
Academic Editor: Danilo Avola

Received: 8 December 2024

Revised: 2 January 2025

Accepted: 9 January 2025

Published: 16 January 2025

Citation: Asaju, C.B.; Owolawi, P.A.;

Tu, C.; Wyk, E.V. Cloud-Based License

Plate Recognition: A Comparative

Approach Using You Only Look Once

Versions 5, 7, 8, and 9 Object Detection.

Information 2025, 16, 57. https://

doi.org/10.3390/info16010057

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Cloud-Based License Plate Recognition: A Comparative
Approach Using You Only Look Once Versions 5, 7, 8, and 9
Object Detection
Christine Bukola Asaju * , Pius Adewale Owolawi * , Chuling Tu and Etienne Van Wyk

Computer Systems Engineering, Tshwane University of Technology, Pretoria 0001, South Africa;
duc@tut.ac.za (C.T.); vanwykea@tut.ac.za (E.V.W.)
* Correspondence: chrisamaju0202@gmail.com or asajucb@tut.ac.za (C.B.A.); owolawipa@tut.ac.za (P.A.O.)

Abstract: Cloud-based license plate recognition (LPR) systems have emerged as essen-
tial tools in modern traffic management and security applications. Determining the best
approach remains paramount in the field of computer vision. This study presents a com-
parative analysis of various versions of the YOLO (You Only Look Once) object detection
models, namely, YOLO 5, 7, 8, and 9, applied to LPR tasks in a cloud computing environ-
ment. Using live video, we performed experiments on YOLOv5, YOLOv7, YOLOv8, and
YOLOv9 models to detect number plates in real time. According to the results, YOLOv8
is reported the most effective model for real-world deployment due to its strong cloud
performance. It achieved an accuracy of 78% during cloud testing, while YOLOv5 showed
consistent performance with 71%. YOLOv7 performed poorly in cloud testing (52%), in-
dicating potential issues, while YOLOv9 reported 70% accuracy. This tight alignment of
results shows consistent, although modest, performance across scenarios. The findings
highlight the evolution of the YOLO architecture and its impact on enhancing LPR accuracy
and processing efficiency. The results provide valuable insights into selecting the most
appropriate YOLO model for cloud-based LPR systems, balancing the trade-offs between
real-time performance and detection precision. This research contributes to advancing the
field of intelligent transportation systems by offering a detailed comparison that can guide
future implementations and optimizations of LPR systems in cloud environments.

Keywords: license plate recognition; cloud-based; You Only Look Once; traffic management

1. Introduction
Cloud technology refers to the ability to store and retrieve data and applications

online instead of on a hard disk [1]. This indicates that organisations of all sizes can
compete with much larger firms by leveraging strong software and IT infrastructure to
become larger, leaner, and more adaptable. In the area of object detection, cloud-based
technology has been of enormous benefit. Such benefits include fast and robust detection,
enhanced automation, saving time and resources, improved security, etc. Consequently,
corporations, governments, and individuals prioritize security in an increasingly connected
world. Traditional security methods, such as physical barriers and skilled personnel,
remain crucial, but technological breakthroughs are transforming how we monitor and
secure our environments. The term “cloud-based automatic license plate recognition”
(ALPR) describes a system that automatically recognizes and analyzes license plates using
cloud computing technologies [2]. Cloud computing allows users to access resources
without having to manage physical infrastructure by delivering computing services over

Information 2025, 16, 57 https://doi.org/10.3390/info16010057

https://doi.org/10.3390/info16010057
https://doi.org/10.3390/info16010057
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0003-2728-6806
https://orcid.org/0000-0002-5781-5054
https://orcid.org/0000-0002-0436-2741
https://doi.org/10.3390/info16010057
https://www.mdpi.com/article/10.3390/info16010057?type=check_update&version=1


Information 2025, 16, 57 2 of 23

the internet [3,4]. According to the authors of [3,5], cloud computing provides on-demand
access to a shared pool of reconfigurable computing resources, such as servers, storage,
databases, networking, software, and analytics. Faster innovation, adaptable resources,
and economies of scale are made possible by this strategy [3]. The utility-based model
of cloud computing allows for on-demand service purchases and quick provisioning or
release with little management work [5]. By extending IT capabilities as needed, it enables
firms to quickly adjust to changes in the market [5]. The internet is represented by the
cloud metaphor, which abstracts the intricate infrastructure it hides [4].

Cloud-based license plate recognition (LPR) is a fast-growing invention that uses the
cloud to improve license plate recognition capabilities [6]. Compared to traditional LPR
systems, cloud-based LPR provides various benefits that help maximize security. Using
cameras or other specialized equipment, ALPR collects license plate images, which are
subsequently processed and analyzed in the cloud using advanced algorithms.

The rapid expansion of urban areas and the corresponding increase in vehicle numbers
have intensified the need for efficient traffic management and security systems. License
plate recognition (LPR) technology plays a crucial role in addressing these challenges by
automating the identification of vehicles using their license plates. Traditionally, LPR
systems were deployed locally, which limited their scalability and accessibility. However,
the advent of cloud computing has allowed the development of more flexible, scalable, and
powerful LPR systems that can be accessed from anywhere with an internet connection [7].

The performance of LPR systems has been greatly improved by the integration of
cutting-edge neural networks, cloud computing, and web-based methodologies; as a
result, these systems are now essential parts of intelligent transportation infrastructure in
contemporary metropolitan areas [8]. When comparing cloud-based ALPR to hardware-
based ALPR systems, there are a number of benefits. More scalability is possible because
the cloud infrastructure’s processing and storage capacity can be readily scaled up or down
in response to demand. Moreover, cloud-based ALPR systems facilitate easy integration
with other cloud-based services and apps by allowing users to access data and analyze
results from any location with an internet connection [9]. Applications of cloud-based
license plate recognition include law enforcement, parking management, toll collection,
traffic monitoring, vehicle access control, etc.

