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Abstract: Cardiometabolic syndrome (CMS) is a growing concern in children and adolescents, marked
by obesity, hypertension, insulin resistance, and dyslipidemia. This study aimed to predict CMS using
machine learning based on data from the CASPIAN-V study, which involved 14,226 participants
aged 7–18 years, with a CMS prevalence of 82.9%. We applied the XGBoost algorithm to analyze
key noninvasive variables, including self-rated health, sunlight exposure, screen time, consanguinity,
healthy and unhealthy dietary habits, discretionary salt and sugar consumption, birthweight, and
birth order, father and mother education, oral hygiene behavior, and family history of dyslipidemia,
obesity, hypertension, and diabetes using five-fold cross-validation. The model achieved high
sensitivity (94.7% ± 4.8) and specificity (78.8% ± 13.7), with an area under the ROC curve (AUC) of
0.867 ± 0.087, indicating strong predictive performance and significantly outperformed triponderal
mass index (TMI) (adjusted paired t-test; p < 0.05). The most critical selected modifiable factors were
sunlight exposure, screen time, consanguinity, healthy and unhealthy diet, dietary fat type, and
discretionary salt consumption. This study emphasizes the clinical importance of early identification
of at-risk individuals to implement timely interventions. It offers a promising tool for CMS risk
screening. These findings support using predictive analytics in clinical settings to address the rising
CMS epidemic in children and adolescents.

Keywords: adolescent health; cardiometabolic risk; children; early diagnosis; machine learning;
metabolic syndrome; pediatric cardiology; predictive analytics; risk assessment; screening programs

1. Introduction

Cardiometabolic syndrome (CMS) is a common metabolic dysfunction characterized
by having at least one metabolic abnormalities or risk factor, including abnormal anthropo-
metric measures, insulin resistance, systemic arterial hypertension, and hyperlipidemia [1].
The World Health Organization (WHO), the American Society of Endocrinology, and
the National Cholesterol Education Program (NCEP) have recognized CMS as a disease
entity [2]. About 25% of adults worldwide suffer from CMS [3]. Recent studies have
also reported a contemporaneous growth in the incidence and prevalence of youth onset
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noncommunicable disease that is particularly evident among minority populations [4].
Hence, detecting metabolic risk factors in childhood is important to prevent future diabetes.
Hence, identifying childhood metabolic risk factors is important for preventing future
noncommunicable diseases (NCDs) [5].

Cardiovascular disease (CVD), the most common NCD, remains the leading cause of
death in the Middle East, with ischemic stroke, peripheral vascular diseases, coronary heart
disease, cerebrovascular arterial diseases, and myocardial infarctions [6]. Approximately
20–23% of the burden of diseases and 46% of all deaths in Iran were attributed to CVDs [7].
Also, the latest Global Burden of Disease (GBD) version revealed that Iran was one of the
countries with the highest rate of CVD, with more than 9000 cases stricken by CVD per
100,000 persons [8]. The sharp rise in cases of cardiometabolic disorders, including type
2 diabetes and hypertension, highlights the urgent need for improved prevention strategies.
This shift should move away from a universal approach towards a more individualized,
precision-based method for the broader population [9].

Cardiometabolic syndrome in children implicates the early start of metabolic dysfunc-
tion and related metabolic risk factors (e.g., high blood pressure (BP), dyslipidemia, insulin
resistance, hypertension, etc.) in childhood, which are important in the development of
the risk of CVDs, and type 2 diabetes mellitus in adulthood [10]. Therefore, predicting the
onset of CMS in advance is significant, which can prevent it from evolving into a more
serious disease. Identifying high-risk individuals on a trajectory to develop the disease is
used to focus on modifiable risk factors.

In recent years, machine learning (ML) methods have verified improved performance
in predicting various diseases or clinical conditions. Compared with other traditional
statistical methods like regression modeling, ML models can capture multifaceted, non-
linear relationships and identify unknown correlations in big data, thus enabling deeper
perceptions to be gained from clinical data [11]. With the help of such ML methods, nonin-
vasive indirect indicators that do not require blood samples can be applied to predict CMS,
enabling early diagnosis of metabolic syndrome (MS) and CMS in children and adolescents.

While machine learning methods, including the XGBoost algorithm, have been applied
to predict various health conditions, the existing studies in this domain predominantly
focus on MS rather than CMS [12,13]. Few studies have been performed to predict car-
diometabolic risk factors (CMRs) using noninvasive and low-cost diagnosis methods.
Kupusinac et al. developed an initial estimation of CMR using artificial neural networks
(ANNs) to assess cardiometabolic risk in a Serbian cohort of 1281 individuals, achieving a
model accuracy of 82.76% [14]. The selected features were gender, age, waist-to-height ratio,
body mass index, and systolic and diastolic BP, and the ages of the participants ranged
from 18 to 67 years old. Regression logistics is the other approach used by Hollenbeck
et al. for predicting the prevalence of CMR factors on the National Health and Nutrition
Examination Survey (NHANES) in the United States with a study sample of 5275 adults,
achieving an area under the ROC curve (AUC) of 0.77 for abdominal obesity, indicating
good discrimination [15]. This study included all adults aged 18 or older (an average
of 45). Ashley-Martin et al. examined the predictive power of the triponderal mass index
(TMI) and body mass index (BMI) for cardiometabolic markers in 5814 Canadian children
aged 6–19 years, finding both indices to have similar predictive accuracy, achieving AUC
values of 0.81 for insulin resistance and 0.83 for having ≥3 abnormal tests [16]. Ojanen
et al. [17] conducted a comprehensive study on the early prediction of cardiometabolic
syndrome in children and adolescents, following a cohort of 396 Finnish girls (mean age
11.2 years) to early adulthood. They identified key serum metabolic biomarkers such as
glycoprotein acetyls (GlycA), large high-density lipoprotein phospholipids (L-HDL-PL),
and the apolipoprotein B to apolipoprotein A-1 (ApoB/ApoA) ratio. Using LASSO regres-
sion and random intercept cross-lagged panel models, the study achieved AUC values
between 0.641 and 0.802, explaining 32.7% to 36.3% of the variance in MS scores, with
findings validated across a larger longitudinal cohort of 2664 participants and multiple
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cross-sectional datasets. Among the studies mentioned above, Ashley-Martin et al. [16]
and Ojanen et al. [17] focused on diagnosing CMS in children and adolescents.

Our research addresses this critical gap by specifically targeting CMS. This more
comprehensive construct integrates additional cardiovascular risk factors beyond those
typically considered in MS. This distinction is vital, as CMS encompasses a broader array
of risk factors, such as BMI, total cholesterol (TC), and low-density lipoprotein-cholesterol
(LDL-C), which are more directly linked to cardiovascular diseases. Our study applies ma-
chine learning methods, particularly extreme gradient boosting (XGBoost), to predict CMS
in children using noninvasive factors, providing a more holistic and accurate assessment of
cardiovascular risks from an early age.

