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Abstract: The COVID-19 pandemic has had a profound impact on global health, inspiring the
widespread use of machine learning in combating the disease, particularly in prediction models.
This study aimed to assess academic publications utilizing machine learning prediction models
to combat COVID-19. We analyzed 2422 original articles published between 2020 and 2023 with
bibliometric tools such as Histcite Pro 2.1, Bibliometrix, CiteSpace, and VOSviewer. The United States,
China, and India emerged as the most prolific countries, with Stanford University producing the
most publications and Huazhong University of Science and Technology receiving the most citations.
The National Natural Science Foundation of China and the National Institutes of Health have made
significant contributions to this field. Scientific Reports is the most frequent journal for publishing
these articles. Current research focuses on deep learning, federated learning, image classification,
air pollution, mental health, sentiment analysis, and drug repurposing. In conclusion, this study
provides detailed insights into the key authors, countries, institutions, funding agencies, and journals
in the field, as well as the most frequently used keywords.
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1. Introduction

COVID-19, a highly contagious disease caused by the SARS-CoV-2, first appeared in
December 2019. SARS-CoV-2 is part of the βCoV genera within the coronaviridae family,
and its potent toxicity can cause severe acute respiratory symptoms and even death [1,2].
On 30 January 2020, the WHO declared COVID-19 a public health emergency of interna-
tional concern (PHEIC) and named the SARS-CoV-2 outbreak a pandemic two months
later, indicating that it was not containable [3,4]. As of now, COVID-19 has caused over
770 million confirmed infections and more than 7 million reported deaths worldwide [5]
and contributed to a reduction in global life expectancy [6]. In addition to health effects,
COVID-19 has also affected education, the environment, and the economy. The health
emergency led to immense economic disruptions throughout the world, resulting in de-
clines in consumption and investment [7]. Multiple studies have investigated changes in
the atmospheric environment during the COVID-19 pandemic and found that restrictions
implemented to control the spread of the virus led to significant decreases in nitrogen oxide
(NOx) concentrations and PM2.5 levels in the air [8,9]. Also, the pandemic has led to a
change in schools and their functioning, such as online teaching during the quarantine
period [10]. Although the World Health Organization announced on 5 May 2023 that the
virus no longer constituted a PHEIC, the COVID-19 virus has not disappeared and is still
spreading worldwide due to its continued mutation. The current variant landscape is
dominated by Omicron descendent lineages [11]. Compared with ancestral variants, Omi-
cron subvariants have begun to evolve toward decreased intrinsic pathogenicity, increased
transmissibility, and enhanced immune escape [12].

To tackle this worldwide health crisis, artificial intelligence (AI) and machine learning
(ML) are being called analytical tools to combat the COVID-19 pandemic. Machine learning
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is a subset of artificial intelligence. Machine learning models have been shown to have bet-
ter performance compared to traditional predictive models [13,14]. There are lots of studies
performed for the prediction of different diseases employing machine learning techniques,
such as cardiac disease prediction [15], the early detection of Parkinson’s disease [16],
and breast cancer prediction [17]. In the early stages of the pandemic, Wynants et al. [18]
conducted a systematic review of prediction models used for COVID-19 diagnosis and
prognosis and found that prediction models entered the academic literature at an un-
precedented speed. In particular, an effective prognostic model would contribute to the
customization of medical strategies to the needs of individual patients, enabling preci-
sion medicine strategies that increase the probability of complete recovery [19]. These
predictive systems can help in decision making to manage diseases very effectively by
guiding early interventions. Today, machine learning prediction models have extended
their applications beyond patient identification and epidemic trend prediction to include
vaccine development, drug repurposing, and molecular dynamics.

In this study, we conducted a comprehensive bibliometric analysis of the literature on
machine learning methods used for COVID-19 predictive models, aiming to offer insights
into the current research landscape. Bibliometric data help identify publication counts,
collaborations between researchers and institutions, and the most influential journals in
a field [20]. While several bibliometric studies on machine learning techniques applied
to COVID-19 have been conducted [21–24], they often fail to reflect the current state of
research due to their inclusion of earlier literature. Our study addresses this gap by focusing
on more recent publications, specifically those related to predictive models. Moreover,
this analysis critically examines the limitations of existing models and the challenges
facing ongoing research in this domain. In this study, the Web of Science Core Collection
(WOSCC) and four bibliometric analysis tools—Bibliometrix, HistCite, VOSviewer, and
CiteSpace—were used for bibliometric and visualization analysis. This research aims to
carry out the following:

(1) Investigate the output and trends of publications in the field of machine learning
applications in COVID-19 prediction models.