A cloud-based license plate recognition approach was selected in this study due to the
fact that cloud-based license plate recognition systems offer improved accuracy, flexibility,
and scalability compared to on-premise systems. They use selected algorithms to refine
their accuracy, making them more effective in recognizing license plates under various
conditions. On-premise systems store license plate information on physical storage devices,
which can be costly and time-consuming to install and maintain. Cloud-based systems
provide unlimited storage capacity, making it easier to add storage without the need for
additional hardware. Scaling up ALPR systems is also easier, as they do not require on-site
storage devices and can be managed from one platform. Accessibility is easier, as the data
can be accessed from any device and location with an internet connection. Maintenance is
less expensive, as all software updates and security patches are automatically installed in
the cloud. Cloud-based ALPR systems are more cost-effective, as they require less hardware
maintenance and operate on monthly subscription plans. PLACA artificial intelligence
offers an advanced cloud-based ALPR service that simplifies operations and provides
instantaneous, highly accurate license plate recognition. By moving an on-premise ALPR
system to the cloud, one can optimize operations and enjoy the benefits of cloud computing.

Among the various approaches to object detection in LPR systems, YOLO (You Only
Look Once) models have gained significant attention for their real-time performance and
high accuracy. The YOLO family of models has consistently shown higher speed, although



Information 2025, 16, 57 3 of 23

sometimes it might not report the most efficient accuracy. The likely reasons might be that
YOLO models prioritize speed and real-time performance by employing a single-stage
detection architecture, grid-based prediction, and simpler loss functions, which decrease
computing complexity but can reduce accuracy [10]. Handling tiny or overlapping objects,
relying on preset anchor boxes, and having a restricted model capacity for fine-grained
characteristics all contribute to this trade-off.

Table 1 presents a comparison of different object recognition models, considering the
models’ architecture, speed, accuracy, and training duration. A well-known paradigm for
one-shot algorithms is YOLO. After YOLO, SSD is another important piece of work. SSD
is followed by R-SSD, DSSD, DSOD, and FSSD. Although there are alternative one-step
detection methods, YOLO is usually faster than the others when speed is taken into account.

Table 1. Table of comparison of object detection models.

Model Architecture Speed Accuracy Training
Time

YOLO [11] One-stage detector Fast High Faster
Faster R-CNN [12] Two-stage detector Slower High Slower

SSD [13] One-stage detector Moderate Moderately Data
RetinaNet [14] One-stage detector Slow High Moderate

Despite slightly lower accuracy, YOLO excels in scenarios requiring high-speed object
detection. YOLO’s capacity to identify objects in real time, paired with its comparatively
modest processing needs, makes it a highly appropriate option for works that require
speedy and reliable decision making. Since its inception, YOLO has undergone several
iterations: YOLOv4, YOLOv5, YOLOv6, YOLOv7, YOLOv8, YOLOv9, and the latest,
YOLOv10—each improving on its predecessor with regards to speed, accuracy, and com-
putational efficiency [15]. These advancements have made YOLO models highly suitable
for cloud-based LPR systems, where the balance between detection speed and accuracy
is critical. This therefore informs the reasons why this study proposed exploring the use
of YOLO.

This study trained and compared some selected YOLO versions (5, 7, 8, and 9) when
applied to cloud-based LPR systems. By evaluating their performance on key metrics such
as Mean Average Precision (mAP), accuracy, F-1 score, recall, precision, and IoU, we aim to
identify the most effective YOLO model for LPR tasks when tested in a cloud environment.
The findings will offer valuable insights into the optimal deployment of these models in
real-world applications, contributing to the ongoing evolution of intelligent transportation
systems (ITSs).

2. Related Work
License plate recognition tasks in some studies are examined in this section. The study

in [16] proposed to improve an existing LPR system by upgrading the detection model
from YOLOv4-tiny to YOLOv7-tiny, achieving an mAP@.5 of 0.936 and mAP@.5:.95 of
0.720. The deployment to Intel® Developer Cloud enabled remote access and optimized
performance, with the best setup reducing processing time to 29 s and delivering 5.7 FPS.
Their work significantly improved the accuracy and accessibility of LPR.

The authors of [17] proposed to tackle the challenge of license plate recognition (LPR)
in their study. They developed a solution that involves three key image processing stages:
preprocessing, segmentation, and character recognition. Using techniques such as canny
edge detection with various thresholds, contour detection, and masking, they effectively
identified the edges of vehicles and localized the license plates. Their approach was tested



Information 2025, 16, 57 4 of 23

on 200 images of Egyptian car plates, and the model achieved a 93% accuracy rate in
recognizing Arabic license plates. To validate their system, they implemented a prototype
using ESP32 Cameras and a Raspberry Pi, which also hosted a database and website. This
setup allows users to search for their cars’ locations in a parking lot using the full or partial
license plates stored in the database upon detection.

The authors of [18] developed an edge computing-based automatic license plate
recognition (ALPR) system to address the challenge of processing the increasing volume of
video data from dashboard cameras connected to the Internet of Things (IoT). This system
is crucial for applications like vehicle theft investigations and child abduction cases, where
quick identification of vehicles is essential. Their approach involves implementing the
ALPR system on both a cloud server and a Raspberry Pi 4, with a focus on comparing
the performance of edge-heavy, cloud-heavy, and hybridized setups. Their experimental
results showed that edge-heavy and hybridized setups are highly scalable and perform well
in low-bandwidth conditions (as low as 10 Kbps). However, the cloud-heavy setup, while
performing best with a single edge, suffers from poor scalability and reduced performance
in low-bandwidth scenarios. The gap identified by the authors lies in the scalability and
bandwidth efficiency of cloud-heavy setups, suggesting that more robust solutions are
needed to handle increasing data volumes effectively.

