Region Proposal Network (RPN) for efficient object localiza-
tion and enabling nearly cost-free region proposals. Transformer-based models, such as
DETR [10] and Sparse R-CNN [3], leverage self-attention mechanisms to process the global
and local contexts of images, achieving end-to-end detection but also having significant
computational demands. RT-DETR [23] enhances the inference speed of the original DETR
model by introducing efficient feature extraction and a lightweight design but may struggle
with generalization and accuracy in complex real-world scenarios. Single-stage detectors
directly predict the location and category of objects without the need for candidate regions,
offering faster speeds, as seen in YOLO [13,24] and SSD [25]. SSD enhances detection
accuracy with multi-scale anchors, but at the cost of higher computational expenses. Recent
advancements like YOLOv5 [26] and YOLOv8 [27] have boosted detection speed and
accuracy, but still struggle with small object detection. The power inspection workload is
substantial, with the need for timely hazard identification, high-quality image collection,
and large volumes of data, all of which pose considerable challenges for detectors.

2.1. Object Detector

Power inspection applications involve substantial workloads and intricate objectives,
with a critical emphasis on detecting small-scale targets. YOLOv8 [12], an evolution in the
YOLO lineage, excels in object detection due to its heightened performance and adaptability.
Its architecture, as shown in Figure 1, refines the C2f (cross-stage partial bottleneck with two
convolutions) [27] feature extractor for enhanced gradient flow, reducing parameters with-
out compromising efficacy. The model’s neck takes PANet [13] instructor and introduces
configurable setups, skipping a convolution step for direct upsampling and adaptable layer
interconnections, tailored to specific requirements. YOLOv8 flexibly connects either P3~P6
for higher resolution processing or P2~P5 for lower, expanding its operational scope [27].
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Figure 1. The network structure of YOLOv8 includes the detailed structure of C2f and BottleNeck. 
Here, n is the number of BottleNecks contained in C2f. 

2.2. Query-Based Detector 
Query is commonly used in Transformer models as part of the attention mechanism 

to calculate the attention weights. The attention mechanism in Transformer enables the 
model to concentrate on various aspects of the sequential data during processing, which 
is useful in natural language processing and other sequential modeling tasks [5,28]. Trans-
former introduces a multi-head attention mechanism in which the model consists of mul-
tiple independent self-attention heads. Each head has a distinct query which undergoes a 
linear transformation with keys and values, and then computes different outputs. Finally, 
these outputs are combined or merged through linear transformations to obtain the final 
output. In the whole attention mechanism, the role of query is to determine the level of 
attention of the current position concerning other positions. Different queries lead to dis-
tinct attention distributions, enabling the model to capture the relationships between dif-
ferent positions during the processing of the input sequence. This capability enables the 
Transformer to capture long-range dependencies, making it one of the key mechanisms 
behind its successful processing of sequential data. 

Adamixer [29] introduces a new “Adaptive Mixing” strategy that dynamically ad-
justs interactions between features and queries, reducing the number of iterations re-
quired for model training. This strategy allows for rapid feature-level fusion and adaptive 
adjustment, enhancing the model’s convergence speed and improving detection accuracy 
and efficiency. SQR [7] offers a method to expedite convergence and significantly reduce 
computation by selectively forwarding queries to each stage. This approach mitigates the 
accumulation of inference errors across stages, addressing the issue where category infer-
ence errors in one stage propagate and amplify in subsequent stages. Cross-stage interac-
tion [30] introduces a cross-stage interaction mechanism that allows information exchange 
and reinforcement between features and queries across different stages, enhancing the 
model’s feature learning capabilities. Pairwise Query-Based [31] Detection aimed at hu-
man-object interaction detection tasks combines query-based detection with global con-
textual information, proposing a query-based pairwise detection mechanism that effec-
tively captures interactions between humans and objects. TSCODE [32] introduces a 

Figure 1. The network structure of YOLOv8 includes the detailed structure of C2f and BottleNeck.
Here, n is the number of BottleNecks contained in C2f.



