01010

01010

Y] information

Article

Adaptive and Scalable Database Management with Machine
Learning Integration: A PostgreSQL Case Study

Maryam Abbasi 117, Marco V. Bernardo >3, Paulo Vaz >4, José Silva 34

check for
updates

Citation: Abbasi, M.; Bernardo, M.V.;
Vaz, P; Silva, J.; Martins, P. Adaptive
and Scalable Database Management
with Machine Learning Integration: A
PostgreSQL Case Study. Information
2024, 15, 574. https://doi.org/
10.3390/info15090574

Academic Editors: Shadi Banitaan

and Mina Maleki

Received: 30 August 2024
Revised: 13 September 2024
Accepted: 16 September 2024
Published: 18 September 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Pedro Martins 3%*

Applied Research Institute, Polytechnic of Coimbra, 3045-093 Coimbra, Portugal; maryam.abbasi@ipc.pt
Instituto de Telecomunicagdes, 6201-001 Covilha, Portugal; mbernardo@ubi.pt

Polytechnic of Viseu, Department of Informatics, 3504-510 Viseu, Portugal; paulovaz@estgv.ipv.pt (P.V.);
jsilva@estgv.ipv.pt (J.S.)

4 Research Center in Digital Services (CISeD), Polytechnic of Viseu, 3504-510 Viseu, Portugal
Correspondence: pedromom@estgv.ipv.pt

Abstract: The increasing complexity of managing modern database systems, particularly in terms
of optimizing query performance for large datasets, presents significant challenges that traditional
methods often fail to address. This paper proposes a comprehensive framework for integrating
advanced machine learning (ML) models within the architecture of a database management system
(DBMS), with a specific focus on PostgreSQL. Our approach leverages a combination of supervised
and unsupervised learning techniques to predict query execution times, optimize performance, and
dynamically manage workloads. Unlike existing solutions that address specific optimization tasks
in isolation, our framework provides a unified platform that supports real-time model inference
and automatic database configuration adjustments based on workload patterns. A key contribution
of our work is the integration of ML capabilities directly into the DBMS engine, enabling seamless
interaction between the ML models and the query optimization process. This integration allows for
the automatic retraining of models and dynamic workload management, resulting in substantial
improvements in both query response times and overall system throughput. Our evaluations using
the Transaction Processing Performance Council Decision Support (TPC-DS) benchmark dataset at
scale factors of 100 GB, 1 TB, and 10 TB demonstrate a reduction of up to 42% in query execution
times and a 74% improvement in throughput compared with traditional approaches. Additionally,
we address challenges such as potential conflicts in tuning recommendations and the performance
overhead associated with ML integration, providing insights for future research directions. This
study is motivated by the need for autonomous tuning mechanisms to manage large-scale, hetero-
geneous workloads while answering key research questions, such as the following: (1) How can
machine learning models be integrated into a DBMS to improve query optimization and workload
management? (2) What performance improvements can be achieved through dynamic configuration
tuning based on real-time workload patterns? Our results suggest that the proposed framework
significantly reduces the need for manual database administration while effectively adapting to
evolving workloads, offering a robust solution for modern large-scale data environments.

Keywords: machine learning integration; database optimization; query performance; dynamic
workload management; PostgreSQL; real-time system tuning

1. Introduction

The exponential growth of data in the modern era has made database management
systems integral to efficiently storing and retrieving information. However, the increasing
complexity and scale of these systems, especially in terms of optimizing query perfor-
mance for large datasets, present significant challenges. Traditional database management
techniques often struggle to cope with these challenges, particularly when dealing with
dynamic and heterogeneous workloads. Manual tuning and configuration, while effective

Information 2024, 15, 574. https:/ /doi.org/10.3390/info15090574

https:/ /www.mdpi.com/journal/information

https://doi.org/10.3390/info15090574
https://doi.org/10.3390/info15090574
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-9011-0734
https://orcid.org/0000-0003-0046-8685
https://orcid.org/0000-0002-1745-8937
https://orcid.org/0000-0001-7285-8282
https://orcid.org/0000-0002-2118-1440
https://doi.org/10.3390/info15090574
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15090574?type=check_update&version=1

Information 2024, 15, 574

2 of 25

in smaller or more stable environments, are becoming increasingly impractical and insuffi-
cient for modern, large-scale data environments. Furthermore, as workload patterns evolve
rapidly, the need for real-time optimization becomes paramount.

Recent advancements in machine learning (ML) have introduced new opportunities
for automating and enhancing various aspects of DBMS operations, including query opti-
mization, indexing, and workload management. Several studies have demonstrated the
potential of ML models to predict query execution times, optimize query plans, and au-
tomate the selection of indexes and configuration parameters. However, these efforts
often focus on isolated aspects of database management, lacking a unified framework that
simultaneously addresses multiple optimization tasks and adapts in real time to chang-
ing workloads. For instance, Ref. [1] highlights the use of ML in query optimization,
and [2] applies ML to optimize performance, yet both focus on narrow tasks within the
broader scope of DBMS operations. Our work builds on these efforts by offering a holistic,
real-time approach.

This study is motivated by two primary research questions: (1) How can machine
learning models be integrated into a DBMS to improve query optimization and workload
management? (2) What performance gains can be achieved through dynamic configuration
tuning based on real-time workload patterns? These questions stem from the increasingly
complex demands of modern databases, where workload diversity and scale necessitate
sophisticated optimization strategies.

In this paper, we propose a comprehensive framework that integrates advanced ML
models within the architecture of a DBMS, with a particular focus on PostgreSQL. Our
framework is designed to overcome the limitations of existing approaches by offering
a tightly coupled platform that enables real-time ML model inference and dynamic ad-
justment of database configurations based on ongoing workload patterns. We employ a
combination of supervised learning techniques, such as linear regression and random forest,
and unsupervised methods, including K-means clustering, to accurately predict query
execution times, identify patterns in query workloads, and suggest optimization strategies
that improve overall system performance. This combination ensures that both historical
data patterns and unseen data behaviors are accounted for in the optimization process.

A key innovation of our framework is the seamless integration of ML models with
the DBMS engine, allowing for real-time data ingestion, automated model retraining,
and continuous adaptation to workload changes. This approach not only minimizes
the need for manual database administration but also enhances the DBMS’s ability to
maintain optimal performance in diverse and evolving environments. By integrating these
ML capabilities directly into the query optimization process, our framework achieves
significant improvements in both query response times and system throughput.

The contributions of this paper are as follows:

e We propose a comprehensive ML-driven framework that addresses multiple aspects
of database optimization, including query performance prediction, workload manage-
ment, and dynamic configuration tuning.

e We demonstrate a novel approach for integrating ML models within the PostgreSQL
DBMS engine, facilitating real-time inference and optimization.

* Weapply advanced feature engineering techniques tailored for database environments,
enabling more accurate and effective ML model predictions by considering factors
such as query structure, data distribution, and system state.

* We conduct extensive evaluations by using the Transaction Processing Performance
Council Decision Support (TPC-DS) benchmark to showcase the scalability and adapt-
ability of our framework, with significant improvements in query execution times and
system throughput.

e We address potential limitations, such as conflicts in tuning recommendations and
the overhead of ML integration, providing insights for future research directions.
Specifically, we explore the trade-offs involved in integrating ML models into a DBMS
and identify future directions to enhance model retraining and scalability.

Information 2024, 15, 574

30f25

The rest of this paper is organized as follows: Section 2 provides a comprehensive
review of related work. Section 3 details our system architecture and integration approach.
Section 4 describes our ML methodology, including feature selection, model training,
and optimization strategies. Section 5 presents our experimental setup and evaluation
results. Finally, Section 6 concludes the paper and discusses future research directions.

2. Related Work

The application of machine learning to database management systems has seen sig-
nificant advancements over the past decade, driven by the increasing complexity of data
and the need for more efficient, adaptive optimization techniques. This section reviews
the state of the art in ML-driven database optimization, focusing on query optimization,
workload management, automated database tuning, and the integration of ML within
DBMS architectures. We also discuss the limitations of existing approaches and how our
proposed framework seeks to address these challenges.

2.1. Query Optimization

Query optimization is a cornerstone of DBMS performance, and significant research
has been conducted on leveraging ML to enhance this process. Traditional query optimizers
rely on cost-based methods that use predefined rules and heuristics to estimate the cost of
executing different query plans. However, these methods often fall short in handling the
complexities of modern workloads and data distributions.