The rationale for focusing on CMS over MS lies in its ability to offer a more compre-
hensive evaluation of a child’s health by considering both metabolic and cardiovascular
risks. This broader perspective is crucial for early identification and intervention in children
who may be at an elevated risk of cardiovascular diseases later in life. By addressing CMS,
our study aims to provide a robust and comprehensive tool for early risk stratification
in pediatric populations. Rather than the more narrowly defined MS, this focus on CMS
represents a significant and novel contribution to the field. We have thoroughly revised
our manuscript to highlight this distinction, emphasizing the importance of our approach
in advancing the prediction and prevention of cardiovascular diseases from an early age.
Furthermore, our research stands out in the literature by being the first to explore and
predict CMS using a variety of noninvasive risk factors in a pediatric population, filling a
critical gap and offering a new direction for future studies.

2. Materials and Methods
2.1. Materials

Data for this study were taken from part of the “National survey of school student high
risk 86 behaviors”, started in 2014. The data were collected in a comprehensive database
entitled “The Prevalence and Dissemination of Non-Communicable Diseases in Children
and Adolescents (CASPIAN-V)” [18].

The study population was children aged 7–18 years; all were in primary and secondary
schools and came from urban and rural areas. The sampling was conducted in 30 provinces
of Iran according to sex (male and female), place of residence (rural and urban), and
educational level (primary and secondary) via stratified clustering sampling method [18].
The dataset is a collection of 510 features with a sample size 14,226. The protocol was
mainly based on the WHO-Global School student Health Survey. A minimal dataset is
included in the Supplementary Material.

2.2. Procedure and Measurements
2.2.1. Questionnaires

Two sets of questionnaires were developed for both students and their parents. The
student questionnaire was adapted from the Persian-translated version of the WHO’s
Global School-based Student Health Survey (WHO-GSHS). The reliability and validity of
these questionnaires have been previously established. Eligible students were identified,
and questions regarding their health status and health-related behaviors were explained
using simple language. Subsequently, the students’ parents were invited to complete a
separate questionnaire, which collected information on family characteristics, including
household size, socioeconomic variables, and the student’s birth order. A team of healthcare
professionals supervised and controlled the process [19]. The questionnaire included
different aspects, such as variables related to students’ schools, counseling with family
members, and parameters related to health status, living environment, screen time, and
lifestyle components.
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2.2.2. Anthropometric Measurements

The information was recorded by a team of trained healthcare experts based on
approved checklists. All team members were instructed to calibrate the data according to
protocols and standards. The physical measurements were as follows: BMI defines obesity
and is calculated as the ratio of body mass and the square of body height. The subjects were
asked to wear light clothes, and their body weight was measured on a scale placed on flat
ground with a precision of 0.1 kg. Their height was measured without shoes to the nearest
0.1 cm. The WHO growth charts were used to categorize BMI [20]. The waist circumferences
were measured with nonelastic tape with a precision of 0.1 cm around the point halfway
between the iliac crest and the sides of the lower ribs [21]. Hip circumference was measured
at the widest point around the buttocks to the nearest 0.1 cm [21]. Wrist circumference
was measured with the precision of 0.1 cm using a tape meter on the dominant arm while
subjects held their arm on a flat surface like a table. The measuring tape was positioned
over the Lister tubercle of the distal radius and the distal ulna [18]. Neck circumference
was measured using nonelastic tape with an accuracy of 0.1 cm at the lower margin of the
thyroid cartilage, with the head erect [18].

2.2.3. Blood Pressure Measurement

BP was measured on the right arm using a mercury sphygmomanometer with an
appropriately sized cuff. BP measurement was carried out two times at 5 min intervals.
Then, the average systolic and diastolic pressures were registered [22].

2.2.4. Blood Sampling

Blood samples were drawn from selected students. After 12 h overnight fasting, a 6 mL
venous blood sample was collected from the students whose parents accompanied them.
The blood samples were centrifuged at 2500–3000× g for 10 min. The resulting serum was
divided into 200-microliter tubes and stored at −70 ◦C. Then, the samples were transferred
to a referral laboratory by a cold chain. Fasting blood glucose (FBG), TC, triglyceride (TG),
high-density lipoprotein-cholesterol (HDL-C), and LDL-C concentrations were determined
using a Hitachi autoanalyzer (Tokyo, Japan). The flow chart of the CASPIAN-V study is
presented in Figure 1.

Figure 1. Flow chart of the Prevalence and Dissemination of Non-Communicable Diseases in Children
and Adolescents (CASPIAN-V) study design.

2.2.5. Outcome Definition

We used metabolic syndrome defined as central obesity (waist circumference
(WC) ≥ 80 cm for women; WC ≥ 90 cm for men aged 16 years or older; WC > 90th
percentile for age and sex) plus any two or more of the following components: high FBG
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(FBG ≥ 100 mg/dL), high BP (systolic and/or diastolic BP > 90th percentile for age, sex,
and height), low HDL-C (HDL-C < 40 mg/dL), and high TG (TG > 150 mg/dL), according
to the International Diabetes Federation (IDF) [1,23]. Furthermore, BMI ≥ 85th percentile
for age and sex, TC > 200 mg/dL, and LDL-C > 130 mg/dL were considered as other
CMS components following the American Heart Association [24] and American Diabetes
Association [25], for children and adolescents at high risk of CVD (a.k.a., cardiometabolic
risks; CMR). A total of 6832 subjects with CMR labels were included in the analysis.

2.2.6. Ethical Statement

This study received approval from the Research and Ethics Council of Isfahan Univer-
sity of Medical Sciences (project number: 194049) and complied with the Declaration of
Helsinki guidelines. Both written and verbal informed consent were obtained from parents
and students following a detailed explanation of the study’s goals and procedures.

2.3. Predictors and Feature Extraction

All participants were assessed according to demographic variables, anthropomet-
ric measures, laboratory variables, blood pressure, and health-related variables such as
relationship with friends, family size, birth characteristics, and dietary habits.

Health-related behaviors, screen time, leisure time activities, smoking status, sunlight
exposure, comorbidities, family history of the disease, student injuries, parent’s consan-
guineous marriage, and demographic variables were recorded. The details regarding
the related questions and the categorization methods for each variable are provided in
Tables 1 and 2. Table 1 includes 20 input variables derived from single-item questions,
while Table 2 presents four composite variables.

Table 1. Questions, response options, and references for the rationale of including single-item
variables in the questionnaire.

Item Type Description

1
Q Oral hygiene behavior [26]: How many times per day do you brush your teeth?

A (1) once daily, (2) twice daily, (3) three times a day, (4) four times and more a day, and (5) never

2
Q The number of close friends [26]

A (1) none, (2) one friend, (3) two friends, and (4) three or more friends

3, 4

Q Father’s education; Mother’s education

A (1) illiterate, (2) Quranic Literacy, (3) primary, (4) intermediate, (5) diploma, (6) Bachelor, (7) upper than
bachelor, (8) died

5
Q Number of family members

A Count variable

6
Q Consanguineous marriage [27]

A (1) no, (2) yes

7
Q Birth order [28]

A Count variable

8
Q Birthweight category [29]

A (1) <2500 g, (2) 2500–400 g, (3) >4000 g

9
Q Breastfeeding [30]: How many months did breastfeeding occur in the first two years after birth?

A Count variable

10–14
Q Family history of hypertension [31]; Family history of dyslipidemia [32]; Family history of diabetes [33];

Family history of obesity [34]; Family history of cancer

A (1) no, (2) yes
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Table 1. Cont.