To diagnose and control traffic congestion in metropolitan areas, the authors of [6]
used data from the Automated License Plate Reader in their study. The study used cloud
computing to create effective and scalable algorithms for the reconstruction, analysis and
visualization of traffic conditions to properly use the massive amounts of data generated by
ALPR devices. To improve traffic control tactics, the proposed cloud-based traffic diagnosis
and management laboratory includes modules for decision support, visual analysis, and
real-time traffic monitoring. The study guaranteed optimal processing of large ALPR
datasets using cloud computing, which improved the effectiveness and adaptability of
traffic control.

To handle the varied and difficult nature of license plates, the study in [19] introduced
a multi-agent license plate recognition system. With agents running in separate Docker
containers and managed by Kubernetes, the system shows remarkable scalability and flexi-
bility through the use of a multi-agent architecture. It uses sophisticated neural networks
that have been trained on a large dataset to reliably detect different kinds of license plates
in dynamic environments. The three-layer methodology of the system, which includes
data collection, processing, and result compilation, demonstrates how effective it is and
how much better it performs than conventional license plate recognition systems. This
development represents a technological advance in license plate identification, but it also
presents well-thought-out options for improving traffic control and smart city infrastructure
on a worldwide scale.

To detect and monitor vehicles in urban areas using surveillance cameras, the authors
of [20] presented the Snake Eyes system, which combines cloud computing and automatic
license plate recognition (ALPR) engines. It improved the performance and scalability
of video analysis by using a cloud architecture to examine large volumes of video data.
License plate numbers were detected and recognized from videos using ALPR engines.
Real-time tracking and vehicle detection are capabilities of these engines. The technology
improves the processing time for large-scale data by using a pool of virtual machines (VMs)
for parallel video analysis. The technique uses BGS to increase efficiency before using ALPR
to filter out still frames. Under controlled testing conditions, the ALPR engine recognized
license plates with an accuracy of 83.57% using a dataset consisting of 51 videos from
17 different surveillance cameras that had sufficient image resolution and quality.



Information 2025, 16, 57 5 of 23

The purpose of the study in [21] was to address the security issues on campus brought
about by an increasing number of cars and a shortage of staff parking. A mobile app for
license plate detection and recognition (LPDR) was created to assist security personnel in
differentiating between staff, student vehicles, and visitors. The proposed approach makes
use of a deep learning-based methodology, utilizing ML Kit Optical Character identification
(OCR) for text identification and a streamlined version of YOLOv8n for license plate
detection. The application incorporates cloud storage for vehicle ownership data and is
built for real-time use on mobile devices with limited resources. According to the results,
the accuracy of character identification was approximately 91.2%, which is comparable to
the accuracy of current LPDR solutions, while the accuracy of plate detection was 97.5%.
The findings of the research indicate that the mobile app’s lightweight design successfully
overcomes the resource constraints of mobile devices without sacrificing functionality. This
eventually leads to an improvement in campus safety by improving the security patrols’
capacity to identify misconduct in real time.

A wide range of techniques and technical developments have been shown in the
studied literature on license plate recognition (LPR), with a focus on utilizing deep learning
techniques, edge computing, and cloud computing to improve system scalability and per-
formance. Studies have demonstrated considerable gains in LPR accuracy and processing
speed, with noteworthy achievements in practical applications including campus security,
vehicle theft prevention, and traffic monitoring. Despite these advancements, there are still
issues to be resolved, including the variation in license plate designs and environmental
factors or the need to enhance scalability in cloud-intensive systems and bandwidth ef-
ficiency in edge computing solutions. Overcoming these obstacles and developing LPR
technologies for more widespread and effective applications will require ongoing research
into hybrid systems and further optimization of deep learning models. This study aims
to contribute to knowledge by exploring different versions of YOLO object detection and
further deploying them on the cloud. This is intended to determine the fastest and most
robust among the selected algorithms on the cloud.

3. Methodology
The methodological approach used for the proposed cloud-based license plate recog-

nition is detailed in this section. The experiments were carried out on a PC that has a Core
i5 processor, an RTX8070 GPU, and Python version 3.12.8. installed. The Figure 1 diagram
illustrates the framework. In the experimental phase, four YOLO models (v5, v7, v8, and
v9) were trained and validated using a dataset comprising 466 samples from [22]. YOLOv5
has a model size of 14.8 MB and 140 frames per second, while YOLOv7’s model size is
36.9 MB at 150 frames per second. The model size of YOLOv8 is 12 MB, at 160 frames per
second. The model size of YOLOv9 is 7.7 MB and 180 frames per second. The variants of
YOLO versions used include YOLOv5 (large), V7, V8 (large), and V9 (compact).

3.1. Dataset

There are 433 images in the dataset, with a resolution of 400 × 279 pixels. Bounding-
box annotations for car license plates in these images reflect the well-known PASCAL
VOC annotation standard, which is widely recognized in the industry for its value in
object detection applications. To facilitate the training of our neural network, the dataset
was transformed into YOLO format. For this conversion, the Roboflow API, which is
described in [23], was used effectively. When managing and preparing image data for
machine learning applications, it is renowned for its durability. A batch size of 4 and
100 epochs were the parameters used in each experiment. The default hyperparameter was
hyp.scratch-low.yaml. The dataset was split using a 60:40 ratio for training and validation



Information 2025, 16, 57 6 of 23

purposes, respectively. Performance metrics such as precision, Mean Average Precision
(mAP), F-1 score (accuracy), and recall were used to evaluate the effectiveness of the models.
Following the training and validation process, the models were deployed and tested on
a cloud-based infrastructure to assess their real-world applicability and scalability. The
proposed model framework is shown in Figure 1.

Figure 1. Cloud-based license plate recognition framework.