Recent studies have explored various ML approaches to address these limitations.
For instance, Yu et al. [3] introduced a reinforcement learning-based technique that adapts
query plan selection based on feedback from previous executions. This approach has
shown improvements over traditional cost-based optimizers, particularly in dynamic
environments. However, reliance on a high number of training data and the computational
overhead of training models remain significant challenges.

Cardinality estimation, a crucial aspect of query optimization, has also benefited
from ML advancements. Kwon et al. [4] proposed a deep learning model to improve the
accuracy of cardinality estimates, which are often inaccurate in traditional optimizers due to
assumptions about data distributions. Their approach reduces errors in estimation, leading
to better query plan choices. Nevertheless, the model’s performance heavily depends on
the availability of large, labeled datasets for training, which may not always be feasible.

Join order optimization is another critical area where ML has been applied. Li et al. [5]
developed an ML model that predicts the optimal join order by learning from past query
executions. While their model shows promise, it focuses narrowly on join orders without
considering other factors that influence query performance. Heitz et al. [6] extended this
idea by using deep reinforcement learning to optimize entire query plans, including join
orders. Their method, however, requires substantial computational resources for training
and may not generalize well to different database environments.

Beyond individual optimization tasks, recent efforts have explored more holistic
approaches. Paganelli et al. [7] demonstrated how ML predictions could be integrated
directly into DBMSs for real-time query optimization. Their approach minimizes the
overhead typically associated with external ML services by embedding ML models within
the DBMS. However, it still requires fine tuning for complex, real-time workloads.

Additionally, in [1], the authors explore the use of PostgreSQL and ML for query
optimization, showing significant performance gains in decision support systems, which
aligns with our approach. Similarly, the study by [2] illustrates the effectiveness of ML
algorithms for query optimization and workload prediction in real-time scenarios, further
motivating our integrated framework.

2.2. Workload Management

Workload management is crucial to maintaining DBMS performance, particularly in
environments with dynamic and heterogeneous workloads. Traditional approaches often

Information 2024, 15, 574

4 of 25

rely on static configurations that are ill suited to adapt to changing workloads, leading to
suboptimal performance.

ML has been increasingly applied to improve workload management. Shaheen et al. [8]
developed an ML-based workload classification system that categorizes incoming queries
into different workload classes. This classification helps the DBMS optimize resource
allocation for each class, improving overall system efficiency. However, their approach
does not extend to making specific optimization recommendations for each workload class,
limiting its impact on query performance.

Automated tuning services such as OtterTune [9] have also employed ML to enhance
workload management. OtterTune uses ML to analyze historical workload data and opti-
mize DBMS configuration parameters accordingly. While this approach shows significant
improvements in performance, it primarily focuses on static parameter tuning rather than
dynamic, workload-specific optimization. As a result, it may struggle to adapt quickly to
sudden changes in workload patterns.

In addition to workload classification and parameter tuning, other studies have ex-
plored ML-based admission control. Xia et al. [10] proposed a system that uses ML to
control the admission of queries into the DBMS based on the current system load and query
characteristics. This approach helps prevent system overloads and ensures more consistent
performance. However, it does not integrate with broader optimization strategies such as
query plan selection or resource allocation.

The need for dynamic workload adaptation is further highlighted in [1], where ML
models dynamically adapt to workload changes in PostgreSQL environments. This real-
time adaptability also forms a key element of our framework.

2.3. Automated Database Tuning

As DBMS scale and complexity increase, automated tuning has become a critical area
of research. Traditional tuning methods, which rely on manual configuration and expert
knowledge, are increasingly inadequate for managing the vast number of parameters and
interactions in modern DBMSs.

ML techniques have been successfully applied to various aspects of automated
database tuning. Siddiqui et al. [11] proposed an ML-based approach for automated
index selection. Their system learns from past query executions to recommend indexes that
improve query performance. While this approach can outperform traditional heuristics,
it does not account for the interactions between index selection and other optimization
techniques, such as query plan selection or buffer pool management.

Buffer pool management, another critical tuning task, has also benefited from ML
advancements. Tan et al. [12] introduced iBTune, an ML-driven buffer pool tuning system
that dynamically adjusts memory allocation based on workload characteristics. This
approach improves memory utilization and query performance but is limited to a single
aspect of database tuning.

Parameter tuning, which involves adjusting DBMS configuration settings, has been
a focus of several studies. Zhang et al. [13] developed OtterTune, an automated tuning
service that uses ML to optimize configuration parameters. OtterTune analyzes historical
performance data to identify optimal settings, reducing the need for manual tuning. How-
ever, like other solutions, OtterTune primarily focuses on static tuning and may not adapt
quickly to changing workloads.

Our work integrates ML-driven workload management with automated tuning ap-
proaches, leveraging the dynamic tuning capabilities presented in these studies to create a
more comprehensive optimization framework.

2.4. Integration of Machine Learning within DBMS Architectures

The integration of ML models directly into DBMS architectures is a relatively new area
of research, aiming to bring the benefits of ML-driven optimization closer to the core of the

Information 2024, 15, 574

50f25

DBMS. Traditional approaches often treat ML models as external components, which can
introduce latency and integration challenges.

Several studies have explored embedding ML models within DBMSs to reduce these
challenges. Marcus et al. [14] pioneered the concept of “learned indexes”, where ML models
replace traditional B-tree indexes. This approach demonstrated significant performance im-
provements for specific workloads but required specialized models and did not generalize
to other DBMS functions.

Paganelli et al. [7] extended this concept by integrating ML models into the query
optimization process, enabling real-time adjustments based on workload dynamics. While
their approach minimizes the overhead of using external ML services, it requires careful
tuning to handle the complexity of real-time query optimization.

Building on these advancements, our framework seeks to push the boundaries of real-
time integration by embedding ML models directly into PostgreSQL’s core. By combining
both supervised and unsupervised learning techniques, our system adapts dynamically to
workload changes, optimizing multiple aspects of query execution and database configura-
tion in real time.

2.5. Gaps and Contributions

Despite the significant advancements in ML-driven DBMS optimization, several gaps
remain unaddressed. Many existing solutions focus on specific aspects of database manage-
ment, such as query optimization, workload management, or parameter tuning, without of-
fering a comprehensive approach that simultaneously addresses multiple optimization
tasks. Additionally, few approaches provide the real-time integration necessary to adapt
quickly to changing workloads or data distributions. Moreover, the feature representations
used in many ML models for DBMS optimization often fail to capture the full complexity
of database operations, limiting the effectiveness of these models.

Our proposed framework addresses these gaps by offering a unified solution that
integrates multiple aspects of database optimization—query performance prediction, work-
load management, and configuration tuning—into a single, real-time platform. We also
employ advanced feature engineering techniques that capture the complexity of query
structures, execution plans, and system states, leading to more accurate and effective
ML-driven optimization.

In summary, our work advances the state of the art in ML-driven database manage-
ment by providing a comprehensive, real-time solution that addresses the limitations of
existing approaches. Our framework not only enhances query performance but also im-
proves overall system throughput and adaptability, making it a robust solution for modern,
large-scale data environments.

3. System Architecture

This section presents the detailed architecture of our proposed machine learning (ML)-
integrated database management system (DBMS) framework, which is designed to enhance
query performance, automate database management tasks, and dynamically adapt to
workload variations. The architecture is built on PostgreSQL (version 13.0) and is modular,
allowing for the seamless integration of various ML models and supporting real-time
adjustments to database configurations. The architecture is structured into three primary
layers: the Database Management Layer, the Machine Learning Integration Layer, and the
User Interface and Visualization Layer. Each layer is designed to function independently,
ensuring flexibility, scalability, and ease of maintenance. We have integrated dynamic
clustering mechanisms to manage workload patterns, utilizing methods such as K-means
for workload classification.

3.1. Overview of Architecture

The system architecture is depicted in Figure 1. This architecture ensures tight in-
tegration between ML models and the DBMS, facilitating real-time query optimization

Information 2024, 15, 574 6 of 25

and dynamic system adjustments. The modular design allows for independent updates to
components without disrupting overall system functionality, thus supporting long-term
scalability and adaptability. Our approach to workload management adapts dynamically,
with clustering techniques ensuring optimal workload distribution across system resources.