(2) Identify major contributors, including key authors, countries/regions, institutions,
and journals.

(3) Identify cooperation networks between countries/regions, institutions, and authors.
(4) Explore key themes, hotspots, and research trends.
(5) Provide insights into current research directions and suggest opportunities for future

research in this field.

2. Materials and Methods
2.1. Data Sources

The data were extracted from SCI-EXPANDED of the Web of Science Core Collection,
which is the most widely used and authoritative database in the world with the literature
format required for bibliometric analysis. Two researchers (HL and YYL) independently
conducted the search to ensure the reliability of the results. In cases of disagreement, the
two researchers discussed and reached a consensus.

The search terms were set to TS = (COVID-19 OR 2019 Novel Coronavirus Disease
OR coronavirus 2019 OR coronavirus disease 2019 OR 2019-nCoV OR SARS-CoV-2 OR
Severe acute respiratory syndrome coronavirus 2) AND TS = (predict * OR forecast *) AND
TS = (Machine Learning). The inclusion criteria were defined as follows: (1) timespan:
1 January 2020 to 31 December 2023 (publication date); (2) document type: articles; and
(3) language: English. We excluded materials such as proceeding papers, review articles,
editorials, and letters, as well as articles that did not directly focus on the application
of machine learning to COVID-19 prediction models. Following this process, a total of
2422 articles were retrieved. To avoid changes in search results due to database upgrades,
on 8 January 2024, the search was conducted, and all retrieved documents were exported
to plain text files in the form of “Full Record and Cited References”. Figure 1 presents a
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flowchart outlining the publication selection process for this bibliometric analysis, following
a structure similar to the PRISMA 2020 guidelines.
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2.2. Data Visualization and Analysis

Bibliometrix is an R-tool for comprehensive science mapping analysis developed
by Massimo Aria and Corrado Cuccurullo [25]. It was used for quantitative research in
scientometrics and bibliometrics and was performed using R version 4.1.3 (R Foundation
for Statistical Computing, Vienna, Austria).

HistCite Pro 2.1 is a software tool for bibliometric analysis and visualization of citation
data [26]. It was used to perform descriptive statistical analysis. The following indicators
were analyzed: number of publications, country of publication, institution of publication,
journal of publication, authors, local citation score (LCS), global citation score (GCS), and
H-index. LCS is the number of times a particular document has been cited in the local
collection, while GCS shows the citation frequency based on the total count in the WOS
database. The H-index indicates that at most H papers published by a scientist or country
have been cited at least H times. Microsoft Office Excel 2019 was used to calculate and
graph the data.

VOSviewer is a computer program jointly developed by Van Eck and Waltman for
constructing and visualizing bibliometric networks [27]. It is characterized by its use of
visualization of similarity (VoS) to construct network graphs. VOSviewer 1.6.20 is used
to visualize collaborative relationships between countries and institutions and to perform
keyword co-occurrence analysis.

CiteSpace is a Java-based program developed by Professor Chen Chaomei for data
analysis and visualization [28]. It allows for setting time slices, which is advantageous for
temporal analysis. CiteSpace 6.1.R6 was used to generate keyword clustering maps for
four-year slices to reveal research bases and hotspots [29].
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3. Results
3.1. The Research Status of ML in Prediction Related to COVID-19

The current status of machine learning techniques in prediction related to COVID-19
research was described using Bibliometrix. A total of 2422 articles were retrieved from
2020 to 2023, covering 718 journals, with an annual publication growth rate of 60.24%.
There were 19,753 authors, with a single author contributing 80 articles. Authors en-
gaged in international collaborations accounted for 37.41%. Each article had an average of
9–10 authors; 5400 keywords were provided, and 85,065 references were cited. The average
life span of each paper from its initial recognition to obscurity was 2.14 years, and each
article had been cited an average of 12–13 times (Figure 2). The trends of publications and
citations from 2020 to 2023 are shown in Figure 3. The number of publications increased
significantly in 2021 but showed a slight decrease in 2023, with the number of citations
consistent with this.
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3.2. Analysis of Top Contributing Authors

VOSviewer was used to analyze the author collaboration network, focusing on au-
thors who had published at least two articles and were cited at least 100 times. Out of
13,888 authors, 127 met these thresholds, resulting in 35 clusters (Figure 4). The size of the
circles in the network visualization indicates the number of publications, and the lines
between nodes indicate that the authors have collaborated as co-authors on the same
articles. The analysis revealed that only the red and yellow clusters are connected, while
the remaining clusters are isolated with closely connected internal nodes. This suggests
that most authors are co-authors within the same articles and have limited collaborative
relationships with others.