Information 2024, 15, 563 4 of 14

By separating the detection head tasks—classification and localization—it mitigates
feature competition and accelerates convergence, thus boosting the overall performance. In
bounding box refinement, YOLOv8 integrates CIoU (Complete Intersection over Union) [27]
to enhance precision and training stability, particularly beneficial in tackling intricate,
imbalanced datasets. Coupled with Focal Loss, this mechanism effectively addresses class
imbalance and the detection of small objects, streamlining the anchor-free prediction of
object locations and dimensions. Moreover, the classification branch employs the Task-
aligned Assigner for assigning positive samples, which aligns targets with proposal boxes
using specialized IoU calculations. This advanced matching technique yields finer object
localization and excels in challenging power inspection environments, outperforming the
conventional IoU-based approaches in accurately defining overlapping areas.

When using YOLOv8 for detecting densely packed small objects, the model’s per-
formance is still hindered by complex backgrounds, leading to challenges in accurately
identifying small-sized targets and targets that are densely occluded. Further improve-
ments are necessary to enhance detection capabilities under these conditions.

2.2. Query-Based Detector

Query is commonly used in Transformer models as part of the attention mechanism to
calculate the attention weights. The attention mechanism in Transformer enables the model
to concentrate on various aspects of the sequential data during processing, which is useful
in natural language processing and other sequential modeling tasks [5,28]. Transformer
introduces a multi-head attention mechanism in which the model consists of multiple
independent self-attention heads. Each head has a distinct query which undergoes a linear
transformation with keys and values, and then computes different outputs. Finally, these
outputs are combined or merged through linear transformations to obtain the final output.
In the whole attention mechanism, the role of query is to determine the level of attention of
the current position concerning other positions. Different queries lead to distinct attention
distributions, enabling the model to capture the relationships between different positions
during the processing of the input sequence. This capability enables the Transformer
to capture long-range dependencies, making it one of the key mechanisms behind its
successful processing of sequential data.

Adamixer [29] introduces a new “Adaptive Mixing” strategy that dynamically adjusts
interactions between features and queries, reducing the number of iterations required for
model training. This strategy allows for rapid feature-level fusion and adaptive adjustment,
enhancing the model’s convergence speed and improving detection accuracy and efficiency.
SQR [7] offers a method to expedite convergence and significantly reduce computation by
selectively forwarding queries to each stage. This approach mitigates the accumulation of
inference errors across stages, addressing the issue where category inference errors in one
stage propagate and amplify in subsequent stages. Cross-stage interaction [30] introduces
a cross-stage interaction mechanism that allows information exchange and reinforcement
between features and queries across different stages, enhancing the model’s feature learning
capabilities. Pairwise Query-Based [31] Detection aimed at human-object interaction detec-
tion tasks combines query-based detection with global contextual information, proposing a
query-based pairwise detection mechanism that effectively captures interactions between
humans and objects. TSCODE [32] introduces a simplified U-Net architecture to merge
adjacent upper and lower feature layers, allowing for a decoupled inference that separates
classification and localization tasks. BifNet similarly leverages the fusion of feature layers
from the backbone, thereby enhancing the robustness and accuracy of object detection.

The extraction and selection of queries play a critical role in object detection, particu-
larly in datasets with complex environments like TLAD. By focusing on the queries derived
from self-attention and cross-attention, we integrate the strengths of both. Self-attention
excels at modeling intra-feature relationships, and cross-attention effectively captures inter-
feature dependencies. This approach not only enhances the model’s ability to handle
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challenging backgrounds but also improves the overall detection accuracy, making it a
robust solution for complex object detection tasks.