User Interface and
Visualization

Machine Learning

Monitoring and -
FeedbackSystem | «— | Model Training
and Interface

|

Machine Learning

Engine

Streaming Data

“——— | Model Repository
Integration Module
________________________________ 1
e 1
Data Preprocessing Machine Learning
—
Pipeline Integration Layer

Database Management System

Query Processing Indexing Resource Management

Figure 1. System architecture: interaction among Database Management Layer, Machine Learning
Integration Layer, and User Interface and Visualization Layer.

The architecture consists of the following layers:

1. Database Management Layer: It handles core database functions such as query pro-
cessing, indexing, and resource management. This layer is built on PostgreSQL and is
extended with custom functionalities to integrate ML capabilities.

2. Machine Learning Integration Layer: It bridges the DBMS with advanced ML capabili-
ties, enabling real-time model inference, dynamic database configuration adjustments,
and continuous learning from system performance. This layer also includes mecha-
nisms for determining the optimal number of clusters in workload patterns, utilizing
the elbow method and silhouette analysis for validation.

3. User Interface and Visualization Layer: It provides tools for monitoring, visualizing,
and managing the database system, ensuring that database administrators (DBAs) can
effectively oversee the system’s performance and interact with the ML components.

Information 2024, 15, 574

7 of 25

S N

3.2. Database Management Layer

The Database Management Layer forms the foundation of our system, managing
essential database operations such as query processing, indexing, and resource allocation.
Built on PostgreSQL, this layer is augmented with custom extensions, including user-
defined functions (UDFs), planner hooks, and a specialized data exchange mechanism to
integrate machine learning seamlessly.

3.2.1. Custom Query Planner Hooks

A key innovation within this layer is the custom planner_hook. This hook intercepts
SQL queries before plan generation, allowing the system to incorporate ML-based cost
estimates and optimization suggestions directly into the query planning process. By dy-
namically adjusting query execution plans based on real-time ML predictions, the system
significantly improves query performance. This process also incorporates the predicted
number of clusters for the workload pattern, allowing for more efficient resource allocation
based on workload classification.

Below (Listing 1), we show how the custom planner_hook is implemented.

Listing 1. Custom planner hook implementation.

static PlannedStmt *
custom_planner_hook(Query #*parse, int cursorOptions, ParamListInfo boundParams)

3| {

PlannedStmt *result;

s| // Call the standard planner
7| result = standard_planner(parse, cursorOptions, boundParams);

// Ezxtract query features for ML model
extract_query_features(result);

2| // Generate ML-based cost estimates
;| double ml_cost_estimate = get_ml_cost_estimate(result);

5| // Inject ML cost into the plan

result->total_cost = ml_cost_estimate;

return result;

o3

This hook’s flexibility allows it to support various ML models and optimization
strategies, making it adaptable to different database environments and specific use cases.

3.2.2. User-Defined Functions (UDFs) for Real-Time Feature Extraction

To enable effective ML-driven optimization, the system requires the real-time extrac-
tion of relevant query features. We developed several UDFs that analyze incoming queries
and extract essential features, such as join types, aggregation presence, table sizes, and data
distribution characteristics. These features are then used by the ML models to predict query
execution times and generate optimization strategies. These features are also critical to
determining the optimal number of clusters for workload distribution.

An example UDF for extracting join types is shown below (Listing 2).

Information 2024, 15, 574

8 of 25

®

Listing 2. UDF for extracting join types.

CREATE OR REPLACE FUNCTION extract_join_type(query TEXT)

»| RETURNS TEXT AS $$
;| BEGIN

-- Analyze the query to determine the join type

5| IF query ~* ’INNER_,JOIN’ THEN

RETURN ’INNER’;

ELSIF query ~* ’LEFT,JOIN’ THEN
RETURN ’LEFT’;

ELSIF query “* ’RIGHT_ JOIN’ THEN
RETURN ’RIGHT’;

ELSE

2| RETURN ’UNKNOWN? ;
3| END IF;

END;

5| $¢ LANGUAGE plpgsql;

These UDFs are invoked during the query planning phase, ensuring that the ML
models have access to all necessary contextual information, thereby improving the accuracy
and effectiveness of their predictions.

3.2.3. PostgreSQL Extension for Data Exchange

Efficient communication between PostgreSQL and the ML components is critical to
maintaining low-latency, high-performance operations. To achieve this, we developed
a custom PostgreSQL extension, pg_mlopt, which uses shared memory mechanisms to
facilitate rapid data exchange. This extension ensures that real-time optimization can be
applied without introducing significant overhead, preserving the overall performance of
the DBMS.

3.3. Machine Learning Integration Layer

The Machine Learning Integration Layer is the intelligence hub of the architecture,
connecting the DBMS'’s core functionalities with advanced ML models. This layer is
responsible for real-time model inference, dynamic database configuration adjustments,
and continuous learning based on system performance data.

3.3.1. Query Interception and Feature Extraction

This component intercepts queries via the planner_hook and extracts relevant fea-
tures in real-time by using the UDFs defined in the Database Management Layer. These
features are crucial to predicting execution times and suggesting optimization. Addi-
tionally, clustering-based features are extracted to classify workloads and adapt system
resources accordingly.

The following snippet illustrates how query features are processed (Listing 3).

Listing 3. Processing query features for ML integration.

void process_query_features(Query *query)

{

;| FeatureSet features = extract_features(query);

ModelPrediction prediction = run_ml_model(features);

| if (prediction.requires_tuning)

{
adjust_query_plan(query, prediction);
}

|3

Information 2024, 15, 574

9 of 25

s

This approach ensures that each query is optimized based on the latest data and the
current state of the system, leading to enhanced query execution efficiency.

3.3.2. Real-Time Communication with ML Models

PostgreSQL’s background worker processes maintain persistent connections with
the ML Inference Engine, enabling low-latency predictions and optimization suggestions.
These background workers scale with demand, ensuring that the system can handle high
workloads without performance degradation.

The following code snippet demonstrates the setup for ML inference (Listing 4).

Listing 4. Background worker for ML inference.

}

void start_background_worker ()

{

5| BackgroundWorker bgw;

bgw.bgw_name = "ML ,Inference Engine Connector";

5| bgw.bgw_main = ml_inference_main;
| bgw.bgw_restart_time = BGW_NEVER_RESTART;

RegisterBackgroundWorker (&bgw) ;

void ml_inference_main(Datum main_arg)

{

// Establish connection to ML inference engine

5| connect_to_ml_engine();

s|while (!got_sigterm)
| {

// Wait for query processing requests
process_query_requests() ;

9| ¥

}

This setup ensures that the ML models continuously provide optimization feedback,
allowing the system to dynamically adapt to workload variations. The workload classi-
fication based on clustering results is also processed in real time, allowing for efficient
resource management.

3.3.3. Integration of ML-Based Recommendations

Once the ML models process the extracted features, the system modifies the query
execution plans based on the predictions. This includes adjustments to join orders, access
methods, and resource allocation to optimize performance.

Below (Listing 5), we show an example of how query plans are adjusted based on
ML recommendations.

These modifications ensure that the system remains responsive to changes in query
workloads and data distributions, consistently delivering optimal performance.

3.3.4. Dynamic Configuration Adjustments

This component enables the system to make real-time adjustments to the DBMS’s
configuration settings, such as work_mem and effective_cache_size, based on the cur-
rent workload.

The following snippet (Listing 6) shows how dynamic configuration adjustments
are made.

These adjustments help maintain system performance by optimizing resource allo-
cation in response to varying workload demands. Additionally, resource allocation is

Information 2024, 15, 574

10 of 25

N

dynamically adjusted based on clustering insights, ensuring efficient utilization of sys-
tem resources.

Listing 5. Modifying query plan based on ML recommendations.

void adjust_query_plan(PlannedStmt *stmt, ModelPrediction prediction)
{

5| if (prediction.suggested_join_order)
{

5| reorder_joins(stmt, prediction.join_order);

}

if (prediction.change_access_method)
{

use_index_scan(stmt) ;

}

5| // Apply further adjustments based on ML prediction

}

Listing 6. Dynamic configuration adjustment in PostgreSQL.

if (workload_intensity == HIGH)

2| {
;| set_config("work_mem", "256MB", PGC_SUSET, PGC_S_SESSION);

}

5| else

{
set_config("work_mem", "64MB", PGC_SUSET, PGC_S_SESSION) ;

}

3.4. User Interface and Visualization Layer

The User Interface and Visualization Layer provides the necessary tools for DBAs
to monitor system performance, interact with ML components, and manage database
configurations. This layer is critical to ensuring usability, transparency, and accessibility as
the system automates complex tasks.