Table 1 shows the authors with the highest number of publications. Imran Ashraf from
Yeungnam University is the most prolific. The next three are Huilin Chen and Ali Asghar
Heidari from Wenzhou University and Peiliang Wu from Wenzhou Medical University;
together, they have co-authored seven papers.
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Table 1. Top 9 authors based on number of publications.

Author Name Total Documents Citations

Ashraf, I. 9 35
Chen, H. 8 157

Wu, P. 7 152
Heidari, A. 7 154
Moni, M. 6 208

Clifton, D. 6 76
Chowdhury, M. 6 97

Rahman, T. 6 97
Byeon, H. 6 10

3.3. National Research Status and International Cooperation

To construct the country cooperation network map, a threshold of at least 27 publications
was established. This criterion allowed 30 out of 113 countries to be included in the subsequent
analysis using VOSviewer. The selected 30 countries were then divided into three clusters
based on their level of cooperation: Cluster 1 (red) mainly included Belgium, Brazil, Canada,
the UK, France, Germany, Greece, Israel, Italy, The Netherlands, Norway, Poland, Spain,
Switzerland, and the USA; Cluster 2 (green) mainly included Australia, Bangladesh, Egypt,
India, Japan, Malaysia, Pakistan, Saudi Arabia, South Korea, Turkey, and United Arab Emi-
rates; and Cluster 3 (blue) included Iran, China, and Singapore (Figure 5). We further list the
top five countries in terms of the number of publications in Table 2, which are the United
States, China, India, UK, and Saudi Arabia. In addition to having the most publications, the
USA had the highest frequency of GCSs and H-index. However, in the LCS rankings, China
ranked first.
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Table 2. Records, LCS, GCS, and H-index for each of the top 5 countries.

Country Records LCS GCS H-Index

USA 638 356 9205 47
China 424 399 7342 37
India 301 152 3750 30
UK 238 257 4640 32

Saudi Arabia 200 124 2390 26

3.4. Output and Collaboration Status of Institutions

Among the 2422 articles, a total of 4342 institutions were identified. Using VOSviewer,
institutions with at least 10 published articles were selected for further analysis. A total of
75 institutions met this criterion and were grouped into six clusters based on their level
of collaboration: (1) the collaboration groups represented by King Abdulaziz University,
Princess Nourah bint Abdulrahman University, and Vellore Institute of Technology were
mainly represented by the red cluster; (2) the cooperation groups represented by the green
cluster were mainly Harvard Medical School, Johns Hopkins University, and the lcahn
School of Medicine at Mount Sinai; (3) the collaboration groups represented by the blue
cluster were mainly King Saud University, University of Melbourne, and University of
Toronto; (4) the cooperation groups represented by the yellow cluster were Huazhong
University of Science, Shanghai Jiao Tong University, Fudan University, and the Chinese
Academy of Sciences; (5) the cooperation groups represented by the purple cluster were
mainly Stanford University, University of Oxford, and Imperial College London; and (6) the
cooperative organizations represented by the cyan cluster were mainly Wenzhou Medical
University and the National University of Singapore (Figure 6). There were five institutions
with the most publications: Stanford University, Harvard Medical School, King Abdulaziz
University, Huazhong University of Science and Technology, and King Saud University.
In the H-index ranking, Huazhong University of Science and Technology and Stanford
University ranked in the top two. However, although Huazhong University of Science
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and Technology only ranked fourth in terms of the number of publications, it ranked first
according to the H-index, in addition to leading other institutions by a huge margin in the
LCS and GCS rankings (Table 3).
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Table 3. Records, LCS, GCS, and H-index for each of the top 5 institutions.