3. QYOLOv8 Algorithm

The QYOLO model integrates key technologies, such as Depthwise Separable Convolu-
tions (DSCs) [33], cross-layer feature fusion, and row–column query attention mechanisms,
achieving efficient and precise handling of small object detection tasks. This integration pro-
vides new technological and methodological support for the application of deep learning
in the fields of computer vision and object detection, as shown in Figure 2.
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3.1. GSConv

In the CNN backbone, spatial details from input images progressively transition into
channel information, causing a reduction in the spatial dimensions (width and height) of the
feature maps across various stages. This dimensionality compression parallels an increase
in channel numbers, which can potentially sacrifice some semantic context [34]. Standard
Convolutions (SCs) entail higher computational demands to preserve extensive inter-
channel relationships, whereas DSC [35] significantly prune these connections for efficiency.
The introduction of GSConv [14,15] seeks to strike a balance between both by maintaining
a maximum of these connections while keeping the computational time low, as shown in
Figure 3. In the context of convolutional computation, which is commonly measured by
FLOPs (Floating Point Operations), the time complexities of different convolution methods
are crucial for performance evaluation. SC, DSC, and GSConv have distinct complexities;
the time complexity (without bias) is illustrated in Equations (1)–(3):

TCsc = O(W · H · K1 · K2 · C1 · C2), (1)

TCDSC= O(W · H · K1 · K2 · C1+W · H · C1 · C2), (2)

TCGSConv= O(W · H · K1 · K2 · C1 · C2/2 + W · H · C1 · C2/2), (3)

where W and H denote the width and height of the output feature map, K1 · K2 is the
kernel size, C1 is the number of input channels per kernel, and C2 is the number of output
channels. The GSConv achieves a remarkable reduction in computational expense, saving
approximately 50% of the computation cost [16].
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When feature maps exhibit a large number of channels combined with reduced spatial
resolution, incorporating GSConv in the neck component is particularly beneficial for
processing sequentially connected feature maps. In this context, redundancy and repetition
in information are minimized, rendering additional compression unnecessary.

The bottleneck operation in C2f enhances the network’s ability to process features
with greater precision, allowing it to capture the finer details of small objects. When incor-
porated into the backbone, the high-resolution feature layers enable a clearer delineation of
boundaries and details for small objects in the feature map. The GSConv-based split-path
(GSCSP) method offers lower computational complexity, reducing redundancy through fea-
ture partitioning. GSCSP effectively handles small objects by minimizing feature blurring
and enhancing feature reuse. Its application in low-resolution feature layers and during
neck feature fusion improves the overall efficiency.

3.2. Introducing Query Methods
3.2.1. BifNet Query

In BifNet, the direct connection from the backbone network to the neck network,
though not strictly a query mechanism in the conventional sense, serves a function akin
to that of query mechanisms: it directly extracts and harnesses key features, thereby
reinforcing the effect of feature fusion. This design bolsters the expressive power of features
and facilitates information flow, enhancing the performance of object detection, particularly
excelling in complex scenes and the detection of small objects. Within BifNet [16], the
direct linkage from the backbone to the neck network incorporates low-level or mid-level
backbone features into the neck, aiding in preserving the details of these foundational
features during higher-level feature integration. By circumventing information loss that
typically occurs after multiple convolution operations, this direct connection renders the
detection process more sensitive to small objects and intricate backgrounds, enabling the
upper-level features to better embody the nuances and contextual information present
in lower-level features. Consequently, the representational capacity of feature maps is
augmented, thereby reinforcing the overall robustness of the detection model.

3.2.2. Row–Column Query

The introduction of the row–column query attention module further optimizes the
flow of information and weight allocation between features, improving the detection
performance for small objects by focusing on row and column feature information, as
shown in Figure 4.
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In object detection, it is crucial to consider the interplay between self-attention and
cross-attention. Channel attention [36], a form of self-attention, primarily focuses on
understanding the relative positions and relationships between different instances of the
same category within an image. For instance, in an image depicting a transmission tower
with multiple screws, self-attention aids the model in comprehending the relative positions
and potential interactions among these screws. The proposed row–column query module
involves associating two distinct sequences or sources of information, constituting a form
of cross-attention. This approach emphasizes cross-category relationships, aiding the
model in understanding how different object types interact and coexist within the same
image space. For example, it enables the model to comprehend the relationship between
screws and insulators on a high-voltage transmission tower, despite these being entirely
different categories.