3.4.1. Monitoring and Feedback System

Our architecture integrates Prometheus for performance metrics collection and Grafana
for real-time visualization. The monitoring system tracks key performance indicators (KPIs)
such as query execution times, CPU usage, memory utilization, and disk I/O, enabling
DBAs to understand the system’s current state and make informed decisions.

An example of Prometheus configuration for capturing query execution times is
shown below (Listing 7).

Listing 7. Prometheus configuration for query execution metrics.

- job_name: ’postgresql’
static_configs:

3| - targets: [’localhost:9187°]

metrics_path: ’/metrics’

;| scrape_interval: ’5s’

This configuration ensures that Prometheus scrapes metrics from PostgreSQL at regu-
lar intervals, keeping performance data up to date for analysis.

Information 2024, 15, 574

11 of 25

3.4.2. Visualization Tools

The visualization tools in this layer offer comprehensive graphical representations of
system operations, including workload patterns, query execution plans, and the effects of
ML-driven optimization. These tools help DBAs visualize the system’s decisions and the
impact of various optimization strategies on performance.

For instance, a Grafana dashboard might display query execution times before and
after applying ML-based optimization, providing clear evidence of the effectiveness of the
system’s recommendations. This includes visualizations for workload clustering results,
illustrating the impact of optimal cluster selection on performance.

3.4.3. Automated Feedback Loops

Automated feedback loops are implemented to continuously improve the ML models
by triggering retraining or hyperparameter tuning based on performance metrics. As the
system processes more queries and workloads, it gathers data that can be used to refine the
ML models, ensuring they remain accurate and effective over time.

These feedback loops are critical to maintaining the system’s long-term adaptability,
allowing it to evolve alongside changing data distributions and workload characteristics.

3.5. Data Flow and Interaction

The data flow within the system is designed to ensure seamless interaction between the
DBMS and the ML components, enabling real-time optimization and continuous learning.
The data flow proceeds as follows:

1. Query submission: A query is submitted to PostgreSQL and intercepted by the ML
Integration Layer via the custom planner_hook.

2. Feature extraction: The query is analyzed, and features are extracted in real time by
using the UDFs. These features include key attributes such as join types, aggregation
presence, and table sizes. Workload features for clustering are also extracted to ensure
optimal resource allocation.

3. Data preprocessing: The extracted features are processed by the Data Preprocessing
Pipeline, where transformations like normalization and encoding are applied to
prepare the data for ML inference.

4. ML inference: The preprocessed features are passed to the ML Model Training and
Inference Engine, which uses the current best-performing model to make predictions
or provide optimization suggestions.

5. Plan modification: Based on the ML insights, the system modifies the query execution
plan. Adjustments may include reordering joins, changing access methods, or modifying
resource allocation.

6. Query execution: The modified plan is executed by PostgreSQL with the system
monitoring performance metrics in real-time.

7. Performance analysis: The Monitoring and Feedback System analyzes the collected met-
rics, comparing actual performance against predictions and identifying any anomalies.

8. Continuous learning: The Streaming Data Integration Module continuously updates
the ML models with new data, including query performance metrics and changes in
data distributions.

9. Model update: The ML Model Training and Inference Engine periodically retrains
models or fine-tunes hyperparameters to maintain optimal performance based on the
accumulated data and performance analysis.

This structured data flow ensures that the system operates efficiently and effectively,
providing real-time optimization while continuously learning and improving from its
interactions with the database environment.

Information 2024, 15, 574

12 of 25

3.6. Scalability and Extensibility

Our architecture is designed with scalability and extensibility in mind. The system can
handle increasing workloads by scaling its background processes and ML model inference
capabilities. As the number of data and query complexity grow, the architecture can adapt
by adding more computational resources or optimizing the existing ones.

The modular design allows for the easy integration of new ML models, feature ex-
traction methods, or database optimization techniques. This extensibility ensures that the
system can evolve with advancements in both database technology and machine learning,
maintaining its relevance and effectiveness over time.

3.7. Security and Privacy Considerations

Integrating ML into DBMS architectures brings numerous benefits, but it also raises
concerns regarding data security and privacy. Our architecture includes mechanisms for
securing data as they move between the DBMS and ML components. Data are encrypted
during transmission, and access to sensitive information is tightly controlled through
role-based access controls (RBACs).

Additionally, we implement privacy-preserving techniques such as differential privacy
to ensure that the ML models do not inadvertently expose sensitive information during
the optimization process. These measures are critical to ensuring that the system can be
deployed in environments with stringent security and privacy requirements.

3.8. Future Enhancements

As part of our ongoing efforts to improve the system, we plan to explore several future
enhancements, including the following:

* Advanced predictive models: Incorporating deep learning models to handle more
complex and non-linear patterns in query execution and workload management.

* Integration with additional DBMS platforms: Expanding the framework to support
other DBMS platforms, increasing its applicability across different environments.

¢ Adaptive learning mechanisms: Developing adaptive learning mechanisms that au-
tomatically adjust the learning rate or model complexity based on real-time perfor-
mance metrics.

* Enhanced visualization tools: Adding more sophisticated visualization tools that
provide predictive insights and deeper analysis of system performance and ML-
driven decisions.

These enhancements aim to further improve the system’s performance, adaptability,
and usability, ensuring that it remains at the forefront of ML-driven database management
solutions. Additionally, further refinement of the workload clustering mechanism will help
optimize resource allocation across more diverse workload patterns.

Our proposed architecture offers a comprehensive solution for integrating ML into
DBMS environments, enhancing query optimization, workload management, and dynamic
tuning. Through its modular design, real-time capabilities, and continuous learning pro-
cesses, the system addresses many of the challenges faced by traditional DBMS approaches.
As data environments continue to evolve, our architecture provides a scalable, adaptable,
and secure framework that can meet the demands of modern database systems.

4. Experimental Setup

To rigorously evaluate the performance and scalability of our proposed ML-integrated
DBMS framework, we conducted a comprehensive set of experiments. This section details
the experimental setup, including the dataset, workload characteristics, system configura-
tion, ML model training methodology, and the evaluation metrics used.

Information 2024, 15, 574

13 of 25

4.1. Dataset and Workload

We utilized the TPC-DS benchmark dataset, which is widely recognized for evaluat-
ing decision support systems under various query workloads. The TPC-DS benchmark
provides a complex schema with 24 tables, including fact and dimension tables, and it
simulates real-world business scenarios that involve diverse and sophisticated queries. Ad-
ditionally, we considered the usage of both OLAP and OLTP queries in different workload
configurations, expanding upon prior evaluations focused solely on OLAP environments.

4.1.1. Dataset Characteristics

* Scale factors: We generated TPC-DS data at three different scale factors: 100 GB, 1 TB,
and 10 TB. These scales allowed us to evaluate the scalability of our system across
small to large data volumes.

* Schema complexity: The TPC-DS schema consists of 7 fact tables and 17 dimension
tables, representing a typical star schema used in data warehousing. This complexity
challenges the query optimizer and provides a robust test for our ML models.

. Data distribution: The TPC-DS data generator produces realistic data distributions,
including skewed distributions and correlations between columns, to mimic real-
world data characteristics.

4.1.2. Query Set

We employed the full set of 99 queries provided by the TPC-DS benchmark. These
queries cover a wide range of complexities, from simple reporting queries to complex
analytical operations involving multiple joins, aggregations, and subqueries. We considered
the option of using TPC-H queries but ultimately selected TPC-DS due to its greater
complexity and suitability for both OLAP and mixed workloads.

4.1.3. Workload Simulation

To assess the adaptability and performance of our system under various conditions,
we simulated three distinct workload profiles:

1. OLAP-heavy: This profile consisted of 70% analytical queries and 30% operational
queries. It represented scenarios like end-of-day reporting or business intelligence
workloads, where complex, long-running queries dominate.

2. Mixed: A balanced workload with 50% analytical queries and 50% operational queries.
This profile simulated typical day-to-day operations in a data warehouse, involving a
mix of short, simple queries and longer, more complex ones.

3. OLTP-heavy: Comprising 30% analytical queries and 70% operational queries, this
profile mimicked real-time dashboarding or operational reporting scenarios where
short, simple queries are prevalent.