Item Type Description

15
Q Residence [34]

A (1) urban, (2) rural

16
Q Age group

A 7–10, B. 11–14- and C. 15–18-year-old

17
Q Gender [35]

A (1) male, (2) female

18
Q Self-rated health [36]: How would you describe your general state of health?

A (1) perfect, (2) good, (3) bad, and (4) very bad

19
Q Discretionary salt

A (1) always, (2) sometimes, (3) rarely, and (4) no

20
Q Dietary fat type [37]

A Saturated fats, (2) trans fats, (3) monounsaturated fats, and (4) polyunsaturated fats.

Q: question; A: answer.

Table 2. Questions, response options, and combination methods for composite variables in the
questionnaire.

Item Type Description

21

V Healthy diet

Q Five questions: Diet beverage, fresh fruit, dried fruit, fresh fruit juice, and fresh/boiled vegetable
consumption

A “Daily”, “weekly”, “rarely”, and “never”

C The answers were summed up, and the tertiles were calculated, resulting in a three-category ordinal
variable (“low”, “moderate”, and “high”).

22

V Unhealthy diet

Q Six questions: Sweets, fast food, soda, junk food, sugar-sweetened fruit juice, and discretionary sugar
consumption

A “Daily,” “weekly”, “rarely”, and “never”

C The answers were summed up, and the tertiles were calculated, resulting in a three-category ordinal
variable (“low”, “moderate”, and “high”).

23

V Screen time

Q

Six questions:
Q1, Q2: How many hours a day do you watch TV (on weekdays/weekends)?
Q3, Q4: How many hours a day do you do your class exercises (on weekdays/weekends)?
Q5, Q6: How many hours a day do you use a computer (on weekdays/weekends)?

A (1) never, (2) 1 h, (3) 2 h, (4) 3 h, and (5) four or more hours.

C
The answers to the questions were summed up, and the cut-off of 10 was used to create a dichotomous
variable (<10: No, ≥10: Yes). The optimal” cut-point was calculated to minimize the error rate (ER)
criteria [38] in CMR ROC Analysis.
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Table 2. Cont.

Item Type Description

24

V Sunlight exposure [39]

Q

Four questions:
Q1, Q2: How much exposure to outdoor sunlight (on weekdays/weekends)?
Q3: What parts of the body are exposed to sunlight during sunlight exposure?
Q4: Do you use sunscreen creams?

A
Q1, Q2: (1) less than 5 min, (2) between 5 and 30 min, and (3) more than 30 min
Q3: (1) hands, face, legs, (2) hands, face, arms, and (3) hands, face
Q4: (1) never, (2) sometimes, and (3) always

C
Using Principal Component Analysis (PCA) [11], the primary principal component was extracted from
the responses to the questions. Subjects were subsequently classified into “low”, “medium”, and “high”
sunlight exposure groups according to the tertiles of the principal component.

V: variable; Q: questions; A: answer; C: composite variable generation method.

2.4. Model Construction and Interpretation

The categorical variables were transferred into an interval scale using the logit function
(Equation (1)), whose parameters were estimated by maximum likelihood estimating (MLE)
on the training set [40]:

p(I(x)) =
1

1 + e−(β0+β1×I(x))
(1)

where β0 and β1 are the intercept and rate parameters, respectively, and I(x) is an indicator
variable of the categorical input variable. An indicator variable is an axillary binary
variable showing the category of a categorical variable. For example, the “unhealthy diet”
categorical variable has three groups (“low”, “medium”, and “high”). It, thus, has two
indicator variables of “medium” and “high”. The reference “low” category is not used, as
it creates multicollinearity in the predictors [41].

Since there was some information missing in some of the variables, the missing
completely at random (MCAR) assumption was examined using Little’s MCAR test
(p = 0.106) [42]. Multivariate imputation by chained equations (MICE) [43] was then used
for missing data imputation.

For classifying subjects with CMR from healthy subjects, we used the XGBoost algo-
rithm [44]. XGBoost is a scalable machine learning algorithm for tree boosting that can
solve complex problems with different sizes of datasets. It is a free library that efficiently
implements a gradient-boosting framework [45,46].

The XGBoost algorithm uses n samples and m features as a given data to predict the
target with a tree ensemble model with K different trees:

ŷi = ϕ(xi) = ∑K
k=1 fk(xi), fk ∈ F (2)

where F = {f(x) = wq(x)}f, and q : Rm → T, w ∈ RT is the space of the regression tree.
In this formula, q is related to the structure of each tree, and it can map a sample to a leaf.
T is the number of leaves in the tree and fk is an independent tree with a structure of q
and a leaf with weight of w. This function gives each sample to different trees, and, at the
end, it sums all of the results. Because we have a regression tree, the scores on each leaf
are continuous. For each sample, classification is performed by applying the decision rules
from the trees, leading to a final prediction based on the sum of all scores in the leaves. The
model learns the set of functions by minimizing the following regularization function:

L(ϕ) = ∑i l(ŷi, yi) + ∑k Ω(fk) (3)
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where Ω(f) = γT + 1
2 λ∥w∥2 and l represent the differentiable convex loss function that

quantifies the discrepancy between the prediction and the target. The second term acts as a
penalty for model complexity to prevent overfitting.

To tune the hyperparameters of the XGBoost algorithm, we used grid search (brute
force) [47,48]. After hyperparameter optimization, we separated the dataset into five
subsets using stratified random sampling for five-fold cross-validation.

2.5. Validation

Five-fold cross-validation was used in our study to guard against testing hypotheses
suggested by the data (Type III errors). The signal detection theory parameters (true positive
(TP), true negative (TN), false positive (FP), and false negative (FN)) were then calculated
on each test fold. The performance indices introduced as the following were calculated.
Finally, the indices’ mean and standard deviation were provided over the test folds, and the
cross-validated indices and their confidence interval (CI) of 95% were reported, following
the Standards for Reporting Diagnostic Accuracy (STARD) and Transparent Reporting
of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD)
guidelines [49].

TPs are cases where the model correctly predicts CMS, while FPs are incorrect predic-
tions of CMS in patients who do not have it. FNs occur when the model fails to identify
CMS in affected patients, and TNs are correct predictions of no CMS in unaffected patients.
These outcomes are essential for evaluating the model’s performance:

Se =
TP

TP + FN
(4)

Sp =
TN

TN + FP
(5)

PPV =
TP

TP + FP
(6)

NPV =
TN

TN + FN
(7)

where Se, Sp, PPV, and NPV are sensitivity, specificity, positive predictive value, and
negative predictive value, respectively.

We further calculated the following composite performance indices based on the
ISO/IEC TS:2022 standard [50]:

LR+ =
Se

1 − Sp
(8)

LR− =
1 − Se

Sp
(9)

DOR =
TP × TN
FP × FN

(10)

DP =

(√
3
π

)
× log(DOR) (11)

AUC =
Se + Sp

2
(12)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)× (TN + FP)× (TN + FN)
(13)

Kappa =
2 × (TP × TN − FP × FN)

(TP + FP)(TP + FN)× (TN + FP)× (TN + FN)
(14)

F1 =
2 × TP

2 × TP + FP + FN
(15)
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where LR+, LR−, DOR, DP, AUC, MCC, Kappa, and F1 are positive likelihood ratio, nega-
tive likelihood ratio, diagnostic odds ratio, discriminant power, area under the receiver
operating characteristic (ROC) curve (balanced accuracy), Matthew’s correlation coefficient,
Cohen’s kappa coefficient (also known as the agreement between the predicted class labels
and the gold standard), and F1 score, respectively.