3.2. Data Preprocessing

During the preprocessing phase, each image was resized from its original dimensions
of 400 × 279 pixels to a standardized input size of 640 × 640 pixels [24]. This resizing was
performed to comply with the input requirements for the YOLO model, which expects
images of a fixed resolution for optimal performance. By scaling all images to a uniform
size, this step ensures that the neural network receives consistent input dimensions, which
is crucial for maintaining the integrity of the feature extraction process throughout the
dataset. Additionally, resizing images to the specified 640 × 640 resolution helps to enhance
the model’s ability to generalize by preserving important spatial information while also
optimizing the detection and recognition accuracy. This standardization is essential to
achieve reliable and reproducible results when applying the YOLO model to various image
datasets [24]. To solve the issues given by the varying lighting conditions, additional
image preprocessing techniques such as adaptive contrast enhancement were used. These
techniques serve to normalize the intensity distribution, increase visibility in under- or over-
exposed areas, and lessen the impact of illumination irregularities on the detection process.
Techniques such as enhancing images with different brightness levels during training can
help to increase the model’s resilience to illumination fluctuations. Such preprocessing



Information 2025, 16, 57 7 of 23

processes are critical to achieving consistent performance and reliable identification in a
variety of contexts and datasets.

3.3. Evaluation Metrics Used

The proposed model was evaluated using precision, recall, F-1 score, and mAP. Preci-
sion is the ratio of genuine positive estimates to all positive predictions made [25]. Recall
computes the proportion of actual positive predictions among all positive occurrences in
the dataset [26]. The F-1 score measures average precision and recall [27]. It provides a fair
assessment of a model’s accuracy, considering both erroneous positives and false negatives.
The computation goes as follows:

F-1 Score =
2 ∗ P ∗ R

P + R
(1)

The average precision (AP), or mAP (Mean Average Precision), determines the average
precision across all categories and returns a single result. mAP measures the accuracy of
a model’s detection by comparing ground-truth bounding boxes to detected boxes and
awarding a score appropriately [28]. A higher score suggests more accuracy in the model
detections. Intersection over Union (IoU) measures the overlap between predicted and
ground truth bounding boxes [29].

4. Training and Validation
4.1. YOLOv5

In this experiment, the input images were resized to a standardized input dimension
of 640 × 640 pixels to comply with the requirements of the YOLOv5 architecture. This
resizing ensures consistency across the dataset, allowing the model to effectively process
and extract relevant information from images of varying resolutions while maintaining
computational efficiency. The feature extraction process was carried out using CSPDarknet,
a CNN, which forms the foundational technology employed by the YOLOv5 model. CNNs
are highly effective in extracting spatial hierarchies and patterns from images, as they
apply convolutional filters to the input, enabling the detection of low-level features such as
edges, textures, and shapes, as well as higher-level abstractions like objects and contexts in
subsequent layers. After feature extraction, the model’s neck component performs feature
fusion, which involves combining multi-scale feature maps obtained from different layers
of the CNN. This fusion is crucial for preserving fine-grained details from lower layers
while incorporating high-level semantic information from deeper layers. YOLOv5 employs
a feature pyramid network (FPN) combined with a path aggregation network (PANet) in
the neck, which enhances the model’s ability to detect objects of varying sizes and improves
localization by combining features across multiple scales. Once feature fusion is completed,
the aggregated feature maps are forwarded to the model’s head. The head is responsible
for making predictions by analyzing the fused features. In YOLOv5, the head generates
bounding boxes and class probabilities for object detection by applying regression and
classification techniques to the fused features. The model outputs predicted bounding
boxes, confidence scores, and class labels, which indicate the presence and location of
objects (e.g., license plates) within the image. This multi-stage process allows YOLOv5 to
efficiently detect objects in real time with high accuracy, balancing the trade-off between
detection speed and precision.

4.2. Results: YOLOv5 Training and Validation Experiment

The results reported when the YOLOv5 algorithm was applied for model training
and validation in the license plate recognition experiment are reported here. In the vali-



Information 2025, 16, 57 8 of 23

dation dataset, at 100 epochs, the precision of the model was 83% at the 100th epoch. An
average precision of 75% and average recall of 72% were reported, respectively. The study
further calculated the F-1 score, and approximately 75% was reported. Table 2 shows the
comprehensive results at every 10 epochs of the iterations.

Table 2. Validation results of YOLOv5 model.

Epoch Loss Precision Recall mAP@0.5 mAP@0.5:0.95

0 0.0130 0.031317 0.40476 0.084282 0.021526
10 0.0060 0.8254 0.80952 0.81151 0.34709
20 0.0060 0.77676 0.72619 0.77403 0.37161
30 0.0058 0.78992 0.80578 0.82009 0.41581
40 0.0060 0.82605 0.71429 0.82677 0.43019
50 0.0061 0.83887 0.77381 0.83093 0.4513
60 0.0060 0.7892 0.82143 0.81796 0.41443
70 0.0058 0.8272 0.7381 0.82164 0.42238
80 0.0061 0.87129 0.67857 0.78743 0.43548
90 0.0060 0.80601 0.7619 0.82293 0.4379
99 0.0063 0.82638 0.75 0.81813 0.4402

Average 0.7462 0.7258

F-1 Score 0.7359

Table 2 presents the validation results of the YOLOv5 model across various training
epochs. The key performance metrics displayed include the validation loss, precision, recall,
mAP@0.5, and mAP@0.5:0.95. These metrics give insight into the model’s performance in
detecting and localizing license plates at different stages of training. At the beginning, at
epoch 0, the precision is extremely low (0.031317), while the loss is high (0.013), suggesting
that the recognition of true positives is not performed well. On the other hand, epoch 10
(0.8254) shows a rapid increase, indicating that the model picks up false positives quickly
with a reduced loss of 0.006. While precision varies significantly throughout training, it
stays high, averaging 0.78–0.87 from epoch 10, and the validation loss is also reduced,
sometimes going up but very insignificantly. This suggests that the model, particularly
after the first epoch, keeps a decent balance in minimizing false positives during training. In
this experiment, the recall begins at 0.40476 at epoch 0, indicating that fewer than half of the
relevant items are initially detected by the model. By epoch 10, recall, however, increases
dramatically to approximately 0.80, indicating a quick improvement in the detection of
genuine positives. Recall varies a little bit over the course of training, declining slightly at
epochs 40 and 80. These variations suggest that, even as training goes on, there might be
difficulties keeping track of every license plate even as the model learns more.