Institution Records LCS GCS H-Index

Stanford University 40 13 537 14
Harvard Medical School 37 18 907 11

King Abdulaziz University 32 8 250 9
Huazhong University of Science and Technology 31 180 1636 15

King Saud University 30 28 450 12

3.5. Analysis of Funding Sources

We analyzed the funding status of the included articles and found that 1481 out
of the 2422 articles were funded. The analysis identified the top five funding agencies
that made the most significant contributions to research publications within the dataset
(Table 4). The National Natural Science Foundation of China (NSFC) and the National
Institutes of Health (NIH) of the United States were the leading contributors, each sup-
porting 157 articles, which accounts for 10.6% of the total funded articles. The National
Science Foundation (NSF) followed with 100 articles (6.8%), while the European Union
(EU) supported 96 articles (6.5%). The National Institutes of Health Research (NIHR) in the
UK funded 73 articles (4.9%).

Table 4. Top funding institutions and agencies.

Name Number of Funded Publications Percentage of Total Funded Publications

National Natural Science Foundation of China (NSFC) 157 10.6%
National Institutes of Health (NIH), USA 157 10.6%
National Science Foundation (NSF), USA 100 4.9%

European Union (EU) 96 6.8%
National Institutes of Health Research (NIHR), UK 73 6.5%
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3.6. Analysis of Journals and Co-Cited Journals

The 2422 papers selected involved 718 journals. Table 5 lists the top 10 journals and
co-cited journals regarding machine learning applications in the COVID-19 predictions. Sci-
entific Reports has published the majority of publications (121 documents, 5.0% of the total),
followed by IEEE Access (70 documents, 2.9% of the total) and Plos One (67 documents,
2.8% of the total). The journals with the highest numbers of citations were the International
Journal of Environmental Research and Public Health (1500), Scientific Reports (1354), and
Chaos Solitons & Fractals (1334).

Table 5. The top 10 journals and co-cited journals.

Items Rank Name Counts Country IF (2023) JCR

Journal 1 Scientific Reports 121 England 3.8 Q1
2 IEEE Access 70 USA 3.4 Q2
3 Plos One 67 USA 2.9 Q1
4 Computers in Biology and Medicine 57 USA 7.0 Q1
5 Journal of Medical Internet Research 43 Canada 5.8 Q1

6 International Journal of Environmental Research and
Public Health 42 Switzerland - -

7 CMC-Computers Materials & Continua 36 USA 2.0 Q3
8 Applied Sciences-Basel 35 Switzerland 2.5 Q3
9 Frontiers in Public Health 35 Switzerland 3.0 Q1
10 Electronics 32 Switzerland 2.6 Q3

Co-cited
Journal 1 International Journal of Environmental Research and

Public Health 1500 Switzerland - -

2 Scientific Reports 1354 England 3.8 Q1
3 Chaos Solitons & Fractals 1334 England 5.3 Q1
4 IEEE ACCESS 1030 USA 3.4 Q2
5 Nature Machine Intelligence 969 England 18.8 Q1
6 Journal of Medical Internet Research 855 Canada 5.8 Q1
7 Computers in Biology and Medicine 785 USA 7.0 Q1
8 Journal Of Thoracic Disease 766 China 2.1 Q3
9 Plos One 680 USA 2.9 Q1
10 Science 488 USA 44.7 Q1

3.7. Analysis of Highly Cited References

The top 10 most highly cited references are detailed in Table 6 below, which includes
citation counts and a brief summary of each study’s contribution.

Table 6. The top 10 highly cited references.

Title Authors Journal Citations (n) Summary

The Impact of COVID-19
Epidemic Declaration on

Psychological Consequences:
A Study on Active Weibo

Users

Li et al. (2020) [30]
International Journal of
Environmental Research

and Public Health
917

This study used an online
ecological recognition (OER)
method based on multiple

machine learning prediction
models to analyze social media

data, examining the psychological
impact of public health

emergencies during the pandemic.

Modified SEIR and AI
prediction of the epidemics
trend of COVID-19 in China

under public health
interventions

Yang et al. (2020) [31] Journal of Thoracic
Disease 758

A modified SEIR epidemiological
model, combined with domestic
migration data and COVID-19

epidemiological data, was used to
predict the progression of the
epidemic. Machine learning

techniques were employed to
validate the model predictions.
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Table 6. Cont.

Title Authors Journal Citations (n) Summary

An interpretable mortality
prediction model for
COVID-19 patients

Yan et al. (2020) [32] Nature Machine
Intelligence 526

A machine learning model based
on XGBoost was developed to

predict the prognosis of COVID-19
patients using three clinical
indicators, enabling early

intervention and potentially
reducing mortality.

Time series forecasting of
COVID-19 transmission in

Canada using LSTM networks

Chimmula et al. (2020)
[33] Chaos, Solitons & Fractals 466

A deep learning method using
long short-term memory (LSTM)
networks was applied to build an

infectious disease propagation
model to forecast future

transmission trends of COVID-19
in Canada.

