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Abstract: We assessedwhether constructing amathematical knowledge graph for a knowl‑
edge question‑answering system or a course recommendation system, Named Entity
Recognition (NER), is indispensable. The accuracy of its recognition directly affects the
actual performance of these subsequent tasks. In order to improve the accuracy of mathe‑
matical knowledge entity recognition and provide effective support for subsequent func‑
tionalities, this paper adopts the latest pre‑trained language model, LERT, combined with
a Bidirectional Gated Recurrent Unit (BiGRU), Iterated Dilated Convolutional Neural Net‑
works (IDCNNs), and Conditional Random Fields (CRFs), to construct the LERT‑BiGRU‑
IDCNN‑CRF model. First, LERT provides context‑related word vectors, and then the Bi‑
GRU captures both long‑distance and short‑distance information, the IDCNN retrieves
local information, and finally the CRF is decoded to output the corresponding labels. Ex‑
perimental results show that the accuracy of this model when recognizing mathematical
concepts and theorem entities is 97.22%, the recall score is 97.47%, and the F1 score is
97.34%. This model can accurately recognize the required entities, and, through compari‑
son, this method outperforms the current state‑of‑the‑art entity recognition models.

Keywords: mathematical knowledge entity recognition; LERT; BiGRU; IDCNN; CRF

1. Introduction
As computer technology continues to advance and material conditions improve, arti‑

ficial intelligence (AI) technologies are constantly evolving. Natural Language Processing
(NLP) is progressing alongside AI at a rapid pace. NLP technology encompasses all pro‑
cesses of using electronic devices to process natural language. The purpose of this technol‑
ogy is to enable computers to correctly perceive, process, and apply the human language
input, thereby achievingmany complex functionalities. The NLP technical framework can
be divided into three levels: small‑scale, including word‑level NLP techniques; medium‑
scale, including syntactic‑level NLP techniques; and large‑scale, including discourse‑level
NLP techniques. Named Entity Recognition (NER) is a relatively small‑scale branch of
NLP, specifically at the global level. Itsmain function is to identify and extract entity names
from sentences or articles, forming the foundation for applications like knowledge graphs,
data mining, question‑answering systems, and machine translation. Chinese Named En‑
tity Recognition (NER) tasks involve extracting the required entities from Chinese texts.
Different recognition tasks focus on extracting different types of entities. For example,
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course entity recognition focuses on identifying entities like course names, teacher names,
and knowledge point entities, while news entity recognition involves identifying entities
like person names and place names.

Mathematical knowledge entity recognition focuses on identifying concepts such as
angles, lines, and planes; methods like “right angle”, “sequence”, and “set”; and theorems
like “Pythagorean theorem” and “completing the square”. These recognized entities can be
used to construct knowledge graphs which support tasks such as knowledge‑based ques‑
tion answering and MOOC course recommendations. Taking course recommendation as
an example, knowledge point entities are extracted from course descriptions, videos, and
other materials to build the course’s knowledge graph. From the user’s learning activities
(such as courses viewed, quizzes, and classroom discussions), their required knowledge is
identified, and personalized recommendations are made based on the knowledge graph,
improving the user experience and enhancing learning outcomes. Therefore, the accuracy
of entity recognition directly affects the effectiveness of these subsequent tasks, making
the improvement of recognition accuracy a key research focus.

To address this, the latest pre‑trained language model, LERT (Linguistically Moti‑
vated Bidirectional Encoder Representation from Transformers), is used to obtain semanti‑
cally rich word vectors. By combining LERT’s powerful language representation capabil‑
ities with Bidirectional Gated Recurrent Units (BiGRUs), Iterated Dilated Convolutional
Neural Networks (IDCNNs), and Conditional Random Fields (CRFs), the model’s ability
to capture global contextual information is enhanced, thereby improving the accuracy of
entity recognition.

2. Materials and Methods
Over time, Named Entity Recognition (NER) technology has evolved from dictionary‑

based rule techniques to traditional machine learning and deep learning methods.
Early methods primarily relied on rule‑based and dictionary‑based approaches. Re‑

searchers such as Kim J. H., Riaz K., and Xiaoheng Zhang used this technique in their re‑
spective tasks. However, this method depends on specific rules for entity recognition, and
the richness of the dictionary is often insufficient, leading to ambiguities between words.
The process of constructing rules is complex, requiring researchers to have a deep under‑
standing of linguistic knowledge. Additionally, different languages have different gram‑
matical structures, which means that language‑specific rules must be developed. These
rules often conflict with each other, requiring careful management. As a result, the work‑
load for researchers increased significantly, as they had to continually revise old word
sets and rules, which eventually led to these methods being replaced by more advanced
machine learning techniques.