By combining precision and recall, mAP at an IoU threshold of 0.5 offers a more thor-
ough understanding of the model’s overall detection performance. In epoch 0, mAP@0.5
begins at 0.084282, indicating a good beginning performance. However, by epoch 10, it
increases to 0.81151, indicating the model’s fast learning phase. The mAP@0.5 remains high
from epoch 10 onward, ranging from 0.77 to 0.83, demonstrating the model’s good perfor-
mance in object detection and localization with a fair IoU threshold (0.5). This consistency
demonstrates how well the model balances recall and precision. At epoch 0 (0.021526),
mAP@0.5:0.95 begins incredibly low, as would be expected in the very early phases of
training. Though this is still substantially lower than mAP@0.5, by epoch 10, mAP@0.5:0.95
improves significantly to 0.34709, suggesting that the model performs less well when more
precise localization is required (i.e., at higher IoU thresholds). mAP@0.5:0.95, which is less
than mAP@0.5 but normal for object identification models, varies from 0.37 to 0.45 during



Information 2025, 16, 57 9 of 23

training. This demonstrates that even at higher thresholds, fine-grained localization may
still present difficulties even when the model can recognize objects very effectively.

A confusion matrix was used to assess how well the model identified license plates
from background objects. The outcomes show that the algorithm had an 83% rate of accu-
racy in correctly classifying license plates. Nevertheless, as Figure 2 shows, 17% of license
plates were incorrectly identified as background. These results shed light on how well the
model performs in terms of classification across license and background classifications.

Figure 2. Confusion matrix for YOLOv5 validation experiment.

A graph showing the progress of the training/validation experiment as the iteration
progresses is shown in Figure 3. The graph depicts the variation in precision and recall
over different epochs during the training process.

Figure 3. Precision/recall progress between epochs 0 and 100 for YOLOv5 experiment.

As indicated in the graph, the YOLOv5 model for license plate identification performs
consistently well, with precision reaching approximately 0.83 and recall stabilizing around



Information 2025, 16, 57 10 of 23

0.75. This implies that the model is good at detecting license plates (high precision),
although it occasionally misses some (poor recall). The earliest epochs demonstrate quick
learning, and the model stabilizes after epoch 20. Overall, the model shows promise for
real-time license plate recognition, with room for additional refinement to increase recall.

Overall, the YOLOv5 model for license plate recognition shows strong performance in
terms of precision and recall, with consistent results across the training process. The mAP
metrics indicate that the model is effective in detecting and localizing objects, especially
at lower IoU thresholds, though its performance declines slightly as the IoU threshold
increases. The stability in the precision and recall graphs suggests the model is robust after
early training, but further refinement might be needed for more accurate localization at
higher IoU levels.

4.3. YOLOv7

The YOLOv7 architecture consists of three main components: the input, the prediction
section, the enhanced feature extraction network, and the backbone feature extraction
module. Initially, the input images are resized to 640 × 640 using YOLOv7 and then passed
to the backbone network. The head network generates three layers of feature maps of
different sizes, and the prediction results are finally produced using RepConv [30].

4.4. Results: YOLOv7 Training and Validation Experiment

The results reported when the YOLOv7 algorithm was applied for model training and
validation in the license plate recognition experiment are reported here. In the validation
dataset, at 100 epochs, the accuracy of the model that was reported was 84%. An average
precision of approximately 70% and an average recall of 64% were reported, respectively.
The study also calculated the F-1 Score, and approximately 67% was reported.

Table 3 shows the comprehensive results at every 10 epochs of the iterations.

Table 3. Validation results of YOLOv7 model.

Epoch Loss Precision Recall mAP@0.5 mAP@0.5:0.95

0 0.0119 0.02136 0.02381 0.0007604 0.0001638
10 0.0080 0.5871 0.5586 0.5173 0.2139
20 0.0051 0.7219 0.649 0.6419 0.2812
30 0.0064 0.725 0.5357 0.5362 0.2491
40 0.0054 0.794 0.6429 0.7117 0.3371
50 0.0051 0.8049 0.7857 0.7428 0.3793
60 0.0061 0.7749 0.7381 0.7598 0.3899
70 0.0061 0.7527 0.7976 0.7838 0.4023
80 0.0063 0.8332 0.7738 0.8017 0.4002
90 0.0061 0.7896 0.8095 0.7848 0.3959
99 0.0061 0.8441 0.7738 0.804 0.4117

Average 0.6953 0.6444

F-1 score 0.6689

The validation results for the different training epochs of the YOLOv7 model are
shown in Table 3.

The precision starts very low at 0.02136 in epoch 0 and has a high loss value of 0.0199,
but it improves steadily, reaching a maximum value of 0.8441 in epoch 99 with a loss value
of 0.0061. It increases rapidly during the initial epochs, particularly from epoch 0 to epoch
20, showing that the model quickly learns to make confident predictions with fewer false
positives. After epoch 20, precision continues to increase but at a slower rate, stabilizing
in the range of 0.72 to 0.84 in the later epochs, while the loss value also decreases. Recall



Information 2025, 16, 57 11 of 23

starts at 0.02381 in epoch 0 and improves over time, reaching 0.7738 by epoch 99. The recall
fluctuates more than precision during the middle epochs, with values ranging from 0.53
to 0.81 between epochs 20 and 90. This fluctuation suggests that the model struggles at
times to detect all relevant instances. The final recall value of 0.7738 suggests that while the
model is good at detecting most instances, it occasionally misses some.