Viral epitope profiling of
COVID-19 patients reveals

cross-reactivity and correlates
of severity

Shrock et al. (2020) [34] Science 385

This study developed an
XGBoost-based machine learning

model using VirScan data to
distinguish between COVID-19
positive and negative cases with
high sensitivity and specificity.

SHAP analysis was used to
identify key predictive features.

A Weakly-Supervised
Framework for COVID-19
Classification and Lesion

Localization From Chest CT

Wang et al. (2020) [35] IEEE Transactions on
Medical Imaging 343

A weakly supervised deep
learning model was trained using
3D chest CT images to accurately

predict COVID-19 infection
probability and identify

lesion areas.

Mutations Strengthened
SARS-CoV-2 Infectivity Chen et al. (2020) [36] Journal of Molecular

Biology 321

This study used algebraic
topology-based machine learning
to quantitatively assess changes in
the binding free energy between
SARS-CoV-2 spike protein and
host ACE2 receptors following

viral mutations.

Forecasting and planning
during a pandemic: COVID-19

growth rates, supply chain
disruptions, and governmental

decisions

Nikolopoulos et al. (2021)
[37]

European Journal of
Operational Research 237

The study evaluated 52 models,
including time series,

epidemiology, machine learning,
and deep learning methods,

introducing a hybrid forecasting
method to predict COVID-19

growth rates.

Short-term forecasting
COVID-19 cumulative

confirmed cases: Perspectives
for Brazil

Ribeiro et al. (2020) [38] Chaos, Solitons & Fractals 258

This paper analyzed various
forecasting methods, including

ARIMA, CUBIST, RF, RIDGE, SVR,
and stacking ensemble learning,

for short-term prediction of
cumulative COVID-19

cases in Brazil.

Large-Scale Multi-omic
Analysis of COVID-19 Severity Overmyer et al. (2021) [39] Cell Systems 203

This cohort study used RNA-seq
and high-resolution mass
spectrometry to generate

multi-omics data related to
COVID-19 severity, which can be

used for machine learning
predictions. The data are freely

available to the
scientific community.

3.8. Analysis of Co-Occurring Keywords

Keywords encapsulate a research paper’s purpose, content, and method in the most
concise manner possible. Analyzing the keywords of selected papers reveals the research
hotspots within a specific field and tracks the evolution of research topics over time. Firstly,
we analyzed the co-occurrence of keywords based on VOSviewer software, 1.6.20 set the
minimum number of occurrences to 42, with which 40 out of 7457 keywords met the
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selection threshold, and drew a visualization map of these 40 keywords (Figure 7). The size
of the circles represents the number of occurrences of the keywords, and the largest three
circles are “COVID-19”, “machine learning”, and “prediction”, aligning with expectations.
It can be clearly noticed that all of the keywords were divided into three major categories
with the different colors of the circles. The green part shows the prediction topics of COVID-
19, such as mortality, infection, severity, diagnosis, and prognosis; the red part represents
the algorithms mainly used in the prediction model, such as regression, neural network,
support vector machine; and the blue part represents the technologies applied to prediction,
including artificial intelligence, deep learning, and big data.
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Next, to benefit from CiteSpace’s ability to select arbitrary time ranges for time slicing,
we generated keyword clustering maps for 2020, 2021, 2022, and 2023 (Figure 8). The
keyword clusters from 2020 indicate an increasing focus on the application of machine
learning to COVID-19, particularly in the development of models and the prediction of
pandemic trends. By 2021, research hotspots had shifted toward predicting COVID-19
outcomes and addressing practical clinical challenges. In 2022, both logistic regression,
rooted in traditional statistics, and neural networks, a key component of deep learning,
were prominent in the development of predictive models. The emergence of cluster terms
such as “molecular dynamics” and “blood biomarkers” suggests that the application of
machine learning has expanded and that the range of available resources has broadened. In
2023, cluster terms like “federated learning” and “drug repurposing” highlight new areas
of focus. Additionally, mental health and air pollution have remained persistent topics
throughout the pandemic.
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4. Discussion

COVID-19 causes a huge global burden and continues to spread over the world. The
pandemic challenges the public health system and has profound impacts on education,
the environment, and the economy. The application of machine learning techniques has
contributed to tackling this challenge and is still evolving and growing exponentially. In
this study, we set out to analyze publications on machine learning applied to prediction in
COVID-19. The objective was to highlight key trends, research gaps, and significant contri-
butions, offering a valuable reference for future studies and developments in the field.