2.6. Statistical Analysis

Results were reported frequencies (for categorical variables) and mean ± standard
deviation (for interval variables). p-values less than 0.05 were considered significant. The
association between the interval variables with normal distribution to the CMR or healthy
group was tested using the independent-sample t-test. Mann–Whitney U-test was used
for interval variables with non-normal distribution or ordinal data. For the entire nominal
variables, the χ2 test was used since frequencies in all groups were greater than five. Fisher’s
exact test was used otherwise. We compared the performance of our proposed method with
the TMI index using an adjusted paired t-test [51]. The statistical analysis and calculations
were performed using the SPSS statistical package, version 22.0 (IBM Corp. Released 2013.
Armonk, NY, USA: IBM Corp.).

3. Results
3.1. Descriptive and Inferential Statistics

The average age of the participants was 12.4 ± 3.0, and 48.6% were female. A total of
5663 subjects (82.9%) were in the CMR group. The characteristics of the participants in the
healthy and CMR group are shown in Table 3.

Table 3. Demographic and behavioral characteristics of participants by cardiometabolic syndrome status.

Characteristics Non-CMS
(N = 1169)

CMS
(N = 5663)

Overall
(N = 6832) p-Value

Number of close friends
None 54 (4.6%) 240 (4.2%) 294 (4.3%) 0.3932
One friend 212 (18.1%) 934 (16.5%) 1146 (16.8%)
Two friends 333 (28.5%) 1594 (28.1%) 1927 (28.2%)
Three or more friends 570 (48.8%) 2895 (51.1%) 3465 (50.7%)

Oral hygiene behavior
Never 47 (4.0%) 225 (4.0%) 272 (4.0%) 0.6016
Less than once a week 52 (4.4%) 204 (3.6%) 256 (3.7%)
At least once a week 124 (10.6%) 666 (11.8%) 790 (11.6%)
Only once a week 62 (5.3%) 289 (5.1%) 351 (5.1%)
Once a day 626 (53.6%) 2974 (52.5%) 3600 (52.7%)
More than once a day 258 (22.1%) 1305 (23.0%) 1563 (22.9%)

Self-rated health
Average 241 (20.6%) 1023 (18.1%) 1264 (18.5%) 0.0640
Bad 4 (0.3%) 46 (0.8%) 50 (0.7%)
Good 428 (36.6%) 2075 (36.6%) 2503 (36.6%)
Perfect 496 (42.4%) 2519 (44.5%) 3015 (44.2%)

Age group
7–10 y 396 (33.9%) 1737 (30.7%) 2133 (31.2%) 0.0107
11–14 y 505 (43.2%) 2404 (42.5%) 2909 (42.6%)
15–18 y 268 (22.9%) 1522 (26.9%) 1790 (26.2%)

Residence
Rural 360 (30.8%) 1366 (24.1%) 1726 (25.3%) <0.001
Urban 809 (69.2%) 4297 (75.9%) 5106 (74.7%)

Number of family members
Mean (SD) 4.91 (1.54) 4.81 (1.47) 4.83 (1.48) 0.0631
Median [Min, Max] 5.00 [1.00, 17.0] 5.00 [0, 15.0] 5.00 [0, 17.0]
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Table 3. Cont.

Characteristics Non-CMS
(N = 1169)

CMS
(N = 5663)

Overall
(N = 6832) p-Value

Father education
Upper than bachelor 53 (4.6%) 280 (5.0%) 333 (4.9%) 0.0413
Bachelor 104 (8.9%) 586 (10.3%) 690 (10.1%)
Diploma 264 (22.6%) 1398 (24.7%) 1662 (24.3%)
Intermediate 290 (24.8%) 1366 (24.1%) 1656 (24.2%)
Primary 264 (22.6%) 1240 (21.9%) 1504 (22.0%)
Quranic Literacy 17 (1.5%) 55 (1.0%) 72 (1.1%)
Illiterate 158 (13.5%) 612 (10.8%) 770 (11.3%)
Father died 19 (1.6%) 126 (2.2%) 145 (2.1%)

Mother education
Upper than bachelor 15 (1.3%) 91 (1.6%) 106 (1.6%) 0.3919
Bachelor 106 (9.1%) 577 (10.2%) 683 (10.0%)
Diploma 291 (24.9%) 1504 (26.6%) 1795 (26.3%)
Intermediate 254 (21.7%) 1135 (20.0%) 1389 (20.3%)
Primary 281 (24.0%) 1398 (24.7%) 1679 (24.6%)
Quranic Literacy 13 (1.1%) 57 (1.0%) 70 (1.0%)
Illiterate 205 (17.5%) 876 (15.5%) 1081 (15.8%)
Mother died 4 (0.3%) 25 (0.4%) 29 (0.4%)

Consanguinity
No 651 (55.7%) 3068 (54.2%) 3719 (54.4%) 0.3612
Yes 518 (44.3%) 2595 (45.8%) 3113 (45.6%)

Birth order
Mean (SD) 2.27 (1.59) 2.17 (1.49) 2.19 (1.51) 0.0485
Median [Min, Max] 2.00 [0, 11.0] 2.00 [0, 11.0] 2.00 [0, 11.0]

Birthweight category
2500–4000 g 859 (73.5%) 4233 (74.7%) 5092 (74.5%) 0.2791
Less than 2500 g 122 (10.4%) 507 (9.0%) 629 (9.2%)
More than 4000 g 188(16.1%) 923 (16.3%) 1111 (16.3%)

Breastfeeding
Mean (SD) 15.0 (8.52) 15.1 (8.52) 15.1 (8.52) 0.735
Median [Min, Max] 18.0 [0, 24.0] 18.0 [0, 24.0] 18.0 [0, 24.0]

Discretionary salt
Always 237 (20.3%) 1268 (22.4%) 1505 (22.0%) 0.0154
Sometimes 255 (21.8%) 1131 (20.0%) 1386 (20.3%)
Rarely 116 (9.9%) 705 (12.4%) 821 (12.0%)
No 561 (48.0%) 2559 (45.2%) 3120 (45.7%)

Family history of hypertension
No 452 (38.7%) 2178 (38.5%) 2630 (38.5%) 0.9216
Yes 717 (61.3%) 3485 (61.5%) 4202 (61.5%)

Family history of dyslipidemia
No 587 (50.2%) 2846 (50.3%) 3433 (50.2%) 1.0000
Yes 582 (49.8%) 2817 (49.7%) 3399 (49.8%)

Family history of diabetes
No 552 (47.2%) 2752 (48.6%) 3304 (48.4%) 0.4093
Yes 617 (52.8%) 2911 (51.4%) 3528 (51.6%)

Family history of obesity
No 635 (54.3%) 2879 (50.8%) 3514 (51.4%) 0.0327
Yes 534 (45.7%) 2784 (49.2%) 3318 (48.6%)

Family history of cancer
No 944 (80.8%) 4552 (80.4%) 5496 (80.4%) 0.8018
Yes 225 (19.2%) 1111 (19.6%) 1336 (19.6%)

Dietary fat type
Monounsaturated fats 478 (40.9%) 2109 (37.2%) 2587 (37.8%) 0.0362
Polyunsaturated fats 181 (15.5%) 1041 (18.4%) 1222 (17.9%)
Saturated fats 429 (36.7%) 2083 (36.8%) 2512 (36.8%)
Trans fats 81 (6.9%) 430 (7.6%) 511 (7.5%)

Gender
Female 602 (51.5%) 2719 (48.0%) 3321 (48.6%) 0.0326
Male 567 (48.5%) 2944 (52.0%) 3511 (51.4%)
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Table 3. Cont.