Traditional machine learning methods for Named Entity Recognition (NER) mainly
include the Hidden Markov Model (HMM), the Maximum Entropy Markov Model
(MEMM), and the Conditional Random Field (CRF). These approaches are primarily based
on statistical probabilities and are essentially sequence labeling tasks. They require large
corpora for training, where the model learns to label the input language based on the pro‑
vided data. Zhao [1] applied HMM in the recognition of biomedical texts, achieving an
accuracy score of 62.98% using a word‑similarity‑based smoothing method. Wang and
others applied MEMM to address extraction, leading to significant improvements in both
precision and recall. Lafferty et al. [2] proposed the CRF, a discriminative classifier that
builds models for decision boundaries between different classes and can be used for clas‑
sification after training. Chen [3] used the CRF for Chinese NER recognition, achieving
a score of 85.25 on the MSRA dataset. Khabsa M. [4] applied the CRF to chemical entity
recognition and obtained an F1 score of 83.3%. However, these methods heavily depend
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on the corpus, requiring careful data selection, processing, and the construction of effec‑
tive features. The choice of features directly impacts the model’s performance, and this
process requires considerable human effort and time. Additionally, these methods tend to
have slow convergence and lengthy training times, which further adds to the challenge.

With the continuous development of machine learning, a wide variety of models and
algorithms have been introduced to solve various problems. Deep learningmethods based
on neural networks have gradually become dominant in NER tasks. Recurrent Neural
Networks (RNNs) [5] have shown great effectiveness in addressing sequence modeling
problems. However, RNNs tend to focus more on later outputs, leading to issues like gra‑
dient vanishing or exploding. To address this, Hochreiter et al. [6] proposed Long Short‑
TermMemory (LSTM), which selectively utilizes long‑term sequence information through
a gating mechanism (the input gate, output gate, and forget gate), retaining useful long‑
sequence information and mitigating the issues present in RNNs. Zeng D et al. [7] com‑
bined LSTM with the CRF for drug entity recognition tasks. On top of LSTM, the Gated
RecurrentUnit (GRU) retains two gate structures (update gate and reset gate), reducing the
number of parameters in LSTM, effectively lowering training costs andminimizing the risk
of overfitting in BiLSTM. By combining forward and backward LSTMs and GRUs, Bidirec‑
tional LSTM (BiLSTM) and Bidirectional GRUs (BiGRUs) are created, which capture both
preceding and following contextual information in sequences, thereby improving NER
performance. Wu et al. [8] applied the BiLSTM‑CRF with attention to the Chinese elec‑
tronic medical record NER. Quinta et al. [9] optimized the BiLSTM‑CRF for Portuguese
corpora, achieving high F1 results. Qiu Qinjun et al. [10] proposed an attention‑based
BiLSTM‑CRF neural network, achieving an F1 score of 91.47% in geological NER tasks.
Convolutional Neural Networks (CNNs), compared to RNNs, are more commonly used
in image modeling. In text processing, CNNs may only capture a small portion of the
original data through convolutions, and increasing the number of CNN layers to improve
accuracy results in a significant increase in parameters, which also increases training costs
and leads to overfitting. Emma Strubell et al. [11] proposed the Iterated Dilated Convolu‑
tional Neural Network (IDCNN) based on the Dilated CNN (DCNN). As the depth of the
DCNN increases, the effective input width expands exponentially, quickly covering the
entire length of the input sequence. During dilation, it captures rich local information that
BiLSTM and BiGRUs may overlook. The depth of the DCNN network increases linearly,
avoiding the exponential growth in parameters that would occurwith increasing CNN lay‑
ers, thus preventing the problem of parameter explosion. The IDCNN iteratively applies
the dilated convolution blocksmultiple times, without adding extra parameters, effectively
mitigating the overfitting issues caused by simply increasing the depth. Yu Bihui et al. [12]
achieved an F1 score of over 94% in entity recognition using the IDCNN. Although these
methods have achieved some success in the field of NLP, when dealing with phrases or
even sentences, they often overlook the semantic relationships between words and their
contexts, especially in Chinese, where the same word can have different meanings in dif‑
ferent contexts (polysemy). This limits the model’s ability to accurately recognize entities,
affecting overall recognition accuracy.

The BERT (Bidirectional Encoder Representation from Transformers) [13] model, in‑
troduced by Google AI in 2018, is a bidirectional encoder based on the Transformer ar‑
chitecture. BERT significantly enhances the relational features between characters, words,
and sentences, allowing us to better understand information in different contexts. The
word vectors generated by BERT have much stronger semantic representation capabili‑
ties. Additionally, during training, BERT does not require manual intervention from re‑
searchers, and different functionalities can be implementedwithoutmajormodifications to
the code framework, which greatly reduces training costs. BERT is a pre‑trained language
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representation model, and its pre‑training phase includes two tasks: a Masked Language
Model (MLM) and Next‑Sentence Prediction (NSP). These tasks strengthen the model’s
learning of word and sentence relationships. Gao et al. [14] applied BERT for sentiment
analysis and achieved the best results compared to traditional models. Wu Jun et al. uti‑
lized BERT embeddings combined with BiLSTM and the CRF for Chinese terminology
extraction, demonstrating a clear improvement over traditional shallow machine learning
models. Zhang Yi et al. combined BERT with the BiLSTM‑IDCNN‑CRF, achieving an F1
score of 93.91% for elementarymathematical entity recognition. YangChonglong et al. [15]
used BERT to build word vectors, followed by BiLSTM, and then improved the IDCNN.
CRF decoding was then used to create an excellent COVID‑19 entity recognition model.
However, BERT has some limitations. The tasks used during pre‑training do not appear
in downstream tasks, which can lead to a mismatch between pre‑training and fine‑tuning,
potentially affecting BERT’s performance in downstream NLP tasks.