Each workload profile was executed for extended periods (up to 24 h) to capture
long-term performance characteristics and observe the system’s adaptability over time. We
also included tests to demonstrate the system’s responsiveness to workload shifts, such as
a sudden transition from OLTP-heavy to OLAP-heavy workloads.

4.2. System Configuration
4.2.1. Hardware Setup
Our experiments were conducted on a dedicated high-performance server cluster to
ensure consistent and reliable results. The primary server specifications are as follows:
e CPU: 2 x Intel Xeon Gold 6258R (28 cores, 56 threads each), with the following
characteristics:
- Base frequency: 2.7 GHz.

- Max turbo frequency: 4.0 GHz.
- L3 cache: 38.5 MB.

* RAM: 512 GB DDR4-3200 ECC, with the following characteristics:

Information 2024, 15, 574

14 of 25

- 16 x 32 GB DIMMs.
- Quad-channel configuration.

Storage: 8 x 2 TB NVMe SSDs in RAID 0 configuration, with the following characteristics:

- Sequential read: up to 7000 MB/s.
- Sequential write: up to 5000 MB/s.
- Random read (4 K, QD32): up to 1,000,000 IOPS.

Network: 100 Gbps Mellanox ConnectX-5 Ethernet.

4.2.2. Software Environment

The software stack used in our experiments is detailed below:

Operating System: Ubuntu 20.04 LTS (kernel 5.4.0).
Database: PostgreSQL 13.0, with the following characteristics:

- Compiled with -enable-debug and -enable-depend flags.
— Custom patches applied for ML integration hooks.

Python: version 3.8.5, used for the following;:
- ML model development and data preprocessing.
Machine learning libraries:

- scikit-learn 0.24.2, used for traditional ML algorithms and preprocessing.
— TensorFlow 2.4.1, used for deep learning models.

- PyTorch 1.8.1, used for advanced neural network architectures.

- XGBoost 1.4.2, used for gradient boosting models.

Stream Processing: Apache Kafka 2.8.0, used for the following:
- Real-time data ingestion and processing.
Monitoring and visualization:

— Prometheus 2.26.0, used for metrics collection.
- Grafana 7.5.2, used for real-time visualization and alerting.

Version control and experiment tracking:

- Git2.25.1, for source code version control.
- MLflow 1.15.0, for experiment tracking and model versioning.

4.3. ML Model Training and Evaluation
4.3.1. Feature Engineering

We developed a comprehensive feature set to capture the complexity of database

operations and system states. Our feature engineering process resulted in 57 features,
categorized as follows:

1.

Query Structure Features (20 features):

* Number and types of joins (e.g., inner, outer, and hash).
* Presence and depth of subqueries.

* Number and types of aggregations.

* Presence of window functions.

¢ Query length and complexity metrics.

Data Distribution Features (15 features):

e Table sizes (number of rows and total size).

¢ Column cardinalities.

e Data skewness measures.

* Correlation coefficients between joined columns.

System State Features (12 features):

* Buffer cache hit ratio.
* CPU usage (user time, system time, and I/O wait).

Information 2024, 15, 574

15 of 25

* Memory utilization.
¢ Disk I/O statistics (reads/writes per second and average queue length).
¢ Network utilization.

4. Execution Plan Features (10 features):

e Estimated query cost.

¢ Number of table scans vs. index scans.

¢ Degree of parallelism.

e Estimated rows to be processed at each plan node.
* Presence of sort or hash operations.

These features were extracted in real-time for each query by using custom PostgreSQL
extensions and UDFs, ensuring that our models were trained on data that accurately re-
flected the current system state and workload characteristics. By employing a combination
of these feature categories, we ensured that our models could generalize effectively to new
workloads while maintaining accuracy.

4.3.2. Model Selection and Training

We evaluated several ML algorithms for query execution time prediction and work-
load classification:

1. Query execution time prediction:

* Linear regression: Baseline model for its simplicity and interpretability.

e Random forest: To capture non-linear relationships and feature interactions.

* Gradient boosting machines (XGBoost): For its high performance and ability to
handle diverse feature types.

* Neural networks (multi-layer perceptron): To capture complex, hierarchical
patterns in the data.

2. Workload classification:
* K-means clustering: For its simplicity and efficiency in identifying workload patterns.

* Gaussian mixture models: To capture more complex, overlapping workload
distributions.

We used 80% of our dataset for training and 20% for testing. To ensure robust model
performance and generalization, we employed 5-fold cross-validation during the train-
ing phase.

4.3.3. Hyperparameter Tuning

Hyperparameter tuning was conducted by using Bayesian optimization with Optuna,
conducting 100 trials for each model. The hyperparameters tuned included the following:

e Random forest:

— Number of trees: 50 to 500.
- Maximum depth: 5 to 30.
- Minimum samples per leaf: 1 to 10.

e XGBoost:

- Learning rate: 0.01 to 0.3.

- Maximum depth: 3 to 10.

- Subsample ratio: 0.5 to 1.0.
- Colsample_bytree: 0.5 to 1.0.

* Neural network:
- Number of layers: 2 to 5.
— Neurons per layer: 32 to 256.

- Activation functions: ReLU, tanh, and sigmoid.
- Dropout rate: 0.1 to 0.5.

Information 2024, 15, 574

16 of 25

K-means:

— Number of clusters: 2 to 20.

We employed the elbow method and silhouette analysis to determine the optimal

number of clusters for K-means clustering. Both metrics showed that the optimal number
of clusters was five for our workload distribution.

4.4. Evaluation Metrics

To comprehensively evaluate the performance of our system, we employed a range of

metrics that reflect both query execution efficiency and resource utilization:

Query execution time: Wall-clock time for query execution, measured in seconds.
Throughput: Number of queries executed per hour, indicating the system’s capacity
to handle workloads.

Resource utilization:

CPU usage (%).

- Memory usage (GB).

- I/O operations per second (IOPS).

- Network throughput (Gbps).

Model accuracy:

- Mean absolute error (MAE) for execution time prediction.
- Root mean square error (RMSE) for execution time prediction.
- R-squared (R?) score for goodness-of-fit.

Adaptation speed: Time taken for the system to adapt to new workload patterns,
measured in minutes.

Overhead: Additional time and resources consumed by our ML components, reported
as a percentage of total query execution time.

4.5. Baseline Comparisons

We compared the performance of our ML-integrated system against three baseline

configurations:

1. Vanilla PostgreSQL: A default installation of PostgreSQL 13.0 with no additional
tuning, representing out-of-the-box performance.

2. Tuned PostgreSQL: PostgreSQL 13.0 with manual expert tuning, including optimized
configuration parameters and manually created indexes.

3. PostgreSQL with pg_hint_plan: PostgreSQL 13.0 augmented with the pg_hint_plan

extension, allowing for manual query plan modifications based on expert knowledge.

4.6. Experimental Procedure

Our experimental procedure consisted of several stages designed to ensure thorough

evaluation of our system’s performance:

1.

Initial setup:

e Load TPC-DS data at different scale factors (100 GB, 1 TB, and 10 TB).
* Create necessary indexes, and gather table statistics.
e Warm up the database buffer cache to ensure consistent query execution times.

Baseline measurements:

¢ Execute TPC-DS queries on each baseline system.
* Collect performance metrics for each query and workload profile.

ML model training:

* Extract features from historical query executions.
e Train and tune ML models for query time prediction and workload classification.

ML-integrated system evaluation:

Information 2024, 15, 574

17 of 25

e Execute TPC-DS queries on our ML-integrated system.
¢ Collect performance metrics, and make comparisons with baselines.

5. Workload shift simulation:

e Introduce sudden changes in workload patterns to evaluate system adaptability.
* Measure system adaptation time and performance impact.

6. Long-running tests:

* Conduct 24 h runs to assess system stability and sustained performance.
* Monitor for any performance degradation or anomalies.

7. Scalability assessment:

* Repeat experiments at different data scale factors (100 GB, 1 TB, and 10 TB).
* Analyze performance trends as data number increases.

Each experiment was repeated three times to ensure statistical significance, with results
averaged across runs. Continuous monitoring and logging were implemented to capture
any unexpected behaviors or performance anomalies during the experiments.