Characteristics Non-CMS
(N = 1169)

CMS
(N = 5663)

Overall
(N = 6832) p-Value

Diet beverage consumption
Daily 7 (0.6%) 46 (0.8%) 53 (0.8%) 0.2754
Weekly 49 (4.2%) 275 (4.9%) 324 (4.7%)
Rarely 210 (18.0%) 1116 (19.7%) 1326 (19.4%)
Never 903 (77.2%) 4226 (74.6%) 5129 (75.1%)

Fresh fruit consumption
Daily 666 (57.0%) 2928 (51.7%) 3594 (52.6%) 0.0101
Weekly 386 (33.0%) 2118 (37.4%) 2504 (37.6%)
Rarely 80 (6.8%) 441 (7.8%) 521 (7.6%)
Never 37 (3.2%) 176 (3.1%) 213 (3.1%)

Dried fruit consumption
Daily 400 (34.2%) 1804 (31.9%) 2204 (32.3%) 0.0354
Weekly 477 (40.8%) 2410 (42.6%) 2887 (42.3%)
Rarely 209 (17.9%) 1134 (20.0%) 1343 (19.7%)
Never 83 (7.1%) 315 (5.6%) 398 (5.8%)

Fresh fruit juice consumption
Daily 196 (16.8%) 971 (17.1%) 1167 (17.1%) 0.1903
Weekly 390 (33.3%) 2001 (35.3%) 2391 (35.0%)
Rarely 478 (40.9%) 2276 (40.2%) 2754 (40.3%)
Never 105 (9.0%) 415 (7.3%) 520 (7.6%)

Fresh or boiled vegetable
consumption

Daily 347 (29.7%) 1899 (33.5%) 2246 (32.9%) 0.0511
Weekly 595 (50.9%) 2652 (46.8%) 3247 (47.5%)
Rarely 158 (13.5%) 774 (13.7%) 932 (13.6%)
Never 69 (5.9%) 338 (6.0%) 407 (6.0%)

Sweets consumption
Daily 286 (24.5%) 1409 (24.9%) 1695 (24.8%) 0.0143
Weekly 520 (44.5%) 2597 (45.8%) 3117 (45.6%)
Rarely 352 (30.1%) 1537 (27.1%) 1889 (27.6%)
Never 11 (0.9%) 120 (2.1%) 131 (1.9%)

Fast food consumption
Daily 61 (5.2%) 439 (7.8%) 500 (7.3%) 0.0014
Weekly 355 (30.4%) 1510 (26.7%) 1865 (27.3%)
Rarely 600 (51.3%) 3042 (53.7%) 3642 (53.3%)
Never 153 (13.1%) 672 (11.9%) 825 (12.1%)

Soda consumption
Daily 23 (2.0%) 212 (3.7%) 235 (3.4%) 0.0105
Weekly 276 (23.6%) 1237 (21.8%) 1513 (22.1%)
Rarely 627 (53.6%) 3106 (54.8%) 3733 (54.6%)
Never 243 (20.8%) 1108 (19.6%) 1351 (19.8%)

Junk food consumption
Daily 16 (1.4%) 126 (2.2%) 142 (2.1%) 0.0273
Weekly 179 (15.3%) 908 (16.0%) 1087 (15.9%)
Rarely 718 (61.4%) 3568 (63.0%) 4286 (62.7%)
Never 256 (21.9%) 1061 (18.7%) 1317 (19.3%)

Sugar sweetened fruit juice
consumption

Daily 72 (6.2%) 373 (6.6%) 445 (6.5%) 0.2753
Weekly 246 (21.0%) 1306 (23.1%) 1552 (22.7%)
Rarely 665 (56.9%) 3049 (53.8%) 3714 (54.4%)
Never 186 (15.9%) 935 (16.5%) 1121 (16.4%)

Discretionary sugar consumption
Daily 566 (48.4%) 2766 (48.8%) 3332 (48.8%) 0.1030
Weekly 240 (20.5%) 1195 (21.1%) 1435 (21.0%)
Rarely 254 (21.7%) 1080 (19.1%) 1334 (19.5%)
Never 109 (9.3%) 622 (11.0%) 731 (10.7%)
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Table 3. Cont.

Characteristics Non-CMS
(N = 1169)

CMS
(N = 5663)

Overall
(N = 6832) p-Value

Screen time Q1
Never 46 (3.9%) 242 (4.3%) 288 (4.2%) 0.7006
1 h 467 (39.9%) 2278 (40.2%) 2745 (40.2%)
2 h 355 (30.4%) 1626 (28.7%) 1981 (29.0%)
3 h 200 (17.1%) 972 (17.2%) 1172 (17.2%)
4 h or more 101 (8.6%) 545 (9.6%) 646 (9.5%)

Screen time Q2
Never 32 (2.8%) 190 (3.4%) 222 (3.3%) 0.4569
1 h 239 (20.4%) 1190 (21.0%) 1429 (20.9%)
2 h 382 (32.7%) 1709 (30.2%) 2091 (30.6%)
3 h 313 (26.8%) 1566 (27.7%) 1879 (27.5%)
4 h or more 203 (17.4%) 1008 (17.8%) 1211 (17.7%)

Screen time Q3
Never 4 (0.4%) 22 (0.4%) 26 (0.4%) 0.8998
1 h 395 (33.8%) 1933 (34.1%) 2328 (34.1%)
2 h 289 (24.7%) 1434 (25.3%) 1723 (25.2%)
3 h 216 (18.5%) 1065 (18.8%) 1281 (18.8%)
4 h or more 265 (22.7%) 1209 (21.3%) 1474 (21.6%)

Screen time Q4
Never 37 (3.2%) 221 (3.9%) 258 (3.8%) 0.2376
1 h 218 (18.6%) 1046 (18.5%) 1264 (18.5%)
2 h 322 (27.5%) 1681 (29.7%) 2003 (29.3%)
3 h 335 (28.7%) 1472 (26.0%) 1807 (26.4%)
4 h or more 257 (22.0%) 1243 (21.9%) 1500 (22.0%)

Screen time Q5
Never 765 (65.4%) 3513 (62.0%) 4278 (62.6%) 0.1565
1 h 307 (26.3%) 1571 (27.7%) 1878 (27.5%)
2 h 70 (6.0%) 407 (7.2%) 477 (7.0%)
3 h 14 (1.2%) 100 (1.8%) 114 (1.7%)
4 h or more 13 (1.1%) 72 (1.3%) 85 (1.2%)

Screen time Q6
Never 604 (51.6%) 2728 (48.2%) 3332 (48.7%) 0.0789
1 h 314 (26.9%) 1685 (29.8%) 1999 (29.3%)
2 h 149 (12.7%) 690 (12.2%) 839 (12.3%)
3 h 71 (6.1%) 352 (6.2%) 423 (6.2%)
4 h or more 31 (2.7%) 208 (3.7%) 239 (3.5%)