Building on BERT, many other pre‑trained language models have emerged. Kevin
Clark et al. [16] identified that BERT’s pre‑training learning efficiency was relatively slow
and proposed the Electra language model. Electra modifies the MLM strategy by replac‑
ing the original tokens with generated tokens, instead of using masking. This approach
increases training speed and improves accuracy in downstream tasks. MacBERT [17] re‑
placed the original MLM task with a corrected MLM task, where similar‑meaning words
are used to replace the original words. Additionally, it changed the NSP task to the Sen‑
tence Order Prediction (SOP) task to reduce the gap between BERT’s pre‑training and
downstream tasks. PERT [18] uses the PerLMmethod, which employsWhole‑WordMask‑
ing (WWM) and N‑gram masking to select words, changing the order of characters and
words in sentences. The model’s goal is to restore the word order from the shuffled sen‑
tence. Recently, Cui Yiming et al. [19] proposed the LERT pre‑trained language model,
which injects linguistic knowledge during the pre‑training phase. Specifically, it uses
the LTP language analysis tool to generate the following three linguistic features: Part of
Speech (POS) tagging, Named Entity Recognition (NER), and Dependency Parsing (DEP).
These features are combined with the Masked Language Model (MLM) task to perform
multi‑task pre‑training. By incorporating linguistic features, LERT possesses more power‑
ful language representation capabilities and aligns more closely with downstream tasks,
providing strong support for NLP tasks.

In this experiment, LERT will be used to generate word vectors rich in semantic in‑
formation. The BiGRU and IDCNN will capture long‑range dependencies and global in‑
formation, while the CRF will decode the entity labels by leveraging the dependencies
between labels. Together, these four components form a fast‑training and highly accurate
mathematical knowledge entity recognition extractor.

2.1. LERT‑BiGRU‑IDCNN‑CRF
2.1.1. Model Architecture

The overall structure of the LERT‑BiGRU‑IDCNN‑CRFmodel is shown in Figure 1. It
is mainly divided into four parts: the LERT pre‑trained language model layer, the BiGRU
layer, the IDCNN layer, and the CRF layer. LERT is used to obtain dynamic word vectors
from the dataset, and the resulting dynamic word vectors are fed into the forward and
backward GRU. Through training in the GRU layer, the weights of the feature items con‑
taining forward and backward information are inspected, with emphasis on features that
play a decisive role or are particularly important for the recognition task, while ignoring
some irrelevant or less correlated features. The IDCNN layer extracts the local informa‑
tion that is ignored by the BiGRU, and, finally, the CRF layer uses the Viterbi algorithm for
decoding to obtain the text labels.
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2.1.2. LERT Pre‑Trained Language Mode

LERT completes two tasks during the pre‑training, one of which is masked language
modeling (MLM) and the other is the linguistic task, which includes Part of Speech (POS),
Named Entity Recognition (NER), and Dependency Parsing (DEP). The essence of the
MLM (Masked Language Model) task is to predict the masked characters by randomly
masking certain characters in a sentence, allowing the model to predict what the masked
characters are. In the MLM task, LERT adopts Chinese Whole‑Word Masking (WWM)
and N‑gram masking. Unlike the original MLM, WWMmasks the entire word instead of
breaking it down into subwords. For example, in MLM, the word “摩天楼” (skyscraper)
is broken into three subwords: “摩” (mo), “天” (tian), and “楼” (lou). If “天” is selected to
be masked, and WWMwill also mask “摩” and “楼” as [MASK]. N‑gram masking marks
a continuous sequence of N words as [MASK]. For instance, in a 2 g scenario, both “世界”
(world) and “公园” (park) in the phrase “世界公园” (world park)would bemasked entirely.
The LTP is used as a boundary tool to divide the words. N‑g include 1 g, 2 g, 3 g, and 4 g,
with masking probabilities of 40%, 30%, 20%, and 10%, respectively. LERT applies the
WWM and N‑gram masking methods to replace 15% of the characters in the corpus with
the special token [MASK]. Of this 15%, 80% of the characters are replaced with [MASK],
10% are replaced with random characters, and 10% remain unchanged. Examples of re‑
placement are shown in Table 1.

Table 1. Masking and replacement examples.

Percentage
Replacement Examples

Before After
80% Today is Sunday. Today is [MASK].
10% Today is Sunday. Today is fun.
10% Today is Sunday. Today is Sunday.