4.1. Principal Results

The number of publications effectively reflects the research trends in this field. Shortly
after the emergence of COVID-19, researchers in many different fields started exploring
the use of machine learning techniques to fight the pandemic globally. Due to the limited
availability of early COVID-19 data, the literature in this field was initially sparse, with
only 183 articles published in 2020. However, from 2021 to 2023, there was an exponential
increase in publications, reflecting a surge in scholarly interest. Although there was a minor
decrease in the number of publications in 2023, the enthusiasm for research within this
domain remains high.

The analysis of the collaboration network among the most cited authors reveals that
many are co-authors of the same articles due to their joint efforts in publishing highly cited
work. Notably, five of the most prolific authors do not appear in the network visualization
of the most cited authors, indicating that a high publication count does not necessarily
correlate with influence or quality. Additionally, the relatively recent publication dates of
their work may limit their citation counts.

Regarding countries/regions/institutions, the United States leads other countries in
publications and citations (Table 2), and the top two institutions (Stanford University and
Harvard Medical School) with the most publications are both from the US (Table 3). This
is partly due to the US having amassed a good foundation in the biomedical field and AI
and maintaining the focus on scientific development and funding [40]. China and India
rank second behind the United States in terms of the number of publications. Despite
being developing countries, both are thriving in this field. Among the top five institutions,
Huazhong University of Science and Technology reported the highest number of LCSs
and GCS, indicating its pioneering research in this area. Using HistCite Pro, we identified
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that the study by Yan et al. [32] made a significant contribution. The research developed
a machine learning model based on the high-performance algorithm XGBoost, which
predicts the prognosis of COVID-19 patients using three indicators: lactic dehydrogenase,
lymphocytes, and high-sensitivity C-reactive protein. Moreover, Huazhong University of
Science and Technology is situated in Wuhan, a location that confers a unique advantage
in accessing first-hand medical cases and clinical data, given Wuhan’s status as the city in
which the COVID-19 epidemic first occurred. Additionally, analysis of funding agencies
shows that the NSFC, NIH, and NSF play a significant role, underscoring the contributions
of the United States and China in advancing research. Combined with the analysis of the
leading countries and institutions in terms of publications, these results underscore the
critical role of robust funding sources in driving research innovation.

In bibliometrics, keywords represent the research theme and core content of the litera-
ture, offering a distilled overview of a paper’s content. By analyzing the co-occurrence of
keywords, it is possible to provide insight into the research hotspots within an academic
field. Figure 7 depicts the results of the co-occurrence of terms; “COVID-19”, “machine
learning”, and “prediction” are the most frequent keywords, consistent with the theme of
this study. Figure 8 shows the keyword clustering for four years based on the log-likelihood
ratio (LLR) algorithm. The keyword cluster “mental health” in this study indicates that as
COVID-19 has continued to spread, the influence of the virus on people’s mental health is
of concern. Previous research has indicated that the COVID-19 lockdown had a significant
impact on stress, depression, and anxiety [41]. Maran et al. found that a greater indi-
vidual COVID-19-pandemic-related adversity index (CAI) was associated with a greater
increase in depressive and anxiety symptoms, as well as loneliness [42]. Hoogendijk et al.
showed that people who experienced several COVID-19-pandemic-related stressors, such
as COVID-19 infection, job loss, and the death of someone close to them, were more likely
to experience poorer mental health outcomes [43]. “Sentiment analysis” is a cluster word as-
sociated with mental health, indicating researchers’ interest from an alternative viewpoint.
Sentiment analysis is used to decipher people’s opinions and sentiments expressed on
social media concerning epidemiology, health policies, drugs, and supplements. Addition-
ally, the association between air pollution and COVID-19 has been explored. Early in the
COVID-19 pandemic, short-term exposure to air pollutants was reported to be associated
with COVID-19 incidence, mortality, and lethality rates in Italy [44]. Since then, a consid-
erable body of literature has emerged to assess the correlation between air pollution and
the risk of COVID-19 [45–47]. A distinct research perspective was spurred by the impact of
the lockdown on air pollutants. The lockdown, as a policy to contain COVID-19’s spread
in its early stages, notably not only mitigated the pandemic but also improved air quality
due to restricted human activities. Studies focusing on the consequences of COVID-19
lockdowns present a valuable opportunity to devise and implement efficient clean air
strategies. The cluster words “federated learning” and “drug repurposing” in 2023 indicate
current research hotspots, focusing on prediction models utilizing federated learning and
the application of machine learning techniques for the repurposing of existing drugs. The
training of predictive models requires extensive datasets, but healthcare institutions’ data
typically encompass sensitive and confidential patient information. Federated learning
emerges as a viable solution to address this challenge, eliminating the necessity for data
transfer and thus protecting data privacy [48]. It employs decentralized training processes
that allow models to be trained on multiple datasets independently, with only the model pa-
rameters being shared among participants. This method utilizes data from various sources
efficiently while safeguarding patient confidentiality. Trends in major keyword changes
indicate a sustained focus on air pollution and mental health research, highlighting an
emphasis on the impact of environmental and psychological factors on health. Additionally,
the COVID-19 outbreak has accelerated the application of machine learning techniques in
healthcare, pushing this field toward more complex and systematic approaches. This shift
underscores the necessity of interdisciplinary collaboration to address emerging health
challenges effectively.