Sunlight exposure Q1
Less than 5 min 167 (14.3%) 898 (15.9%) 1065 (15.6%) 0.0959
5–30 min 534 (45.7%) 2400 (42.4%) 2934 (42.9%)
More than 30 min 468 (40.0%) 2365 (41.8%) 2833 (41.4%)

Sunlight exposure Q2
Less than 5 min 214 (18.3%) 1039 (18.3%) 1253 (18.3%) 0.4220
5–30 min 315 (26.9%) 1628 (28.7%) 1943 (28.4%)
More than 30 min 640 (54.7%) 2996 (52.9%) 3636 (53.2%)

Sunlight exposure Q3
Hands, face, legs 231 (19.8%) 1034 (18.3%) 1265 (18.5%) 0.3374
Hands, face 864 (73.9%) 4224 (74.6%) 5088 (74.5%)
Hands, face, arms 74 (6.3%) 405 (7.1%) 479 (7.0%)

Sunlight exposure Q4
Never 486 (41.6%) 2225 (39.3%) 2711 (39.7%) 0.1542
Sometimes 530 (45.4%) 2588 (45.7%) 3130 (45.7%)
Always 153 (13.1%) 850 (15.0%) 1003 (14.7%)

The descriptive and univariate statistics table highlights several key characteristics
and behaviors among individuals with CMS compared to those without it. The data reveal
significant demographic, social, and health-related differences.
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3.1.1. Demographic Characteristics

There are statistically significant differences (p = 0.0107) across age groups, with a
higher proportion of individuals aged 15–18 years in the CMS group (26.9%) compared to
the non-CMS group (22.9%). A notable difference in residence is observed (p < 0.001), with
a higher percentage of urban dwellers in the CMS group (75.9%) compared to the non-CMS
group (69.2%).

3.1.2. Social and Family Characteristics

Differences in father’s education levels are significant (p = 0.0413), with the CMS group
having a slightly higher percentage of fathers with education beyond a bachelor’s degree
(5.0%) compared to the non-CMS group (4.6%). The mean birth order is slightly lower in
the CMS group (2.17) compared to the non-CMS group (2.27), with a significant p-value
of 0.0485.

3.1.3. Health Behaviors

No significant differences were found in oral hygiene behaviors between the groups
(p = 0.6016), with similar proportions practicing daily oral hygiene. There is a significant
difference in discretionary salt usage (p = 0.0154), with the CMS group reporting slightly
higher daily usage (22.4% vs. 20.3%). Daily fast-food consumption is higher in the CMS
group (7.8%) compared to the non-CMS group (5.2%), with a significant p-value of 0.0014.

3.1.4. Dietary Habits

The CMS group consumes less fresh fruit daily (51.7%) than the non-CMS group
(57.0%), with a significant p-value of 0.0101. A significant difference (p = 0.0354) is observed
in dried fruit consumption, with the CMS group having lower daily consumption (31.9%
vs. 34.2%). There are significant differences in sweets consumption (p = 0.0143), with the
CMS group consuming sweets more frequently daily (24.9%) compared to the non-CMS
group (24.5%).

3.1.5. Family Health History and Lifestyle Factors

A significant difference is observed in the family history of obesity (p = 0.0327), with
the CMS group having a higher percentage of individuals with a family history of obesity
(49.2% vs. 45.7%). Differences in sunlight exposure are observed, although not statistically
significant overall. However, the CMS group reports slightly higher exposure.

Overall, the findings suggest that individuals with cardiometabolic syndrome tend to
have distinct demographic profiles, dietary habits, and health behaviors compared to those
without the syndrome. These differences highlight the importance of targeted interventions
considering these factors to manage and prevent CMS effectively.

3.2. Classification Results

Running XGBoost, the following features were selected: Self-rated health, sunlight
exposure, screen time, consanguinity, unhealthy diet, gender, healthy diet, rural or urban
residence, dietary fat type, birth order, discretionary salt, family history of hypertension,
dyslipidemia, diabetes, and obesity and oral hygiene behavior.

The performance of the proposed system and the TMI index (Ashley-Martin et al. [16])
on the test sets during cross-validation and the cross-validated confusion matrix are pro-
vided in Table 4. The comparison between their ROC curves is provided in Figure 2. The
cross-validated TMI cut-off was 13.50. The proposed system significantly outperformed
TMI (adjusted paired t-test; p < 0.05).
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Table 4. Performance comparison between the proposed system and the TMI index. The first row of
each metric shows the results for the proposed system, while the second row presents the results for
the TMI index.

Test Folds Cross-Validated Results

Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean SD Value 95% CI
Lower

95% CI
Upper

Sensitivity 0.867
0.554

0.967
0.541

0.972
0.549

0.976
0.552

0.958
0.537

0.947
0.547

0.048
0.007

0.947
0.547

0.941
0.535

0.953
0.558

Specificity 0.600
0.897

0.700
0.915

0.845
0.872

0.854
0.910

0.940
0.876

0.788
0.894

0.137
0.017

0.787
0.894

0.764
0.887

0.811
0.901

PPV 0.910
0.963

0.939
0.968

0.968
0.954

0.970
0.967

0.987
0.954

0.955
0.961

0.030
0.006

0.955
0.961

0.950
0.957

0.961
0.966

NPV 0.480
0.294

0.815
0.292

0.864
0.286

0.881
0.296

0.823
0.282

0.772
0.290

0.167
0.005

0.757
0.290

0.733
0.279

0.781
0.301

LR+ 2.150
5.400

3.218
6.330

6.292
4.280

6.687
6.130

15.939
4.330

6.857
5.290

5.437
0.864

4.452
5.150

3.986
4.530

4.973
6.060

LR- 0.230
0.497

0.048
0.502

0.033
0.518

0.028
0.492

0.045
0.529

0.077
0.507

0.086
0.014

0.067
0.507

0.060
0.496

0.076
0.520

Kappa 0.420
0.249

0.706
0.247

0.825
0.232

0.840
0.253

0.850
0.225

0.728
0.241

0.182
0.011

0.723
0.241

0.700
0.231

0.745
0.250

DOR 9.350
10.87

67.717
12.600

191.000
8.270

235.202
12.450

354.461
8.190

171.545
10.480

136.910
1.930

66.102
10.16

55.057
8.760

79.362
12.200

DP 0.950
1.013

1.789
1.075

2.229
0.897

2.317
1.070

2.491
0.893

1.955
0.990

0.619
0.081

1.779
0.984

1.701
0.918

1.856
1.061

AUC 0.730
0.774

0.833
0.748

0.909
0.730

0.915
0.782

0.949
0.733

0.867
0.753

0.087
0.021

0.867
0.754

0.858
0.743

0.876
0.764

MCC 0.420
0.341

0.709
0.344

0.825
0.318

0.840
0.349

0.853
0.312

0.730
0.333

0.181
0.015

0.723
0.333

0.711
0.320

0.734
0.345

CV: cross-validated; CI: confidence interval; PPV: positive predictive value; NPV: negative predictive value; LR+:
positive likelihood ratio; LR-: negative likelihood ratio; DOR: diagnostics odds ratio; DP: discriminant power;
AUC: area under the ROC curve; MCC: Matthew’s correlation coefficient; TMI: triponderal mass index.