In the pre‑training phase of LERT, three linguistic tasks are incorporated: Part of
Speech (POS), Named Entity Recognition (NER), and Dependency Parsing (DEP). LERT
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first uses the LTP to extract linguistic features (i.e., POS, NER, and DEP) from the training
corpus and uses them as weakly supervised labels during the pre‑training phase, perform‑
ing classification training across the three linguistic tasks. The losses from the MLM task
and the three linguistic tasks are jointly computed to obtain the final pre‑trained LERT
language model. This multi‑task training significantly enhances LERT’s semantic under‑
standing capabilities. POS provides fundamental lexical and syntactic information; this
information helps the model more accurately distinguish entity words (e.g., proper nouns)
from common nouns, thereby guiding entity boundary detection. Integrating NER learn‑
ing into the pre‑training phase means the model starts building an understanding of entity
features, distributions, and contextual patterns before it even fine‑tunes ondomain‑specific
data. As a result, during downstream NER tasks, the model no longer needs to learn from
scratchwhat entities are or how to identify them—it already possesses some inherent entity
recognition capabilities. Dependency parsing provides information about syntactic struc‑
tures and dependency relations between words. This higher‑level structural knowledge
indirectly strengthens the model’s grasp of the contexts in which entities appear.

Moreover, with the addition of the NER task in the pre‑training phase, LERT outper‑
forms other pre‑trained models in the downstream mathematical Named Entity Recogni‑
tion tasks, which is clearly demonstrated in the subsequent experiments.

Transformer is a sequence‑to‑sequence (Seq2Seq) task, which is mainly composed of
the encoder and the decoder. The length of the input sequences and output sequences of
this network can be changed. As shown in Figure 2, LERT contains a multi‑layer Trans‑
former architecture, which mainly uses the encoder part of the Transformer, and its struc‑
ture is shown in Figure 3.
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The initial input e0 for the single‑layer Transformer can be described as (1). After
passing through the multi‑head attention module, e0 is added to the output of attention
and normalized (Add & Norm) to obtain the intermediate result emid. After being sent to
the fully connected feed‑forward neural network (FNN), emid is normalized again with the
output of the FNN to obtain the output eout of this layer. The output of this layer is taken as
the input of the next layer and it is passed through the Transformer layer again. At the last,
the final output is obtained through the N‑layer Transformer and the entire process can be
represented as (2)–(4), where em−1 is both the output of them− 1 layer and the input of m
layer, m∈[1, n], where n is the number of encoder layers.

e0 = Embeddingtoken(in) + Embeddingsegment(in) + Embeddingposition(in) (1)

emid = LayerNorm(ein + MultiHeadAttention(ein)) (2)

eout = LayerNorm(emid + FFN(emid)) (3)

em = EncoderLayer(em−1) (4)

2.1.3. BiGRU

The structure of the GRU is shown in Figure 4. The GRU contains two kinds of gating
structures: the update gate and the reset gate. The reset gate aims to retain the past infor‑
mation, which is helpful for prediction purposes. The updated gate decides how much
input information is required for the new hidden state. In other words, the updated gate
can filter out the less useful parts of the input information and keep the most useful part.
The input of the GRU consists of two parts: the precious activation ht−1 at time t − 1 and
the current input xt at time t. The gating mechanism can be expressed as (5)–(8):

rt = σ(XtWxr + ht−1Whr + br) (5)

zt = σ(XtWxz + ht−1Whz + bz) (6)

h̃t = tanh(XtWxz + (rt ⊙ ht−1)Whh + bh) (7)

ht = zt ⊙ ht−1 + (1 − zt)⊙ h̃t (8)

where w is the parameter matrix, rt is the set of reset gates, b is the bias, zt is the updated
gate, and ⊙ is the element‑wise multiplication. The σ function maps the data for each
element in zt and rt to a value in the 0–1 range. When all the elements in rt are set to
0, the model will discard all the hidden information in the past, leaving only the input
information at the current time. On the contrary, when rt is set to 1, all past information is
regarded as useful and the model merges them into the current input.

The GRU transmits information from front to back, but in Chinese NER tasks, the cur‑
rent position not only needs information passed from previous positions but also requires
reference to the information that follows. The BiGRU is the combination of the forward
GRU and the backward GRU. After training the forward GRU, the sequence is reversed to
train the backward GRU, allowing the model to capture information from both directions
for better performance in tasks like NER. By combining forward and backward GRUs, the
BiGRU ismore able to capture the intrinsic connections between the characters at the begin‑
ning and end of a sentence, thus enhancing its ability to capture contextual relationships.
This approach also effectively reduces the impact of vanishing gradients, significantly im‑
proving the model’s recognition capabilities.
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2.1.4. IDCNN