Information 2024, 15, 575 13 of 17

4.2. Applications of COVID-19 Machine Learning

Initially, machine learning algorithms were mainly adopted in developing COVID-
19 diagnostic tools based on X-ray and CT scan images. For example, Ozturk et al. [49]
developed an automated tool for diagnosing COVID-19 using raw chest X-ray images.
Wu et al. [50] proposed a multi-view model based on a deep learning method to assist
radiologists in quickly and accurately identifying patients through the analysis of CT
images. Diagnosing COVID-19 with the assistance of ML can mitigate the heavy workload
of radiologists, decrease the likelihood of making mistakes, and reduce the cost compared
to traditional laboratory tests.

ML based on imaging not only serves a function for diagnosis but also extends to
disease quantification, severity assessment, and prognosis determination, thereby be-
ing integrative to decision support systems. COVID-19 decision support systems can
help decision/policymakers formulate policies to fight the pandemic. Furthermore, be-
yond image data, various datasets, including those for detecting viral transmission, con-
firmed cases, mortalities, and recoveries, can be integrated into decision support systems.
Ayyoubzadeh et al. [51] proposed the use of data-mining models to build predictive models
from Google search data. The data-mining models were designed to predict the COVID-19-
positive cases and the trend of the pandemic in Iran based on linear regression and long
short-term memory (LSTM), which could help health managers control potential outbreaks
and plan healthcare resources. Tiwari et al. [52] built a prediction model based on time
series forecasting to predict the number of confirmed cases, recovered cases, and death
cases in India. This epidemiologic model could advise the government on policy decisions.

In addition, to the best of our knowledge, machine learning techniques have also been
used in drug and vaccine development. The stages for the development of COVID-19
drugs include disease prediction, structural analysis, drug repurposing, and new drug
development [53]. Traditional development of new drugs is expensive and time consuming,
but drug repurposing can make drug discovery low-risk and low-cost. Efficient drug
repurposing can be achieved by mining existing data. Ke et al. [54] identified drugs
that can treat COVID-19 in the database of market-approved drugs by predicting the
drugs with potential antiviral activities through a machine learning model. Yet, most
of the current drugs are administered systemically. To enhance the localized efficacy
and reduce the adverse effects of drugs, the convergence of nanomedicine with drug
repurposing represents the direction of future medical research. This is attributable to
the capacity of nanoparticles to increase drug targeting [55]. For the development of
COVID-19 vaccines, machine learning methods have been used for screening compounds
for a potential adjuvant candidate [56], as well as for discovering markers of vaccine
immunogenicity and reactogenicity [57]. However, machine learning methods cannot
replace time-consuming tasks like lab experiments and clinical trials.

4.3. Limitations and Challenges of ML in Medicine

Machine learning has great potential to revolutionize healthcare, particularly in ad-
dressing challenges like the COVID-19 pandemic. However, its practical application faces
several significant limitations and challenges.