The classification system for cardiometabolic syndrome showed robust performance
across multiple test folds, demonstrating high sensitivity and specificity values. Sensitivity
averaged 0.947 (SD = 0.048), indicating that the method reliably identifies positive cases.
Specificity, the mean of 0.788 (SD = 0.137) suggests a moderate to high capability to correctly
identify true negatives, though it shows more variability than sensitivity.

PPV and NPV are also noteworthy, with mean values of 0.955 (SD = 0.030) and 0.772
(SD = 0.167), respectively. The PPV indicates a high probability that patients classified as
having the syndrome actually do, while the NPV reflects a more variable but substantial
probability that patients not classified as having the syndrome truly do not.

Key metrics like the likelihood ratios (LR+ and LR−), DOR, and DP further affirm
the system’s effectiveness. The mean LR+ was 6.857 (SD = 5.437), indicating a significant
increase in the odds of having the syndrome when the test is positive. Conversely, a mean
LR− of 0.077 (SD = 0.086) indicates a low likelihood of having the syndrome when the test is
negative. The DOR averaged 171.545 (SD = 136.910), indicating a strong discriminatory test.

Kappa statistic and MCC both averaged 0.728 (SD = 0.182) and 0.730 (SD = 0.181),
respectively, suggesting substantial agreement and strong association between predicted
and actual classifications. The AUC was 0.867 (SD = 0.087), indicating “very-good” discrim-
inative ability.
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Figure 2. Comparison of ROC curves between our method and the TMI index. The ROC curve
for “our method” (blue, solid line) shows an AUC of 0.87. The ROC curve for the TMI index (red,
dashed-dot line) is also compared, illustrating its discriminative performance (AUC = 0.75). The
diagonal grey dashed line represents the line of no discrimination (AUC = 0.50).

The DP of the classification system averaged 1.955 (SD = 0.619), which falls into the
category of “moderate to good” discrimination according to conventional ranges where a
DP of 1–2 is considered moderate, and 2–3 is good. This metric underscores the system’s
ability to effectively differentiate between patients with and without the syndrome.

Overall, the consistency across different test folds is commendable, with key metrics
showing relatively low standard deviations, indicating stable performance of the clas-
sification system. The results suggest that the method is highly reliable and effective
for identifying cardiometabolic syndrome, with strong predictive capabilities and good
agreement with actual conditions.

4. Discussion
4.1. Choice of the Classifier

We chose the XGBoost classifier for our binary classification problem due to its ability
to handle mixed-type data effectively, which includes features with different measurement
scales. XGBoost is an ensemble learning method that uses gradient boosting to optimize
prediction performance. It is particularly well suited for problems where feature types and
scales vary because it can automatically handle different data types and is less sensitive to
feature scaling than other classifiers. Additionally, XGBoost offers strong regularization
options to prevent overfitting, and its ability to handle missing data internally further
enhances its suitability for our dataset. These advantages, combined with its robust
performance in various machine learning tasks, make XGBoost an appropriate choice for
our classification problem.

4.2. Comparison with the State-of-the-Art

To our knowledge, this is the first study to classify CMS using a comprehensive set
of noninvasive factors in children and adolescents through machine learning techniques.
While previous research has explored the relationship between various lifestyle behaviors
and cardiometabolic health [52], our study uniquely focuses on CMS—a broader and more
encompassing construct than MS—and employs noninvasive measures such as self-rated
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health, dietary habits, physical activity, and family history. Additionally, while TMI has
been proposed as a similar method for predicting cardiometabolic markers [53], it is a single
demographic index. Incorporating a broader range of factors, our method significantly
outperformed TMI (adjusted paired t-test; p < 0.05) (Figure 2; Table 4), providing a more
robust and accurate tool for early risk stratification. This novel approach enhances early
detection by offering a practical and accessible tool for predicting long-term cardiovascular
outcomes in younger populations, thereby addressing a critical gap in the existing literature.
Additionally, the large sample size and the relatively homogeneous nature of our population
enhanced the statistical significance of the findings.

Few studies have attempted to classify CMS using invasive markers, such as GlycA,
L-HDL-PL, and the ApoB/ApoA ratio [17]. While these biomarkers can provide detailed
insights into metabolic health, their reliance on blood samples and laboratory analysis
makes them less practical for widespread use, especially in large-scale screenings or settings
with limited resources. In contrast, our study’s noninvasive approach, which utilizes
easily accessible indicators like self-rated health and dietary habits, offers a more practical
and scalable solution for the early identification of cardiometabolic risks in children and
adolescents. Thus, it suits broader public health initiatives and routine clinical assessments.

4.3. Selected Predictors

Research has shown that SRH status significantly influences children and adoles-
cents’ CMR. Zhang et al.’s comprehensive meta-analysis demonstrated that higher SRH is
associated with more favorable CMR outcomes in this population [54]. Similarly, Näslindh-
Ylispangar et al. found a strong correlation between SRH and MS in middle-aged men in
Helsinki, highlighting the importance of clinical health status in preventing conditions like
diabetes, heart attack, or stroke [55]. Additionally, a cross-sectional study of 533 adolescent
girls in the Porto District indicated that better SRH is linked to lower cardiorespiratory risk
factors and reduced obesity [56].

Sunlight exposure is a significant factor influencing CMR in children and adolescents.
A 2021 study in Iran found that vitamin D deficiency, associated with insufficient sunlight,
was linked to higher rates of metabolic syndrome, abdominal obesity, low HDL-C, and high
fasting blood sugar in children [57]. Similarly, a 2020 study from Spain demonstrated that vi-
tamin D deficiency correlated with increased BMI, body fat, LDL-C, insulin, and other CMR
components in children [58]. Supporting this, a 2016 animal study showed that low-dose
ultraviolet radiation (UVR) exposure reduced weight gain and cardiometabolic dysfunction,
suggesting that regular, safe sunlight exposure could mitigate obesity risks [59].

Screen time (ST) significantly influences CMR in children and adolescents. Studies
have shown that high ST positively correlates with increased obesity, BMI, waist circumfer-
ence, TG, LDL-C, blood pressure, and lower HDL-C. Research from Iran in 2016 and Brazil
in 2017 highlighted the link between high ST and elevated CMR, especially in overweight
or obese adolescents [60,61]. Additionally, a 2011 study in the US found that children who
watched TV for four or more hours per day had a significantly higher risk of CMR than
those who watched less [62].

Consanguineous marriage, or autozygosity, is a significant factor associated with
increased CMR among children and adolescents. A 2020 study involving over 10,000
Sub-Saharan African individuals found a strong link between autozygosity and several
cardiometabolic traits, particularly in men [63]. Similarly, a 2014 study in Gujarat, In-
dia, revealed that children of consanguineous marriages had significantly higher odds of
developing heart disease, diabetes, and hypertension [64]. Another 2020 study in Saudi
Arabia found that individuals with consanguineous parents were three times more likely
to develop obesity compared to those without consanguineous parents [27].

Junk food consumption is strongly associated with increased CMR among children and
adolescents, contributing to obesity, hypertension, and diabetes. A 2020 study involving
14,400 students from 30 provinces in Iran found that while junk food was not directly
linked to MS incidence, it was associated with higher odds of high blood pressure, elevated
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diastolic and systolic blood pressure, overweight, and excess weight [65]. A 2017 meta-
analysis of 364 articles confirmed the correlation between unhealthy dietary patterns—
characterized by ultra-processed foods, high sodium, fat, and refined carbohydrates—
and cardiometabolic alterations in young populations [66]. Additionally, a 2015 study
highlighted the link between fast-food consumption and the occurrence of MS and its
components in children and adolescents [67].