Dilated Convolutional Neural Networks (DCNNs) build upon traditional Convolu‑
tional Neural Networks (CNNs) by applying dilation to the convolution kernel, which
increases the receptive field—the area in the neural network that a neuron can perceive.
In traditional CNNs, the convolution kernel slides across the region, and dilation is intro‑
duced to skip the data within the dilation width while keeping the kernel size unchanged
during the convolution process. This allows a fixed‑size kernel to have a wider data view.
On the left side of Figure 5, the original convolutional kernel expands outward with a dila‑
tion rate of 1, forming a 3× 3 receptive field. In the middle of Figure 5, the kernel expands
outward with a dilation rate of 2, forming a receptive field of 7 × 7. On the right side of
Figure 5, the dilation rate is 4, resulting in a receptive field size of 15 × 5.
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Strubell introduced Dilated Convolutional Neural Networks (DCNNs) into the field
of Natural Language Processing (NLP). In Named Entity Recognition (NER) tasks, DC‑
NNs are typically one‑dimensional, and they are mostly applied to vector sequences rep‑
resenting token embeddings, rather than two‑dimensional grids, as often seen in image
processing. This allows the DCNNs to efficiently capture context across a sequence of to‑
kens, adapting a convolutional approach to the needs of sequential data in NLP. This can
be expressed as (9).

ct = Wc ⊕ xt±kl (9)

where ct is the output, xt is the input, ⊕ is the vector concatenation, l is the dilation width,
and wc is the parameter matrix. As the dilation rate increases, the receptive field expands
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exponentially, while the number of parameters only increases linearly. This significantly
reduces the training cost compared to traditional CNNs.

By stacking more layers in a DCNN, the dilation width increases exponentially, and
the receptive field also grows exponentially, while the number of parameters increases lin‑
early. This means that during training, the cost does not grow excessively as the receptive
field expands. However, simply increasing the depth of the DCNN can lead to overfitting.
To address this, the Iterated Dilated Convolutional Neural Network (IDCNN) uses an it‑
erative method, repeatedly applying the same stack of dilated convolutions, as shown in
Figure 6. The output of one iteration serves as the input for the next, allowing the same
parameters to be reused in a cyclic manner. An IDCNN consists of multiple dilated convo‑
lution blocks, and each block contains multiple layers of the DCNN. This approach helps
mitigate overfitting while maintaining the model’s ability to capture extensive global in‑
formation. The whole process can be expressed as (10)–(14):

c(0)t = D(0)
1 xt (10)

c(j)
t = Relu

(
D(j−1)

2m−1 c(j−1)
t

)
(11)

b(1)t = Block(xt) (12)

b(k)t = Block
(

b(k−1)
t

)
, k ∈ [2, n] (13)

ht = Wob(n)t (14)
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The input feature sequence can be represented as x = [x1, . . . , xt, . . . , xT], and the
output score vector sequence can be represented as ht. Let the dilation width be y and the
x‑th DCAN layer be represented as D(x)

y . By passing the input through the DCAN layer
D(0)

1 in the first DCNNblock, we obtain C(0)
t . ADCNN layer stackedwithin a DCNNblock

(where m represents the number of DCAN layers) is then defined. After passing through
multiple DCAN layers, we obtain the output b(1)t of the initial DCAN block (and we define
a DCNN block as Block(*)). The output of the previous DCAN block is used as the input
for the next layer, and this process is repeated n times. Finally, the output of the entire
IDCNN is obtained (where Wo is the parameter matrix). The IDCNN has strong parallel
computing capabilities.

2.1.5. CRF

The Conditional Random Field (CRF) is a discriminative probabilistic undirected
graphicalmodel. Inmathematical NER tasks, the CRF is used to perform sequence labeling
on the output from the IDCNN layer. While LERT can capture rich semantic information,
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the BiGRU can grasp long‑range dependencies within a sentence, and the IDCNN can cap‑
ture local information; however, none of these three components can effectively learn the
dependencies between labels.

In the BIO labeling scheme used in this experiment, there are hidden rules, such as the
following: the “I‑X” tag cannot appear before the “B‑X” tag (for example, the “I‑KNOW”
tag must follow the “B‑KNOW” tag and cannot precede it). Additionally, the “I‑X” tag for
one entity type cannot appear after the “B‑X” tag of another entity type (for instance, the
“I‑KNOW” tag can only follow the “B‑KNOW” tag, not the “B‑PRIN” tag, and the same
applies for “I‑PRIN”). In this aspect, the CRF is highly effective in learning these label
dependencies. It uses adjacent labels and input features to produce the globally optimal
label sequence.

By letting the input sequence be x = (x1, x2, . . . , xn) and the corresponding label se‑
quence be y = (y1, y2, . . . , yn), the conditional probability of the CRF, P(y|x), can be ex‑
pressed as (15) and (16):

P(y|x) = 1
Z(x)

exp

(
∑
i,k

λktk(yi−1, yi, x, i)+∑
i,l

ulsl(yi, x, i)

)
(15)

Z(x) = ∑
y

exp

(
∑
i,k

λktk(yi−1, yi, x, i)+∑
i,l

ulsl(yi, x, i)

)
(16)

The features λ and u, aswell as the correspondingweights t and s, are learned through
later stages of training. From Equations (15) and (16), it can be seen that the calculation at
the current position is influenced not only by the current input x but also by the previous
sequence label yi−1.