The RCQ extraction branch is divided into Row Query extraction and Column Query
extraction, both of which are converted into weights. Specifically, taking the Row Query as
an example, features are extracted through horizontal convolution in polarized filtering.
When distinguishing directional features, polarized filtering minimizes the loss of features
in the targeted direction and reduces the parameter count for irrelevant directional features.
Similarly, k and v are projected in the row direction with a convolution kernel size of 1 × 3,
and the number of channels is reduced to 1/8.

As shown in Equation (4), the similarity (attention maps) between Q and K is com-
puted. By weighting the feature V, a feature map incorporating row-direction weighted
information is generated, as represented in Equation (5). The row and column attention
weights are fused through the adjustment of the weighting operation by a factor γ. Finally,
by adding the input feature x, skip connections are established, preserving the original
input information and enhancing the feature representation capability, as illustrated in
Equation (6).

Arow = Softmax(Qrow · Krow
T), (4)

Orow = Vrow · Arow, (5)

y = γ(Orow + Ocol) + x, (6)

where Q, K, and V are the query, key, and value feature maps respectively. Arow is an
attention map. The output Orow from row attention is obtained by applying the row
attention weights to the row value feature map. The final output y integrates the input
feature map x with the weighted sum of the row and column outputs. The parameter
γ, initialized to zero, is learned during training and modulates the contribution of the
attention-based features relative to the original input.
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4. Experiment
4.1. Datasets

A comprehensive image dataset was meticulously compiled for the precise detection
of transmission tower components. The initial dataset collected 789 high-resolution images,
each with a native dimension of 8000 × 6000 pixels, capturing the intricate details essential
for meticulous analysis. To counterbalance potential biases and enrich diversity, the initial
dataset was augmented through random transformations, including rotations and exposure
adjustments, thereby yielding an additional 504 images. Gamma correction with parame-
ters between 1.35 and 1.75 was used to correct overexposed images affected by incident
light. Considering the images predominantly capture blue glass insulators, 200 images
of red insulators sourced from the well-established SFID [36] dataset were introduced
to balance the insulator types and enhance the model’s generalizability. The resulting,
meticulously curated dataset, designated as the TLAD in Figure 5, encapsulates a total
of 1493 images and 8508 annotated instances. These instances are categorized into three
primary classes: 1299 insulators, highlighting both common and variant colors; 6667 screws
vital for structural integrity assessments; and 542 impact hammers used in maintenance
activities. TLAD has been systematically partitioned into a training subset (80%), a testing
subset (10%), and a validation (10%) subset.
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Figure 5. Dataset instruction. Figure (1) shows the position of the drone during image capture, with
the coloured area indicating the photographed area. In Figures (2) and (3), the purple bounding boxes
mark the insulators, the blue boxes mark the dampers and the brown boxes mark the screws. The
green dots represent the corners of the bounding boxes.

To further validate the effectiveness of the QYOLO network in detecting small objects
within high-resolution images, we conducted additional tests on the German Traffic Sign
Detection Benchmark (GTSDB) [37], an open traffic sign detection dataset. The GTSDB hails
from Germany, with a total of 900 images. The image size measures 1360 × 800 pixels, and
the traffic sign sizes range from 16 × 16 pixels to 128 × 128 pixels. A notable characteristic
of this dataset lies in the rich and variegated marking environments, encompassing diverse
viewpoints like frontal, lateral, and oblique shooting angles, as well as conditions such
as intense illumination. These multifarious environments augment the complexity and
authenticity of the data, presenting significant challenges and practical utilities for the
training and evaluation of traffic sign detection models.

4.2. Training Parameters

The experimental TLAD setup encompassing the software and hardware environ-
ment configured for the model’s training phase is summarized in Table 1, accompanied
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by the detailed training model parameters. The model receives inputs of dimensions
1280 × 1280 × 3. Extensive training spanning 100 epochs was administered, during which
the learning rate was dynamically adjusted following a cosine annealing schedule. No-
tably, mosaic data augmentation, a common strategy for enhancing model diversity, was
deactivated during the final 10 epochs to refine the model’s focus on unaltered image
characteristics. The loss curve over the course of 100 training epochs is shown in Figure 6.
In QYOLO, the learning rate was set to 0.01 for the initial 90 epochs and reduced to 0.001
for the final 10 epochs. As the training progresses, reducing the learning rate to 0.001 allows
the model to fine-tune its parameters with greater precision, improving performance and
accuracy through smaller, more precise adjustments.