One major challenge is interpretability, which refers to the ability to understand and
explain which features most influence a model’s predictions. Clinicians need this trans-
parency to trust and adopt ML models in their decision-making processes [58]. Without
clear reasoning behind predictions, even highly accurate models may be disregarded in
clinical practice. Roberts et al. [59] argued that none of the reviewed studies were sufficient
to transition from scientific research to clinical practice due to issues such as dataset bias,
inadequate model evaluation, limited generalizability, and lack of reproducibility. They
also highlighted overfitting as a critical problem, where models perform well on training
data but fail to generalize to new, unseen data, greatly affecting the clinical usefulness of
ML models.
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Moreover, there is often a disconnect between ML experts and healthcare professionals.
ML practitioners may not fully understand clinical needs, while clinicians may struggle
with the technical aspects of implementing and interpreting complex ML models.

To overcome these challenges, several key steps must be taken. First, external valida-
tion should become standard practice to ensure that models can be applied to real-world
scenarios. Second, creating high-quality public datasets is essential to ensure that models
are trained on comprehensive and representative data. Finally, fostering interdisciplinary
collaboration between data scientists, engineers, and healthcare professionals is crucial.

4.4. Related Works

Several bibliometric studies have explored machine learning applications related
to COVID-19. Below, we summarize key works and highlight how our study differs
from them.

Mohadab et al. [20] conducted a broad bibliometric analysis of the COVID-19 literature
across three major databases (Web of Science, Scopus, and PubMed) from early 2020 to May
2020. Their study provided a general overview of research trends in the early stages of the
pandemic. In contrast, our work examines more recent developments in ML applications
related to COVID-19, covering the period from 2020 to 2023, allowing us to capture the
evolving research priorities in this field.

Chiroma et al. [21] focused on the use of ML to combat COVID-19 in the first half of
2020. They found that, at that time, research primarily focused on COVID-19 diagnostics,
while the development of COVID-19 drugs and vaccines remained limited. Our study
extends beyond this early focus by analyzing more recent trends, including the growing
emphasis on prediction models, drug repurposing, and other emerging areas like mental
health and air pollution.

Steiner et al. [22] performed a bibliometric analysis and systematic review of the
117 most-cited articles from January 2020 to June 2021, categorizing the use of ML in areas
such as lung imaging, media data analysis, and general COVID-19 prediction. While their
work focuses on highly cited papers, our study examines a larger dataset (2422 articles)
and provides a more in-depth analysis of prediction models.

Baygül Eden [23] et al. conducted a comprehensive bibliometric analysis of 3559 ML-based
COVID-19 studies published between December 2019 and December 2022 using Web of Sci-
ence. Although similar in scope, our study narrows down the focus to the specific application
of ML in COVID-19 prediction models and provides critical insights into the field.

Ballaz et al. [24] focused on ML-based research related to early diagnosis, prognosis,
and treatment, analyzing articles from the Scopus database between January 2020 and July
2022. Their study highlighted specific ML techniques like random forests and convolutional
neural networks. In contrast, our work takes a broader approach, covering a variety of ML
models and their applications in COVID-19 prediction.

4.5. Strengths and Limitations

Our study presents a detailed bibliometric analysis of the existing literature, providing
a comprehensive overview of the current state of research on machine learning applications
in prediction models for COVID-19. By examining multiple dimensions, such as authors,
countries, institutions, funding agencies, journals, and keywords, we have thoroughly
explored collaboration networks and research hotspots. This analysis offers valuable
insights into the development trends in the field and helps clarify future research directions.
However, there are some limitations. Firstly, our research excluded non-core collection
journals, preprints, and gray literature, which may result in incomplete coverage of relevant
publications. Secondly, since not all retrieved articles underwent full-text review, we cannot
ensure that every publication is fully relevant to the topics of interest. Finally, the database
is continually updated, so the most recent publications may have been missed.
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5. Conclusions

In this study, we performed a comprehensive bibliometric analysis of 2422 publications
on machine learning prediction models for COVID-19, covering the period from 2020 to
2023. Our findings reveal that the United States leads in terms of contributions to this
field, followed by China and India, which form the core of the three primary clusters of
international collaboration. Stanford University emerged as the institution with the highest
number of publications, while Scientific Reports was identified as the most prolific journal.
Significant contributions to the development of this domain were made by funding bodies
such as the NSFC, NIH, NSF, EU, and NIHR. Present research in this area predominantly
concentrates on deep learning, federated learning, image classification, air pollution, mental
health, sentiment analysis, and drug repurposing.

Despite the clear advantages of applying machine learning models in healthcare,
challenges such as data quality, dataset size, and data collection difficulties persist. The
research focus and trends are progressively orienting toward more complex and systematic
directions, and fostering interdisciplinary collaboration is crucial to unlocking the full
potential of machine learning in the medical domain.
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