3. Results
3.1. Text Annotation

In Named Entity Recognition (NER) tasks, the training corpus needs to be annotated
as a sequence. Sequence labeling can generally be divided into two types: raw labeling and
joint labeling. In raw labeling, each character is independently labeled with a tag, while
in joint labeling, characters belonging to the same type are grouped and labeled together.
Typically, raw labeling is used to address joint labeling problems. In Chinese NER tasks,
it is essential not only to identify the entity category but also to determine the position of
the entity and the boundaries between different entities. Considering this, using raw label‑
ing is more appropriate. IO is the simplest of the three schemes, containing only two tags:
“I” and “O”. “I‑X” indicates a character that is part of an entity (“X” represents the entity
type, such as “I‑PER” for a person’s name), while “O” denotes irrelevant characters that are
not part of any entity. This scheme has significant drawbacks because it lacks boundary
markers, making it impossible to distinguish between adjacent entities. BIO is a more com‑
monly used labeling scheme, which builds upon IO by adding the “B” tag to indicate the
beginning of an entity. It includes “B‑X”, “I‑X”, and “O”. BIO largely solves the boundary
ambiguity issue present in the IO system, making it a well‑performing labeling method
for raw tasks. BIOES is an extension of BIO that adds an “E‑X” tag for the end of an entity
and an “S‑X” tag for single‑character entities. BIOES is more complex than IO and BIO,
providing clearer entity boundaries. However, its increased complexity leads to longer
training times. The complexity of the labeling system is closely related to the recognition
accuracy—the more complex the labeling scheme, the higher the accuracy under the same
conditions. However, this also increases the corresponding training time. For the mathe‑
matical knowledge entity recognition task in this study, the BIO labeling scheme will be
used for sequence labeling.
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The dataset consists of sentences and labels, both of which are strings. However,
for the model, the input data type must be numeric. For Chinese characters, we can use
the character dictionary provided in the open‑source BERT pre‑trained model package by
Google. For labels, we follow the order of entity categories. Within each category, we
place B‑tags before I‑tags. After these, we add the special tokens “<START>” and “<EOS>”
to indicate the start and end, respectively. For convenience, we prepend “<PAD>” at the
beginning. Finally, the dictionary for the label is shown in Table 2.

Table 2. Label dictionary.

Label Numeric
<PAD> 0

B‑KNOW 1
I‑KNOW 2
B‑PRIN 3
I‑PRIN 4
O 5

<START> 6
<EOS> 7

3.2. Dataset

In this experiment, the dataset contains two types of entities. One type is math‑
ematical concept entities, such as “集合” (set) and “三角形” (triangle), which are la‑
beled as “KNOW”. The other type consists of mathematical theorems and laws, such as
“贝叶斯定理” (Bayes’ theorem) and “格林公式” (Green’s theorem), which are labeled as
“PRIN”. The BIO labeling scheme is used for annotation.

Thedataset is divided into the training set, test set, and validation set, with the number
of entities in each set shown in Table 3.

Table 3. Dataset entities.

Dataset TOTAL KNOW PRIN
Train 10,100 9733 367
Test 1484 1378 106
Dev 1631 1550 81

3.3. Evaluation Metrics

In this experiment, three evaluation metrics are used: precision (P), recall (R), and the
harmonic mean F1. The formulas for the three metrics are as follows:

P =
CT
CA

× 100% (17)

R =
CT
TA

× 100% (18)

F1 =
2 × P × R

P + R
× 100% (19)

where CT represents the total number of entities successfully recognized by the model, CA
represents the total number of all entities recognized by the model, and TA represents the
total number of all entities in the standard results.

3.4. Experimental Environment and Parameter Settings

The model for this experiment is built based on the PyTorch framework, and the en‑
vironment settings are shown in Table 4.
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Table 4. Table type style.

Environment Version
Transformers 4.22.2

GPU Tesla v100‑pcie
Python 3.8
Pytorch 1.12.1 + gpu

Pytorch‑crf 0.7.2

The experimental parameter settings are shown in Table 5. The Transformer layers
and hidden layer dimensions are set according to the LERT‑base parameters, with 12 layers
and 768 hidden units. The maximum sentence length inputted into the model is set to
128. Learning rate decay is applied to control changes in the learning rate during training.
Weight decay is used to reduce model complexity, and dropout is employed to prevent or
mitigate overfitting during training. The convolution kernel size is set to 3× 3; the number
of dilated convolution blocks is set to 4; and the dilation rates are set to 1, 1, and 2.

Table 5. Table type styles experimental parameter settings.