5. Results and Analysis

In this section, we present the results of our experiments and analyze the performance
of our ML-integrated DBMS framework. We compare the results against the baseline systems
described in the previous section, focusing on key performance metrics such as query
execution time, system throughput, resource utilization, model accuracy, and scalability.
Additionally, we examine the system’s adaptability to changing workloads and its scalability
across different quantities of data, providing a comprehensive evaluation of our approach.

5.1. Query Execution Time

Figure 2 compares the query execution times for different types of queries between
the baseline and our ML-integrated system. The results are normalized to the baseline
system, with execution times for each query type set to 100%. Our ML-integrated system
consistently outperforms the baseline, particularly in complex analytical queries, where we
observe a 55% reduction in execution time, and in data mining tasks, with a 42% reduction.

The performance gains in complex analytical queries and data mining tasks highlight
the effectiveness of our system’s dynamic query optimization capabilities. The ML models
integrated into the system enable the intelligent reordering of join operations, optimized
indexing strategies, and efficient use of parallel execution paths. Simpler operational
queries also benefit, albeit to a lesser extent, with an 18% improvement, showcasing the
robustness and general applicability of our approach across various query types.

120 Query Execution Time: Baseline vs ML-Integrated System

33 Baseline
[ML-Integrated

100% 100% 100% 100%
100

82%

80

1850%

improJement
250%

improJement

60 58%

a2/0%
s improjement

ion Time (% of

550%
improjement

This graph cmpares query execution kimes betweeh a baseline system|
and our ML-ifitegrated system. Lower bars indicate better perfornjance.
Percentages show the relative execution time, with baseline at 100%.

Simple Complex Data Reporting
Operational Analytical Mining

Figure 2. Query execution time: baseline vs. ML-integrated system. Lower bars indicate better
performance, with percentages representing the relative execution time normalized to the baseline
system (100%).

Information 2024, 15, 574

18 of 25

5.2. System Throughput

Figure 3 illustrates the system throughput, measured as the number of queries exe-
cuted per hour across different workloads and scale factors. Our ML-integrated system
demonstrates a 74% improvement in throughput under the OLAP-heavy workload com-
pared with the vanilla PostgreSQL configuration.

System Throughput for Different Workloads and Scale Factors

400w vanilla PG 100G8
ML-Integrated 100G8

= Vanilla PG 1T8

mmm ML-Integrated 1TB

mm Vanilla PG 10TB

= MLintegrated 10TB

w
o
=)

w
S
1=

N
o
=)

200

Throughput (Queries per Hour)

OLAP-heavy Mixed OLTP-heavy
Workload Type

Figure 3. System throughput (queries per hour) for different workloads and scale factors. Higher
bars indicate better performance, reflecting the system’s ability to handle more queries per hour.

This significant increase in throughput is primarily due to the reduced query exe-
cution times and optimized resource allocation strategies enabled by our ML-integrated
framework. The system’s ability to process a higher volume of queries within the same
timeframe makes it particularly well suited for data-intensive environments, especially
under OLAP-heavy workloads.

5.3. Resource Utilization

Figures 4-7, present the resource utilization metrics, including CPU usage, memory
usage, disk I/O, and network throughput, for each system configuration.

Our ML-integrated system exhibits efficient resource utilization, with CPU and mem-
ory usage remaining stable and within optimal ranges even under high-load conditions.
The system’s ability to predict and preemptively optimize resource allocation ensures that
disk I/O and network bandwidth are used effectively, minimizing bottlenecks and improv-
ing overall system performance. Notably, the system maintains lower CPU usage compared
to the baseline, which can be attributed to the optimized execution plans generated by the
ML models.

The effective management of memory resources is evident in the lower memory usage
and higher buffer cache hit ratios, particularly as the data scale increases. The system’s
ability to optimize memory usage by predicting the most efficient cache and buffer strategies
is key to sustaining high throughput and minimizing query execution times.

5.4. Adaptability to Workload Changes

Figure 8 illustrates the system’s adaptability to sudden workload shifts, measuring
the time taken to adapt and the percentage of performance recovery.

Our system demonstrated rapid adaptation to workload changes, with most adjust-
ments completed within 10 min. This quick adaptation is crucial to maintaining high
performance in environments where workloads can change unpredictably. The system’s
ability to dynamically adjust configurations and query plans based on real-time data allows
it to handle these shifts without significant degradation in performance.

Information 2024, 15, 574 19 of 25

CPU Utilization Across Workload Profiles
100 OLAP-heavy Workload

Baseline
ML-Integrated

80

60

CPU Utilization (%)

Mixed Workload
100

Baseline
ML-Integrated

80

60

CPU Utilization (%)

100 OLTP-heavy Workload

Baseline
ML-Integrated

80

60

CPU Utilization (%)

0 5 10 15 20 25

Time (Hours)

Figure 4. CPU utilization across different workload profiles. The shaded areas represent the difference
in CPU usage between the baseline and ML-integrated systems.

Memory Usage and Buffer Cache Hit Ratio Across Data Scales
500 4862

4618

% 95

s65% 3026

3289
8
823%
\ 75
100
783 751
63 6

10068 18 1018
Data Scale

/

Memory Usage (GB)
8
Buffer Cache Hit Ratio (%)

[Baseline Memory Usage ~e— Baseline Hit Ratio
0 MUintegrated Memory Usage —— ML Integrated Hit Ratio

This graph shows memory usage (bars) and buffer cache hit ratio (lines) for baseline and ML-integrated systems.
L Lower memory usage and higher hit ratio indicate better performance.

Figure 5. Memory usage and buffer cache hit ratio across data scales. Lower memory usage and
higher buffer cache hit ratios indicate better performance.

5.5. Performance Improvement Through Continuous Learning

Figure 9 shows how the system’s performance improves over a 24-h period due to
continuous learning, measured across three key metrics: query execution time, throughput,
and prediction accuracy.

Information 2024, 15, 574 20 of 25

1/0 Performance: Baseline vs ML-Integrated System

28% increase
128%

W Baseline
= ML-Integrated

—
N
=)

—
15}
I=)

©
1=}

35% decrease
65% 42% decrease
58%

FN-Y
o o

N
=

Performance (% relative to baseline)

o

Random 1/0O Operations Sequential Read Throughput 1/0 Wait Time
1/O Categories

This graph compares /0 performance metrics between a baseline system
and our ML-integrated system. Lower bars are better for Random 1/0
Operations and I/0 Wait Time, while higher is better for Sequential

Read Throughput. Percentages show performance relative to the baseline.

Figure 6. I/O performance: baseline vs. ML-integrated system. Lower bars for random I/O operations
and I/O wait time and higher bars for sequential read throughput indicate better performance.

Network Throughput Comparison
+17.3%

= Baseline PostgreSQL 88
= ML-integrated System

+28.9%

3
8

Network Throughput (Gbps)
>
3

N
S

Mixed
‘Workload Type

our MLintegrated system across different workload types.

(This oraph compares the network throughput of baseline PostareSaL
w -
Higher bars indicate better network throughput performance.

Figure 7. Network throughput comparison across different workload types. Higher bars indicate
better network throughput performance.

System to

100

Adaptation Time (minutes)
Performance Recovery (%)

%0
OLTP to OLAP OLAP to OLTP Mixed to OLAP. Mixed to OLTP
Workload Shift

E=3 Adaptation Time (minutes) —e— Performance Recovery (%)

This graph shows the system's adaptation time and performance recovery for different workload shifts |
Lower ion tir igher performance: y indi ‘adaptability.

Figure 8. System adaptability: response time to workload shifts and performance recovery. Lower
adaptation time and higher performance recovery indicate better adaptability.

Information 2024, 15, 574

21 of 25

Performance Improvement Through Continuous Learning

Metrics
Query Execution Time
Throughput
107.5 Prediction Accuracy

110.0

6.3% improvement

105.0 (42% improvement |
J

1025

100.0

Performance (% relative to initial)

925 [This graph shows the improvement in system performance over a 24-hour period. 7.8% reduction
| Lower values are better for Query Execution Time, while higher values are

| better for Throughput and Prediction Accuracy. The performance is shown

|as a percentage relative to the initial performance at 0 hours.

0 5 10 15 20 25
Time (hours)

Figure 9. Performance improvement through continuous learning over 24 h. Lower query execution
times and higher throughput and prediction accuracy indicate better performance.

The system’s continuous learning mechanism enables it to improve performance over
time, with a 7.8% reduction in query execution time, a 6.3% increase in throughput, and a
4.2% improvement in prediction accuracy. These results demonstrate the effectiveness of
continuous learning in refining the system’s optimization strategies, leading to sustained
performance gains.