mAP@0.5 starts at a very low 0.0007604 in epoch 0 but increases significantly, reaching
0.804 by epoch 99. The mAP@0.5 shows steady growth, particularly after epoch 10, which
suggests that the model learns to detect objects (license plates) with high accuracy. The
highest mAP@0.5 values are seen after epoch 50, indicating that the model becomes quite
effective at detecting plates with a high IoU threshold. This metric, starting from 0.0001638
in epoch 0, grows more slowly and stabilizes at 0.4117 by epoch 99. The lower values of
mAP@0.5:0.95 compared to mAP@0.5 are expected, as they represent a more stringent eval-
uation of the model’s performance across a range of IoU thresholds. The gradual increase in
mAP@0.5:0.95 indicates that the model becomes better at handling varying degrees of object
overlap, but there is still room for improvement. Generally, we observed that the model
learns quickly between epochs 0 and 20, where both precision and recall increase sharply,
demonstrating that the YOLOv7 model is capable of fast learning. Consequently, after
epoch 50, the values for precision, recall, mAP@0.5, and mAP@0.5:0.95 stabilize, indicating
that the model reaches a point of diminishing returns with further training. The precision
is consistently higher than the recall across all epochs, which means that the model is good
at making accurate predictions with fewer false positives but occasionally misses detecting
all relevant instances (i.e., slightly lower recall).

The YOLOv7 model shows excellent performance with high precision (0.84) and good
recall (0.77) by epoch 99. The mAP@0.5 metric reaches 0.804, indicating strong detection
performance, while the stricter mAP@0.5:0.95 metric stabilizes at 0.4117, suggesting that the
model could still be improved to handle more challenging detection scenarios. A confusion
matrix showing the results is shown in Figure 4.

Figure 4. Confusion matrix for YOLOv7 validation result.

The confusion matrix shown in Figure 4 shows how well the model identifies license
plates from background objects. The results show that the algorithm had an 84% accuracy
rate in correctly classifying license plates. A total of 16% of the license plates were incorrectly
identified as background. These results shed light on how the model performs in terms of
classification across license and background classifications.



Information 2025, 16, 57 12 of 23

Figure 5 displays a graph depicting the training/validation experiment’s progress
through iterations. The graph displays the variation in precision and recall over several
epochs of the training procedure of YOLOv7 model.

Figure 5. Precision/recall progress between epochs 0 and 100 for YOLOv7 experiment.

The graph in Figure 5 demonstrates that the YOLOv7 model for license plate identi-
fication performs well, with precision reaching approximately 0.84 and recall stabilizing
around 0.77. In the early epochs, the model learns quickly, with large improvements in
precision and recall. Precision remains continuously high, indicating that the model can
properly recognize plates with few false positives. However, the lower recall indicates
that it occasionally misses certain plates. Overall, the model is suitable for accurate plate
detection, while additional fine-tuning may be required to increase recall.

4.5. YOLOv8

The head, neck, and backbone modules make up the YOLOv8 model. The network’s
backbone module is where the YOLOv8 model’s feature extraction is performed. The
PANet neck module is used to further fuse the features; detection occurs in the head
module, which houses the YOLO layers. Each image, which has an initial size of 400 × 279
pixels, is scaled during the preprocessing step to meet the YOLOv8 criteria, which need an
input size of 640 × 640 pixels. For the neural network model, this scaling step maintains the
input size consistently [24]. One part of the architecture that extracts features from the input
images is the backbone network [31]. Deep convolutional neural network (CNN) layers,
such as Darknet, are commonly used to record hierarchical visual representations. After
resizing the input image to 640× 640, the YOLOv8 model processes it through CPSDarknet,
its backbone network, to extract pertinent features. Based on the Darknet-53 architecture,
CSPDarknet53 is a convolutional neural network that functions as a foundation for object
detection. It makes use of a CSPNet technique, splitting the base layer feature map into
two parts and then merging them at various stages. This split and merge strategy allows
for improved gradient flow across the network [31]. The neck module is another part of the
architecture that receives the extracted features. The neck component processes features
from the backbone network, where they are fused and aggregated to effectively capture
information at different scales [32]. Here, feature fusion techniques, such as the PANet



Information 2025, 16, 57 13 of 23

(path aggregation network), are employed to integrate features from different layers and
scales effectively.

4.6. Results: YOLOv8 Training and Validation Experiment

The results reported when the YOLOv8 algorithm was applied for model training and
validation in the license plate recognition experiment are reported here. In the validation
dataset, and at 100 epochs, the accuracy of the model that was reported was 83%. The
model reported average precision of 70%, average recall of approximately 70% and F-1
score of 70%, and loss of 0.0063 at the last epoch.

Table 4 shows the comprehensive results at every 10 epochs of the iterations.

Table 4. Validation results of YOLOv8 model.

Epoch Loss Recall Precision mAP@0.5 mAP@0.5:0.95

0 0.1366 0.40476 0.15566 0.06434 2.045
10 0.0062 0.66667 0.66313 0.28776 2.0036
20 0.0056 0.63095 0.65044 0.31496 1.9185
30 0.0058 0.6667 0.73086 0.34433 1.8627
40 0.0060 0.78571 0.77806 0.40325 1.8364
50 0.0061 0.7421 0.78221 0.37707 1.9089
60 0.0060 0.71824 0.80047 0.38016 1.7991
70 0.0061 0.7619 0.80203 0.38201 1.9788
80 0.0.0060 0.75389 0.81453 0.40935 1.8239
90 0.0060 0.7381 0.78346 0.38291 1.9522
100 0.0063 0.77381 0.83843 0.40394 1.8727