Parameter Value
Max length 128
Batch size 16
Hidden 768

Transformer layer 12
Epochs 50
Dropout 0.5
Kernel size 3

Block number 4
Dilation 1,1,2

Kernel number 120

3.5. Result

The training process consists of 50 epochs, but starting from the 30th epoch, the
model’s accuracy, recall, and F1 scores no longer show significant improvements. Figure 7
shows the accuracy, recall, and F1 scores during the first 30 epochs of training. Themodel’s
loss during these 50 epochs is displayed in Figure 8. With each epoch, themodel’s loss con‑
sistently decreases, eventually leveling off and staying below 0.18.

Information 2025, 16, x FOR PEER REVIEW 13 of 18 
 

 

3.5. Result 

The training process consists of 50 epochs, but starting from the 30th epoch, the 
model’s accuracy, recall, and F1 scores no longer show significant improvements. Figure 
7 shows the accuracy, recall, and F1 scores during the first 30 epochs of training. The 
model’s loss during these 50 epochs is displayed in Figure 8. With each epoch, the model’s 
loss consistently decreases, eventually leveling off and staying below 0.18. 

In this process, the best model achieves an accuracy score of 97.22%, a recall score of 
97.46%, and an F1 score of 97.34%. When this model is tested on the validation set, the 
accuracy, recall, and F1 score for the two types of entities are obtained, as shown in Table 
6. 

 

Figure 7. Model effect. 

 

Figure 8. Model loss. 

Table 6. The evaluation results of the models on the development set. 

Entities 
Evaluation Metrics 

Precision Recall F1 
KNOW 97.210 97.659 97.434 
PRIN 97.436 93.827 95.597 

 
Through conducting tests on the development set, the proposed LERT-BiGRU-

IDCNN-CRF model is found to perform well in recognizing mathematical concepts and 
theorems. Among these, the recognition of mathematical concept entities is the most 

Figure 7. Model effect.



Information 2025, 16, 42 13 of 17

Information 2025, 16, x FOR PEER REVIEW 13 of 18 
 

 

3.5. Result 

The training process consists of 50 epochs, but starting from the 30th epoch, the 
model’s accuracy, recall, and F1 scores no longer show significant improvements. Figure 
7 shows the accuracy, recall, and F1 scores during the first 30 epochs of training. The 
model’s loss during these 50 epochs is displayed in Figure 8. With each epoch, the model’s 
loss consistently decreases, eventually leveling off and staying below 0.18. 

In this process, the best model achieves an accuracy score of 97.22%, a recall score of 
97.46%, and an F1 score of 97.34%. When this model is tested on the validation set, the 
accuracy, recall, and F1 score for the two types of entities are obtained, as shown in Table 
6. 

 

Figure 7. Model effect. 

 

Figure 8. Model loss. 

Table 6. The evaluation results of the models on the development set. 

Entities 
Evaluation Metrics 

Precision Recall F1 
KNOW 97.210 97.659 97.434 
PRIN 97.436 93.827 95.597 

 
Through conducting tests on the development set, the proposed LERT-BiGRU-

IDCNN-CRF model is found to perform well in recognizing mathematical concepts and 
theorems. Among these, the recognition of mathematical concept entities is the most 

Figure 8. Model loss.

In this process, the best model achieves an accuracy score of 97.22%, a recall score
of 97.46%, and an F1 score of 97.34%. When this model is tested on the validation set, the
accuracy, recall, and F1 score for the two types of entities are obtained, as shown in Table 6.

Table 6. The evaluation results of the models on the development set.

Entities
Evaluation Metrics

Precision Recall F1
KNOW 97.210 97.659 97.434
PRIN 97.436 93.827 95.597

Through conducting tests on the development set, the proposed LERT‑BiGRU‑
IDCNN‑CRF model is found to perform well in recognizing mathematical concepts and
theorems. Among these, the recognition of mathematical concept entities is the most effec‑
tive, with 1512 out of 1550 concept entities successfully identified. For theorem entities, 76
out of 81 are correctly recognized, with slightly weaker performance compared to concept
entities. The possible reasons for this discrepancy could be as follows:

• Quantity: The larger number of concept entities compared to theorem entities may
have led to a difference in performance due to the sample size.

• Data repetition: Certain concept entities appeared more frequently in the dataset, al‑
lowing the model to more accurately recognize those repeated entities.

• Entity name length: The names of theorem entities are often longer, which increases
the difficulty and affects the accuracy of entity recognition.

To clearly demonstrate the effectiveness of the LERT‑BiGRU‑IDCNN‑CRF model
used in this experiment, this section compares the experimental model with various
other models.

First, the performance of the LERT component, which constructs word vectors, is
tested. Four different pre‑trained models for word vector construction are introduced:
BERT, RoBERTa, MacBERT, and PERT. Each of these models is used to build a “‑BiGRU‑
IDCNN‑CRF” model, all using the base version to ensure consistent network parameters.

• BERT, proposed by Google AI, is a pre‑trained language model with two key tasks
in the pre‑training phase: the masked language model (MLM) task and next‑sentence
prediction (NSP).
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• RoBERTa is a fine‑tuned version of BERT, with increased model parameters, larger
training datasets, and the ability to remove the NSP task. It uses a dynamic masking
strategy for MLM.