5.6. Scalability Analysis

Figure 10 presents the scalability analysis of our system, showing how query execution
times scale with the increase in the data size.

Query Execution Time Scalability

Query Types and References
Simple Operational
Reporting
Complex Analytical
Data Mining

-~ Linear Scaling
Quadratic Scaling

Execution Time (seconds)
\
\

This graph shows how query execution time scales with increasing data size. |
Both axes use logarithmic scales. Note the non-linear scaling and increased
variance at larger data sizes, especially for complex queries. Simple queries
1071 |scale more favorably than complex analytical and data mining queries.

10? 107 104
Data Size (GB)

Figure 10. Scalability analysis: query execution time across different data scales. The graph uses
logarithmic scales, with lower lines indicating better scalability.

The results indicate that our system scales effectively with the data quantity, maintain-
ing consistent performance gains relative to the baseline systems, even as the data scale
increases. The system’s architecture, which allows for efficient data processing and dynamic
resource management, is well suited to handle the demands of large-scale data environments.

5.7. Workload Clustering Analysis

To ensure optimal workload classification and efficient resource management, we
implemented clustering techniques within the system. We utilized both the elbow method
and silhouette analysis to determine the optimal number of clusters.

Information 2024, 15, 574

22 of 25

Figure 11 shows the elbow method (blue line) and silhouette score (red line) for de-
termining the optimal number of clusters in our workload patterns. The elbow point at
five clusters indicates the optimal trade-off between the number of clusters and within-
cluster variance (inertia). Simultaneously, the silhouette score peaks at five clusters, con-
firming this as the optimal number of clusters for our dataset.

Elbow and Silhouette Method for Optimal Number of Clusters

-0.80

25,000
-0.75

20,000

e
9
=]

o
o
vl

ia

15,000

Inerti

o

o

<]
Silhouette Score

10,000
-0.55

5,000 -0.50

-0.45

2 3 4 5 6 7 8 9 10
Number of Clusters
Figure 11. Elbow and silhouette method for determining optimal number of clusters. The elbow point
at 5 clusters and the silhouette score confirm that 5 clusters is optimal for workload classification.

This optimal clustering configuration enabled the system to classify workload patterns
effectively, allowing for targeted optimization strategies based on cluster characteristics.

By grouping similar workloads into clusters, the system could apply tailored opti-
mization techniques, improving overall efficiency. For instance, complex OLAP-heavy
queries were grouped into one cluster where advanced join optimization strategies were
prioritized, while simpler OLTP workloads were classified into another cluster, focusing on
reducing overhead through more efficient index scans and reduced 1/O operations.

Figure 12 visualizes the workload clusters identified by our ML model, showing how
different workloads are grouped based on their characteristics.

Visualization of Workload Clusters

Workload Types
Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Y% Centroids

ocoo0o0o0

Principal Component 2

o J
This graph visualizesidifters Ipad clusters identified by our ML model.
Each point represents. i6ad.and:colors indicate cluster membership.

The yellow stars repres entroid (average) of each cluster.
Axes represent principal components of the workload features.

-10 -8 -6 -4 -2 o 2 4 6
Principal Component 1

Figure 12. Visualization of workload clusters identified by the ML model. Each point represents a
workload, and colors indicate cluster membership.

The clustering analysis revealed distinct groups of workloads, each with unique
performance characteristics. This classification allowed the system to allocate resources
and apply optimization strategies specific to the workload type, enhancing the system’s
adaptability and efficiency. By determining the optimal number of clusters, we ensured that

Information 2024, 15, 574

23 of 25

the workload classification was neither too granular nor too coarse, avoiding unnecessary
overhead while maximizing performance gains.

The effective classification of workload patterns provided by the clustering analysis
enabled our ML-integrated system to implement highly adaptive optimization strategies
that cater to the specific needs of each workload type. This contributed significantly to the
system’s ability to handle diverse and complex workloads, as evidenced by the substantial
performance improvements observed across various metrics, including query execution
time, resource utilization, and throughput.

5.8. Summary of Performance Improvements

Overall, the experimental results demonstrate that our ML-integrated DBMS frame-
work outperforms baseline systems in all key performance areas. The integration of
machine learning for real-time optimization resulted in faster query execution times, higher
throughput, and more efficient resource utilization. The scalability analysis further high-
lights that our system maintains these performance gains even as the data size increases,
making it suitable for large-scale environments. Additionally, the clustering analysis en-
abled precise workload classification, allowing the system to apply targeted optimization
that significantly improved adaptability to changing workloads.

Our results show that the continuous learning component further enhanced perfor-
mance over time, as the system refined its models based on real-time data. This ability
to adapt and optimize dynamically is crucial in modern database environments, where
workloads are diverse and change frequently. In summary, our ML-integrated framework
provides a robust, scalable, and adaptable solution for optimizing DBMS performance in
both OLAP-heavy and mixed workload environments.

6. Conclusions

In this paper, we have presented a novel and comprehensive framework for integrat-
ing machine learning (ML) techniques into the architecture of a database management
system (DBMS), specifically targeting PostgreSQL. Our approach addresses the increasing
complexity and scale of modern database environments by automating critical tasks such
as query optimization, workload management, and dynamic system tuning, which are
traditionally manual and time-consuming. We have also addressed deeper insights into
workload classification, utilizing clustering methods to further enhance system adaptability.

Our extensive evaluation, using the TPC-DS benchmark—a standard for decision
support systems—demonstrates the substantial performance improvements achieved by
our ML-integrated system. The integration of clustering methods (as determined by the
elbow and silhouette analysis) ensured that workload-specific optimization strategies
were applied efficiently, contributing to a significant increase in performance. Across
various workloads and data scale factors, the system consistently outperformed baseline
configurations. Notably, we observed a reduction of up to 55% in query execution times for
complex analytical queries, which are typically resource-intensive and time-consuming.
This reduction directly translates into faster query responses and improved user experience
in environments where complex queries are prevalent.

Additionally, the system achieved a remarkable 74% increase in throughput under
OLAP-heavy workloads, demonstrating its ability to handle large volumes of data and
queries efficiently. This improvement is crucial for data-intensive environments such as
data warehouses and business intelligence systems, where high throughput is essential to
timely data processing and reporting.

One of the key contributions of our work is the use of dynamic clustering to classify
workloads based on their characteristics, allowing the system to apply tailored optimiza-
tion strategies in real time. As demonstrated in the Results section, this clustering not
only ensured optimal resource allocation but also played a crucial role in the system’s
adaptability to workload changes. The elbow and silhouette methods were instrumental

Information 2024, 15, 574

24 of 25

to determining the optimal number of clusters, improving system efficiency by reducing
redundant computations.

The architecture of our system ensures that ML models are seamlessly integrated
with the DBMS, enabling real-time inference and optimization. This integration allows
the system to dynamically adjust query execution plans, resource allocations, and sys-
tem configurations based on real-time predictions, all while maintaining low overhead.
The overhead introduced by the ML components was minimal, with the highest observed
being only 7.1% in OLAP-heavy workloads—more than offset by the significant perfor-
mance gains.

Our framework also demonstrated robust scalability, effectively managing data quan-
tities ranging from 100 GB to 10 TB without degradation in performance. The system’s
adaptability to changing workloads was evident, with rapid adaptation times of less than
10 min and performance recovery rates exceeding 97% in most scenarios. These results
underscore the system’s versatility, making it suitable for a wide range of database en-
vironments, from operational systems requiring low-latency transactions to analytical
systems dealing with complex, long-running queries. The clustering analysis further
demonstrated that our system is capable of classifying workloads into distinct groups,
allowing for targeted optimization strategies that enhance the system’s performance under
varied conditions.

Limitations and Future Work

Despite the promising results, there are several limitations in our current framework
that warrant further investigation. First, the system’s reliance on predefined ML models
means that its performance could degrade if workload patterns changed significantly over
time. While continuous learning is implemented to mitigate this, the retraining process
could be improved by automating model updates based on real-time shifts in workload
characteristics. Additionally, our clustering approach, though effective, may not capture
the full complexity of multi-dimensional workloads, particularly in environments where
inter-table relationships and nested queries are prevalent.