Average 0.6948 0.7090

F-1 score 0.7018

Table 4’s results for the YOLOv8 model with increasing epochs indicate a number
of themes and patterns in its performance. The loss decreases steadily as the number of
epochs increases. Starting with an initial loss of 0.1366 at epoch 0, it rapidly decreases to
0.0062 by epoch 10 and stabilizes at roughly 0.0060 from epoch 30 on. This suggests that the
model’s learning and optimization increase greatly in the early epochs before approaching
convergence in later phases. Both recall and accuracy values progressively rise throughout
the epochs, with considerable increases in the early epochs (for example, recall improves
from 0.40476 at epoch 0 to 0.66667 at epoch 10). Precision shows a similar pattern, increasing
from 0.15566 to 0.66313. After epoch 50, recall and precision levels remain stable but exhibit
gradual improvements, peaking at 0.77381 (recall) and 0.83843 (precision) at epoch 100.
After 50 epochs, measures including loss, recall, accuracy, and mAP settle, with very minor
variations. This shows that the model has learned the majority of the data’s patterns and
that more epochs do not greatly improve performance. The average recall (0.6948) and
precision (0.7090) values, together with the F-1 score (0.7018), show balanced performance in
terms of true positive rate and prediction accuracy over epochs. In general, while increasing
epochs enhance the model’s performance in the early stages, declining returns are found
after 50 epochs, implying that halting at this point may maximize training efficiency.

The confusion matrix shown in Figure 6 shows how well the model identified the
license plates from the background objects. The results show that the algorithm had an
83% rate in correctly classifying license plates. A total of 17% of the license plates were
incorrectly identified as background. These results shed light on how the model performs
in terms of classification in license and background classifications.



Information 2025, 16, 57 14 of 23

Figure 6. Confusion matrix for YOLOv8 validation result.

Figure 7 displays a graph that depicts the progress of the training/validation experi-
ment through iterations. The graph shows the variation in precision and recall over several
epochs of the training procedure of the YOLOv8 model.

Figure 7. Precision/recall progress between epochs 0 and 100 for YOLOv8 experiment.

4.7. YOLOv9

YOLOv7 was first introduced in [33], and YOLOv9 is an upgrade on it. Both were
created by the authors of [33]. The trainable bag-of-freebies, which contains architectural
improvements to the training process that increase object identification accuracy while re-
ducing training costs, was a major focus of YOLOv7. However, the problem of information
loss from the source data as a result of several feedforward process downscaling steps,
often referred to as the information bottleneck [33], was not addressed.



Information 2025, 16, 57 15 of 23

As a result, YOLOv9 introduced two techniques that simultaneously tackle the issue of
information bottlenecks and push the limits of object identification accuracy and efficiency.
These techniques include Programmable Gradient Information (PGI) and the Generalized
Efficient Layer Aggregation Network (GELAN). This approach consists of four main parts:
GELAN (Generalized Efficient Layer Aggregation Network), the information bottleneck
concept, reversible functions, and Programmable Gradient Information (PGI). During
training and validation, the PGI module of the YOLOv9 model is used to extract features
from the input data. Conventional deep learning techniques minimize the complexity and
detail of the original dataset by extracting features from the input data. By incorporating
network-based procedures that maintain and utilize every facet of input data through
programs, PGI thereby brings about a paradigm change. Its configurable gradient paths
enable dynamic adjustments according to the specific requirements of the ongoing task.
When calculating the gradients for backpropagation, this enables the network to access
more information, which leads to a more precise and knowledgeable update of the model
weight [34]. The Generalized Efficient Layer Aggregation Network (GELAN) module
receives the extracted feature sets and uses them for detection training and validation.

4.8. Results: YOLOv9 Training and Validation

The precision reported for the YOLOv9 experiment was reported to be 73% at the 100th
epoch. The model reported an average precision of 52%, an average recall of approximately
53%, and F-1 score of 52%. The confusion matrix in Figure 8 illustrates the performance of
the model while classifying two classes, namely, license and background. With an accuracy
rating of 73%, the results show that the model accurately predicted the license class. This
also illustrates that 27% of the time, the license plates were mistakenly categorized as
background. This model reported a higher misclassification, which is an indication that
overfitting probably occurred at some point.

Figure 8. Confusion matrix for YOLOv9 validation result.

Table 5 shows the comprehensive results at every 10 epochs of the iterations.



Information 2025, 16, 57 16 of 23

Table 5. Validation results of YOLOv9 model.

Epoch Loss Recall Precision mAP@0.5 mAP@0.5:0.95

10 0.0062 0.369 0.0294 0.00570 0
20 0.0059 0.285 0.2608 0.0005 0
30 0.0058 0.4167 0.373 0.137 0
40 0.0060 0.5357 0.549 0.211 0
50 0.0057 0.5966 0.6077 0.266 0
60 0.0059 0.559 0.630 0.2812 0
70 0.0061 0.6071 0.684 0.2920 0
80 0.0060 0.640 0.663 0.2975 0
90 0.0061 0.6941 0.7260 0.3487 0
99 0.0063 0.6215 0.7260 0.3465 0

Average 0.5325 0.5287

F-1 score 0.5287

Figure 9 shows the graph that depicts the progress between epochs 0 and 100 for the
YOLOv9 experiments. Table 5 gives a breakdown of results at every ten epochs. As shown
in Table 5, loss values consistently decrease as the number of epochs increases, starting
from 0.0062 at epoch 10 and gradually decreasing to 0.0063 at epoch 90. The reduction
stabilizes from around epoch 50, suggesting that the model reaches near-convergence in
later epochs. However, the decrease is minimal in later epochs, indicating diminishing
returns in loss reduction. Recall improves steadily across epochs, starting at 0.369 at epoch
10 and peaking at 0.6941 at epoch 80. This indicates the increasing ability of the model to
correctly identify true positives as training progresses.

Figure 9. Precision/recall progress between epochs 0 and 100 for YOLOv9 experiment.

Similarly, the accuracy increases from 0.0294 in epoch 10 to 0.7260 in epoch 90. The
precision values increase significantly, particularly around epoch 50, demonstrating that
the model gains confidence and accuracy in its predictions as training advances.