Table 1. Experimental configurations.

Software configuration
System: Windows 10
Frame: Pytorch1.12.0

Version: CUDA 11.7, cuDNN 8.5.0, Python 3.8

Hardware configuration

CPU: Intel Core I7-13700K
GeForce RTX 4090 of GPU

Graphics memory: 24 G

UAV: DJ MAVIC2-ENTERPRISE-ADVANCED,
aperture: f/2.8, the equivalent focal length 24 mm,

32× digital zoom, a single shot

Training hyperparameters

Optimizer: SGD
Learning rate: 0.01 (initial 90 epochs), 0.001 (final 10 epochs)

Weight decay: 0.0005
Learning momentum: 0.937
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4.3. Evaluation Metrics

In the assessment of the model’s performance across subsequent experimental evalua-
tions, the mean Average Precision (mAP) scores at two thresholds, mAP50 and mAP50–95,
served as the principal benchmarks [18]. In Equations (7) and (9), mAP50 quantifies the
aggregate precision across all the classes when the Intersection over Union (IoU) threshold
is set to 0.5; in this context, a prediction is deemed accurate if it overlaps at least 50% with
the true object bounding box according to the IoU criterion. Conversely, mAP50–95 provides
a holistic view of model performance by calculating the weighted mean of mAP across
a range of IoU thresholds from 0.5 to 0.95, in increments of 0.05. This broader spectrum
analysis offers insights into the model’s capability to detect objects with varying degrees of
precision and localization accuracy. In Equation (10), the F1-score was added as a reconciled
average of precision and recall to provide a composite performance measure.

Precision =
Tp

Tp + Fp
, Recall =

Tp

Tp + FN
(7)
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AP =
∫ 1

0
P(R)dR, (8)

mAP =

N
∑

i=1
APi

N
, (9)

F1-score =
2 · Precision · Recall
Precision + Recall

, (10)

4.4. Results and Analysis

In Table 2, YOLOv8 [12] is used as a baseline to assess the performance of the improved
modules BifNet [38], RCQ [39], GSConv [15], and GSCSP [16] within the QYOLO frame-
work through ablation experiments. The YOLOv8-BifNet-RCQ model achieved an F1-score
only second to QYOLO. The introduction of queries into the neck network facilitated a
balanced trade-off between precision and recall, yielding robust detection results even with
imbalanced positive and negative examples in the dataset. Overall, the mAP50–95 across all
the categories improved by 1.8%. Moreover, QYOLO integrates GSConv and GSBottleneck
into the YOLOv8-BifNet-RCQ model, leading to an overall F1-score improvement of 2.3%.

Table 2. All-category detection results of ablation experiments.

Model Precision Recall F1-Score mAP50 mAP50–95

YOLOv8 77.5 65.9 71.2 73.6 43.1
YOLOv8-BifNet 77.9 66.7 71.9 73.5 43.9

YOLOv8-BifNet-RCQ 78.9 66.8 72.4 73.4 43.3
YOLOv8-GSConv-GSCSP 75.6 66.9 71.0 74.6 44.0

QYOLO 79.3 68.5 73.5 75.2 44.9

In power line inspection applications, the detection of small targets, such as screws, is
of particular importance. The ablation experiments in Table 3 further illustrate the enhanced
effectiveness of the improved modules in detecting small objects. The YOLOv8-GSConv-
GSCSP model achieved a small target detection accuracy of 71.8, with an average precision
that closely approaches that of QYOLO. Ultimately, QYOLO improved the mAP50 for small
object detection by 5.5%.

Table 3. Small object detection results of ablation experiments.