Our study found that CMR among children and adolescents is gender-dependent.
A 2006 meta-analysis highlighted significant differences in MS incidence between males
and females, noting greater insulin resistance among girls during puberty and different
lipid accumulation patterns between genders [68]. Similarly, a 2018 study observed that
boys had higher TG levels, higher SBP, and lower HDL cholesterol compared to girls [69].
Additionally, a 2017 literature review indicated that women are at a higher risk for MS than
men [70].

A healthy diet is strongly associated with a reduction in CMR among children and
adolescents. A 2022 longitudinal analysis by Peterson et al. found that higher diet quality
was linked to improved CMR outcomes among Mexican youth, with at least one CMR
factor being positively influenced by better diet quality [71]. Additionally, a meta-analysis
confirmed similar findings in adults, demonstrating that healthy dietary patterns—rich
in vitamin D, mono- and polyunsaturated fatty acids, fiber, fruits, and vegetables—are
associated with better cardiovascular health and lower CMR [72].

Our findings indicate that living in rural or urban areas affects CMR status. Similar
studies have shown that the region of residence can significantly impact CMR factors. For
example, a 2011 study involving 19,256 Thai adults found a higher prevalence of MS in
urban areas compared to rural areas, particularly among men (23.1% vs. 17.9%, p < 0.05),
with low HDL and hypertriglyceridemia being more common in rural areas [73]. Con-
versely, a systematic review and meta-analysis of 74,168 American children and adolescents
revealed that obesity was more prevalent among those living in rural areas compared to
urban counterparts [74]. However, in contrast to these findings, a 2021 study in Eastern
Poland found a significant association between MS and rural residency, with rural children
exhibiting higher levels of glucose, TGs, blood pressure, and abnormal waist circumference
compared to urban residents [75].

Our study showed that the type of dietary fat is strongly linked to CMR in children
and adolescents. Supporting this, a systematic review found that replacing saturated fats
(SFAs) with monounsaturated (MUFAs) or polyunsaturated fats (PUFAs) lowers total and
LDL cholesterol, reducing the risk of CVD, particularly in men [76]. Recent reviews and
meta-analyses also confirmed that reducing SFAs and trans-fatty acids (TFAs) intake in
youth significantly decreases TG levels and CVD risk later in life [77,78].

Birth order is significantly associated with CMR among children and adolescents. A
study involving over 1 million Swedish children found that later-born children had lower
BMI than first-borns, though there was no significant link between birth order and BP
in young men [79]. Similarly, a 2021 study in Thailand observed that first-borns had a
3.3-times greater risk of obesity compared to later-borns, though no significant associations
were found with other cardiometabolic outcomes [80].

Adding extra salt to food is another significant factor linked to CMR in children and
adolescents. A review study found a strong positive association between reducing salt
and sugar intake and lowering cardiometabolic risks [81]. Similarly, a study in Greece
highlighted that reducing added salt intake significantly improves blood pressure control,
a key CMR factor in young populations [82].

A family history of NCDs, such as cancer or diabetes, is significantly associated with
increased CMR in children and adolescents. A study among Asian Indian adolescents
found that those with one or both diabetic parents had higher BMI, waist circumference,
impaired glucose levels, hypertension, and lower HDL-C compared to those with parents
having normal glucose tolerance [83]. Similarly, a study of African American and Mexican
American children aged 12–19 revealed that impaired fasting glucose (IFG), impaired
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glucose tolerance (IGT), and prediabetes were prevalent mainly among those with a family
history of NCDs, with rates of 25% for type 2 diabetes, 21% for obesity, and 35% for other
NCDs [84]. Additionally, a study in Iran involving 14,400 children and adolescents found a
significant link between parental NCDs and abnormal CMR in their offspring, particularly
in relation to cardiovascular disease, type 2 diabetes, and certain cancers [85].

Tooth health status was the last factor we discussed that significantly impacts CMRs
among children and adolescents. Based on a study published in the same region among
5258 students aged 10–18, the authors found an association between tooth brushing fre-
quency and CMRs among adolescents. The results demonstrated that there was an associa-
tion between higher frequency of tooth brushing and lower mean levels of LDL-C in both
genders (p < 0.0001), lower frequency of evaluated LDL-C among girls (p = 0.03), and lower
frequency of elevated BP among boys (p = 0.03) [86].

A Japanese 5-year follow-up study found that infrequent tooth brushing was associ-
ated with a higher prevalence of MS and CMRs, such as obesity, elevated TGs, high blood
pressure, fasting glucose, and reduced HDL cholesterol. Participants who brushed their
teeth ≤1 time per day had significantly higher odds of these CMRs compared to those
brushing ≥3 times per day (odds ratio = 0.64, 95% confidence interval: 0.45–0.92) [87].
Similarly, a recent study on children aged 12–15 years found that those with poor oral
hygiene had higher frequencies of abnormal CMRs, including elevated C-reactive protein,
insulin resistance, interleukin-6, and lower adiponectin levels, compared to children with
healthier tooth status [88].

4.4. Limitations

A dependable medical diagnosis system must meet specific criteria. It is deemed
clinically reliable if it adheres to specific Type I and Type II statistical error rates [89],
maintains a false discovery rate (FDR = 1-precision) [90], and achieves DORs [91]. To fulfill
these conditions, the system must have minimum sensitivity, specificity, precision, and
DOR values of 80%, 95%, 95%, and 100, respectively [92]. Our proposed system meets
three conditions: sensitivity, precision, and DOR. However, the system’s specificity must
be improved to be considered reliable.

All information except laboratory factors used in this study is self-reported by the
students and their parents. It might be disposed to recall bias or social desirability bias,
especially for the birth-related questions.

One limitation of our study is its cross-sectional design, which can provide valuable
insights into associations between various factors and CMR at a specific time. However, it
cannot be used to predict future events or establish causality. A cohort study design would
be necessary for accurate predictions of future health outcomes, which is the focus of our
future work. Despite this limitation, our study offers important and valuable data that
contribute to understanding CMR among children and adolescents.

Additionally, due to cross-sectional data collection, we cannot verify the causality
between life-related risk factors and CMRs. In addition, we cannot exclude any extra infor-
mation due to genetic factors. Primary prevention through lifestyle modification should
focus on high-risk behavior patterns in children. Given the complex impact of lifestyle
factors on CMRs, well-designed, prospective, or genome-wide studies in adolescents
are necessary.

5. Conclusions

In conclusion, this study provides a promising advancement in the early identification
of CMS in children and adolescents by employing noninvasive factors and machine learning
techniques. Addressing the initial research questions, our findings highlight the superior
predictive accuracy of our model over traditional methods such as TMI, emphasizing the
practical advantages of using easily accessible, noninvasive indicators. This approach not
only allows for more effective early intervention strategies but also has broader implications
for improving long-term pediatric health outcomes by preventing the progression of CMS
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into more severe cardiovascular conditions. Our study underscores the importance of
integrating advanced predictive analytics into clinical practice to better manage and reduce
the burden of cardiometabolic risks in young populations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/info15090564/s1, Table S1. Minimal Dataset: A representative
dataset with age, living region, and gender information for CMS/non-CMS groups.
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