• MacBERTmodifies the MLM task, usingWhole‑WordMasking (WWM) and N‑gram
methods to select masking candidates, replacing them with synonyms instead of
using [MASK].

• PERT eliminates the NSP task and shuffles word order during pre‑training, with the
prediction target being the original word order.

Table 7 shows the best results of different pre‑trained models, and Figures 9–11 dis‑
play the overall performance of these models across various metrics.

Table 7. The performance of different pre‑trained models.

Model
Evaluation Metrics

Precision Recall F1
LERT 97.221 97.468 97.344
BERT 96.244 96.232 96.238

RoBERTa 96.398 96.232 96.315
MacBERT 96.232 96.664 96.448
PERT 96.213 97.900 97.049
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It can be observed that the LERT pre‑trained language model, which incorporates
three linguistic tasks, outperforms the other four pre‑trained language models in math‑
ematical knowledge entity recognition. The recognition performance of MacBERT and
PERT is better than that of BERT and RoBERTa, indicating that improved pre‑training
strategies can significantly enhance the connection between the pre‑training phase and
the downstream entity recognition tasks, thereby improving the recognition results.

Next, the BiGRU and BiLSTM are tested by comparing the BiGRUmodel with the BiL‑
STMmodel (while retaining the IDCNNandCRF, and conducting a horizontal comparison
of different word vector models), as shown in Table 8. The recognition performance of the
BiGRU and BiLSTM is almost equivalent, with BiGRUmodels using LERT and PERT show‑
ing better recognition results than BiLSTM, while BiGRU models using BERT, RoBERTa,
andMacBERT performworse than BiLSTM. However, a common point is that the training
time for the BiGRU model is shorter than that for BiLSTM, as shown in Figure 12.

Table 8. Comparison between the BiGRU and BiLSTM.

Model Precision Recall F1

BiGRU

LERT 97.221 97.468 97.344
BERT 96.244 96.232 96.238

RoBERT 96.398 96.232 96.315
MacBERT 96.232 96.664 96.448
PERT 96.213 97.900 97.049

BiLSTM

LERT 96.106 96.726 96.415
BERT 95.695 96.603 96.147

RoBERT 95.756 96.726 96.239
MacBERT 96.248 96.850 96.548
PERT 95.141 96.047 95.592
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Next, the IDCNN is tested through ablation experiments. The results are shown in
Table 9, where the BiGRU andCRF are retained, and differentword vectormodels are used
for horizontal comparison. The results clearly show that the models incorporating the ID‑
CNN significantly outperform those without the IDCNN. This demonstrates that the ID‑
CNN’s ability to capture global information can effectively improve the overall recognition
performance of the model.

Table 9. Comparison of IDCNNs.

IDCNN Model Precision Recall F1

reserve

LERT 97.221 97.468 97.344
BERT 96.244 96.232 96.238

RoBERT 96.398 96.232 96.315
MacBERT 96.232 96.664 96.448
PERT 96.213 97.900 97.049

remove

LERT 95.993 96.788 96.389
BERT 95.746 96.232 95.989

RoBERT 95.174 96.912 96.035
MacBERT 95.708 96.726 96.215
PERT 95.575 96.047 95.810

4. Discussion
This paper constructs the LERT‑BiGRU‑IDCNN‑CRF model to perform Chinese

Named Entity Recognition (NER) for mathematical concepts and theorems, using the BIO
labeling scheme to create the dataset. The dataset is fed into the LERTmodel, where LERT
learns the dependencies between characters and sentences. Internally, the Transformer‑
based encoder captures word vectors enriched with contextual information, which are
then passed to the BiGRU module. The BiGRU checks the weights for both forward and
backward information, with each GRU cell using gating mechanisms like the reset gate
and update gate to control the amount of information. The IDCNN complements the Bi‑
GRU by capturing local information, while the CRF takes into account both the current
input sequence and the previous label information to determine the optimal label at each
step and perform decoding, ultimately producing the entity results. After testing, this
model achieves good performance in recognizing mathematical knowledge entities, with
accuracy, recall, and F1 scores of 97.22%, 97.47%, and 97.34%, respectively. Comparative
experiments highlight the advantages of this model. The combination of LERT, BiGRU,
IDCNN, and CRF allows the model to fully capture global information and intrinsic rela‑
tionships, making the LERT‑BiGRU‑IDCNN‑CRFmodelmore valuable than other recogni‑
tionmodels. It can effectively support downstream tasks like knowledge graphs, question‑
answering systems, and recommendation systems. In the future, efforts should bemade to
increase the size of the training set and fine‑tune the training parameters to further enhance
the model’s performance. Additionally, the model can be applied to different datasets
and domains, such as medicine, transportation, and technology, expanding its application
scope and enabling entity recognition for specialized terms in various fields.
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