Model Precision-S Recall-S F1-Score-S AP50-S AP50–95-S

YOLOv8 70 46.6 56.0 58.3 30.9
YOLOv8-BifNet 70.1 47.6 56.7 58.7 31.0

YOLOv8-BifNet-RCQ 70.6 48.6 57.6 59.4 31.2
YOLOv8-GSConv-GSCSP 71.8 45.4 55.6 62.3 33.9

QYOLO 71.2 51.1 59.5 63.8 35.2

Table 4 compares parameters, inference accuracy, and inference time across the var-
ious models. Compared to YOLOv5 [36], YOLOv8 offers inherent advantages in aver-
age detection precision and inference time, enhancing small object detection precision
by up to 13.3%. Among the query-based YOLOv8 improved models, YOLOv8-C3tr [2]
and YOLOv8-CANet [9] incorporate the C3tr and CANet modules, respectively. While
these enhancements provided some improvement in average detection precision for small
objects without adding additional parameters, their effects were limited. The YOLOv8-
DWConv [35] model experienced increases in both parameter count and inference time.
In contrast, QYOLO reduced the number of parameters while improving detection per-
formance, with the inference time increasing to 3.9 ms, still less than that of YOLOv5 and
YOLOv8-CANet.
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Table 4. Experimental results for YOLOv5 and YOLOv8 improved models.

Model Param. mAP50 mAP50–95 mAP50-S mAP50–95-S
Inference

Time

YOLOv5 1.76M 71.5 35.4 46.1 17.6 5.8 ms
YOLOv8 3.01M 73.6 43.1 58.3 30.9 3.0 ms

YOLOv8-C3tr 2.72M 72.5 41.4 59.4 31.4 2.6 ms
YOLOv8-CANet 2.81M 73.1 43.1 59.0 31.0 4.0 ms

YOLOv8-DWConv 3.12M 74.5 43.6 62.3 34.2 3.2 ms
QYOLO 2.92M 75.2 44.9 63.8 35.2 3.9 ms

QYOLO achieves a balanced performance in both the overall detection and small
object detection, demonstrating significant advantages in adaptability to object scales and
robustness in detection. Figure 7 illustrates the detection results of two test images using
the YOLO and QYOLO models. The QYOLO model successfully detects more screws,
even those partially obscured by the tower structure. Notably, in the areas marked by
yellow circles in (1) and (3), QYOLO successfully identified the insulators hidden behind
the metal framework, as indicated by the red bounding boxes. Additionally, QYOLO
achieves a higher recognition rate of screws that are densely packed and closer to the
camera compared to YOLOv8.
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In Table 5, the QYOLO model maintains a relatively balanced precision and recall
rate, and its F1-score is also relatively high, indicating an improvement in comprehensive
performance to further validate QYOLO’s enhanced robustness in detecting small objects
in high-resolution images under limited lighting conditions.

Table 5. Experimental results of the GTSDB dataset in traffic sign recognition.

Model Precision Recall F1-Score mAP50 mAP50–95
Inference

Time

YOLOv8 96.1 90.2 93.06 94.6 78.8 1.7 ms
QYOLO 97.1 92.2 94.59 94.8 79.4 2.1 ms

5. Conclusions

To achieve multi-scale object detection for transmission towers, we propose an en-
hanced QYOLO algorithm. Our approach integrates GSConv into YOLOv8, incorporating
DWConv, which halves the computational load. This improvement is applied to the
bottleneck and GSCSP modules containing GSConv, thereby significantly enhancing the
network’s capacity to learn image features. Inspired by BifNet, we introduce a query-based
enhancement method in the neck network, combining BifNet with RCQ to further improve
feature learning. The experimental comparisons demonstrate that the QYOLO algorithm
markedly enhances the accuracy of small object detection, reduces missed detections, and
increases the overall detection robustness. Compared to YOLOv8, the proposed method
improves the average precision for small objects by 5.5% and the F1-score by 3.5%. The
proposed method effectively identifies maintainable components’ locations, pinpointing
critical parts for inspection and providing essential maintenance information, which is
crucial for improving inspection efficiency in power line patrols by accurately recogniz-
ing screws and other key components. Additionally, it can be validated on a traffic sign
detection dataset, which resulted in further improvements.
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