Another limitation lies in the framework’s current dependency on PostgreSQL. While
this system is widely used, extending the framework to support other DBMS platforms
such as MySQL, Oracle, or SQL Server would enhance its applicability and generalizability
to a broader range of database environments. Similarly, testing in distributed database
environments such as Apache Cassandra or Google BigQuery could offer insights into how
the framework scales in cloud-native, distributed settings.

Future work will focus on several key areas of improvement. First, optimizing the
clustering mechanism to handle more complex, multi-dimensional workloads is a priority.
We aim to investigate the integration of reinforcement learning techniques, which could
enable the system to learn optimal clustering strategies dynamically. This would allow for
more granular workload classification and further improvements in resource management.

Additionally, automating the retraining of ML models is an area that needs refinement.
A key future direction involves developing adaptive learning mechanisms that adjust model
retraining frequencies based on workload shifts and system performance. This would
minimize the risk of model obsolescence and ensure that the system remains responsive
to evolving workloads. Furthermore, extending our framework to integrate support for
multiple DBMS platforms and distributed database architectures would allow for more
comprehensive evaluation in different operational contexts, enhancing the framework’s
applicability and scalability.

Finally, future work will also include investigating deeper analysis for optimal model
update intervals and how these can be adjusted in real time to improve system adaptability
without compromising performance. We also plan to explore more advanced ML models,
including deep learning architectures, to handle increasingly complex query optimiza-
tion tasks.

Information 2024, 15, 574 25 of 25

In conclusion, our ML-integrated DBMS framework represents a significant advance-
ment in the field of database optimization. By leveraging the predictive power of machine
learning, our system offers a robust and adaptable solution to the challenges of modern
database management. It not only provides immediate performance improvements—such
as reduced query execution times and increased throughput—but also ensures long-term
adaptability to evolving workloads and data environments. The clustering mechanism and
continuous learning aspects are particularly valuable in modern, dynamic environments,
allowing the system to evolve alongside changing workload patterns.

Author Contributions: Writing—original draft, M.A. and M.V.B.; Supervision, PM.; writing—review
and editing, P.V. and J.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by National Funds through FCT (Foundation for Science and
Technology), LP., within the scope of the project with Ref. UIDB/05583/2020. Furthermore, we
thank the Research Center in Digital Services (CISeD) and Instituto Politécnico de Viseu for their
support. Maryam Abbasi is grateful for the national funding by FCT (Foundation for Science
and Technology), I.P,, through an institutional scientific employment program contract (CEECIN-
ST/00077/2021). This work was also supported by FCT/MCTES through national funds and, when
applicable, co-funded through EU funds under the project UIDB/50008 /2020 and DOI identifier
10.54499 /UIDB /50008 /2020.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Oprea, S.V.; Bara, A.; Marales, R.C.; Florescu, M.S. Data Model for Residential and Commercial Buildings. Load Flexibility
Assessment in Smart Cities. Sustainability 2021, 13, 1736. [CrossRef]

2. Oprea, S.V.; Bara, A. Machine Learning Algorithms for Short-Term Load Forecast in Residential Buildings Using Smart Meters,
Sensors and Big Data Solutions. IEEE Access 2019, 7, 177874-177889. [CrossRef]

3. Yu, X. Cost-based or Learning-based? A Hybrid Query Optimizer for Query Plan Selection. Proc. VLDB Endow. 2022,
15, 3924-3936. [CrossRef]

4. Kwon, S; Jung, W.; Shim, K. Cardinality Estimation of Approximate Substring Queries using Deep Learning. Proc. VLDB Endow.
2022, 15, 3145-3157. [CrossRef]

5. Li, G.; Zhou, X.; Cao, L. Machine Learning for Databases. In Proceedings of the First International Conference on AI-ML Systems,
Bangalore, India, 21-24 October 2021. [CrossRef]

6. Heitz, J.; Stockinger, K. Join Query Optimization with Deep Reinforcement Learning Algorithms. arXiv 2019, arXiv:1911.11689.

7. Paganelli, M,; Sottovia, P.,; Park, K.; Interlandi, M.; Guerra, F. Pushing ML Predictions Into DBMSs. IEEE Trans. Knowl. Data Eng.
2023, 35, 10295-10308. [CrossRef] [PubMed]

8. Shaheen, N.; Raza, B.; Shahid, A.R.; Alquhayz, H. A Novel Optimized Case-Based Reasoning Approach with K-Means Clustering
and Genetic Algorithm for Predicting Multi-Class Workload Characterization in Autonomic Database and Data Warehouse
System. IEEE Access 2020, 8, 105713-105727. [CrossRef]

9. Aken, D.V,; Yang, D,; Brillard, S.; Fiorino, A.; Zhang, B.; Billian, C.; Pavlo, A. An Inquiry into Machine Learning-based Automatic
Configuration Tuning Services on Real-World Database Management Systems. Proc. VLDB Endow. 2021, 14, 1241-1253. [CrossRef]

10. Xia, L. Event-based optimization of admission control in open queueing networks. Discret. Event Dyn. Syst. 2014, 24, 133-151.
[CrossRef]

11. Siddiqui, T, Wu, W. ML-Powered Index Tuning: An Overview of Recent Progress and Open Challenges. arXiv 2023,
arXiv:2308.13641. [CrossRef]

12. Tan,].; Zhang, T; Li, F; Chen,].; Zheng, Q.; Zhang, P.; Qiao, H.; Shi, Y.; Cao, W.; Zhang, R. iBTune: Individualized Buffer Tuning
for Large-scale Cloud Databases. Proc. VLDB Endow. 2019, 12, 1221-1234. [CrossRef]

13. Zhang, B.; Aken, D.V,; Wang, J.; Dai, T.; Jiang, S.; Lao, J.; Sheng, S.; Pavlo, A.; Gordon, G.J. A Demonstration of the OtterTune
Automatic Database Management System Tuning Service. Proc. VLDB Endow. 2018, 11, 1910-1913. [CrossRef]

14. Marcus, R.; Kipf, A.; van Renen, A.; Stoian, M.; Misra, S.; Kemper, A.; Neumann, T.; Kraska, T. Benchmarking learned indexes.

Proc. VLDB Endow. 2020, 14, 1-13. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.54499/UIDB/50008/2020
http://doi.org/10.3390/su13041736
http://dx.doi.org/10.1109/ACCESS.2019.2958383
http://dx.doi.org/10.14778/3565838.3565846
http://dx.doi.org/10.14778/3551793.3551859
http://dx.doi.org/10.14778/3476311.3476405
http://dx.doi.org/10.1109/TKDE.2023.3269592
http://www.ncbi.nlm.nih.gov/pubmed/37954972
http://dx.doi.org/10.1109/ACCESS.2020.3000139
http://dx.doi.org/10.14778/3450980.3450992
http://dx.doi.org/10.1007/s10626-013-0167-1
http://dx.doi.org/10.1145/3641832.3641836
http://dx.doi.org/10.14778/3339490.3339503
http://dx.doi.org/10.14778/3229863.3236222
http://dx.doi.org/10.14778/3421424.3421425

	Introduction
	Related Work
	Query Optimization
	Workload Management
	Automated Database Tuning
	Integration of Machine Learning within DBMS Architectures
	Gaps and Contributions

	System Architecture
	Overview of Architecture
	Database Management Layer
	Custom Query Planner Hooks
	User-Defined Functions (UDFs) for Real-Time Feature Extraction
	PostgreSQL Extension for Data Exchange

	Machine Learning Integration Layer
	Query Interception and Feature Extraction
	Real-Time Communication with ML Models
	Integration of ML-Based Recommendations
	Dynamic Configuration Adjustments

	User Interface and Visualization Layer
	Monitoring and Feedback System
	Visualization Tools
	Automated Feedback Loops

	Data Flow and Interaction
	Scalability and Extensibility
	Security and Privacy Considerations
	Future Enhancements

	Experimental Setup
	Dataset and Workload
	Dataset Characteristics
	Query Set
	Workload Simulation

	System Configuration
	Hardware Setup
	Software Environment

	ML Model Training and Evaluation
	Feature Engineering
	Model Selection and Training
	Hyperparameter Tuning

	Evaluation Metrics
	Baseline Comparisons
	Experimental Procedure

	Results and Analysis
	Query Execution Time
	System Throughput
	Resource Utilization
	Adaptability to Workload Changes
	Performance Improvement Through Continuous Learning
	Scalability Analysis
	Workload Clustering Analysis
	Summary of Performance Improvements

	Conclusions
	References