Information 2025, 16, 57 17 of 23

5. Cloud Deployment
After training each version of the YOLO model for number plate detection, the trained

models were then deployed to a cloud computing environment. By incorporating cloud
computing, the project leverages advanced infrastructure to enhance processing and analy-
sis. Cloud platforms offer scalable resources, high-performance GPUs, and real-time data
processing, which improve the overall efficiency and accuracy of the detection system. The
integration of cloud services aims to boost YOLO model performance, manage extensive
datasets, and enable real-time video stream processing.

The cloud architecture is shown in Figure 10.

Figure 10. Cloud-based framework.

The framework components are described as follows:

1. Vehicle Video Input: In order to record cars as they enter a specific location, such
as a parking lot or a gated neighborhood, the system first receives a video input of
vehicles. The cloud deployment testing experiment uses a video dataset of moving
cars. This dataset can be found in [35]. The data are live-streamed, and the live stream
is evaluated using its reported accuracy.

2. Kinesis Video Stream on Amazon: Next, the video feed is sent to Amazon Kinesis
Video Stream, a service that enables the ingestion of video data in real time. In order
to provide smooth streaming to downstream components, this component is in charge
of recording, processing, and storing the video feed.

3. The YOLO model (versions 5, 7, 8, and 9): The trained YOLO models are used to
process frames from the video stream and identify license plates in real time. The
different versions of YOLO (v5, v7, v8, v9) are tested to evaluate performance, accuracy,
and detection speed. The YOLO model runs on an EC2 instance to detect and extract
license plates from each frame.

4. Amazon EC2 (Elastic Compute Cloud): Amazon EC2 provides the computational
resources necessary to run the YOLO model. It processes each frame for number
plate detection and passes relevant information downstream. Detected frames with
license plate details are sent to other AWS services for further processing, storage,
and retrieval.

5. Amazon S3 (Simple Storage Service): Processed images, such as frames containing
detected license plates, are stored in Amazon S3 for durability and easy access. This
storage serves as a repository for extracted images or frames and allows for further
processing, such as Optical Character Recognition (OCR).



Information 2025, 16, 57 18 of 23

6. Amazon Textract: Amazon Textract is used to perform OCR (Optical Character Recog-
nition) on the extracted license plates stored in Amazon S3. This service identifies and
extracts textual information from the images, enabling the system to read the license
plate numbers accurately.

7. AWS Lambda Function: AWS Lambda functions as a serverless computer service that
orchestrates tasks and automates the workflow. It can be triggered by events, such as
new images uploaded to S3, to initiate the Textract OCR process. Lambda can also
handle data processing and forward the extracted license plate numbers to other AWS
services, such as Amazon SQS and DynamoDB, for further handling.

8. Amazon SQS (Simple Queue Service): Amazon SQS acts as a message queue, where
processed data (like license plate information) are temporarily stored. This service
ensures reliable data delivery and enables the decoupling of system components,
handling messages between Lambda functions and databases (DynamoDB).

9. Amazon DynamoDB: Amazon DynamoDB is an NoSQL database service that stores
processed license plate information. It provides fast access to data for querying and
can be used to log license plate data or store metadata about each detected vehicle,
such as timestamps or vehicle details.

10. Visualization (Local Computer): Finally, the extracted and processed information can
be visualized on a local computer or dashboard, allowing users to see real-time data
on detected license plates. This visualization can show live updates, reports, or alerts
based on the system’s output.

In summary, video data of moving cars are captured and streamed through Amazon
Kinesis. YOLO models on EC2 process the video frames to detect license plates. Detected
frames are stored in Amazon S3. AWS Textract performs OCR to extract text from the
images. Lambda Functions automate the process, sending extracted data to SQS and
DynamoDB. Data are stored in DynamoDB, and results are visualized on a local computer.

6. Results Analysis
The results of each of the YOLO versions when deployed in the cloud are discussed in

this section. The live report of each of the outputs reported by each YOLO model is shown
in Figures 11, 12, 13, and 14, respectively.

Figure 11. Output of YOLOv5 deployed on cloud.

Figure 11, which shows the output of the YOLOv5 model when deployed and tested
on the cloud, reports the highest detection accuracy of 71% (0.71). In Figure 12, the YOLOv7,
the frame with the highest detection accuracy of 52% (0.52), is reported, which is the lowest
of the three. Likewise, Figure 13, which shows the output of the YOLOv8 model when
tested on the cloud, reports the highest detection accuracy of 78% (0.78), while in Figure 14,



Information 2025, 16, 57 19 of 23

the YOLOv9 model reports a 70% (0.70) accuracy for the detection of license plate number.
The models performed considerably well when deployed on the cloud, but accuracy could
be improved. Accuracy may decline in challenging conditions such as poor lighting, motion
blur, or occlusions. To address this, techniques such as image stabilization, deblurring,
and adaptive contrast enhancement could be applied before detection for future work.
Augmented training data, including images with various lighting and weather conditions
during training, can improve model robustness.

In general, cloud deployment of license plate recognition is beneficial, particularly for
an enhanced security system, where ordinary object detection is not very effective.

Figure 12. Output of YOLOv7 deployed on cloud.

Figure 13. Output of YOLOv8 deployed on cloud.



Information 2025, 16, 57 20 of 23

Figure 14. Output of YOLOv9 deployed on cloud.

7. Comparative Analysis and Discussion
In this section, this study further compares the performance of each of the YOLO

versions with respect to the initial training and their performance when deployed in the
cloud for testing. The analysis is shown in Table 6.

Table 6. Comparative performances of YOLOv5, 7, 8, and 9 when trained and when deployed in
the cloud.

YOLO Version Accuracy: Validation (%) Accuracy: Testing on Cloud (%)

YOLOv5 83 71
YOLOv7 84 52
YOLOv8 83 78
YOLOv9 73 70

The table presents a comparative analysis of YOLOv5, YOLOv7, YOLOv8, and
YOLOv9 models, focusing on their validation accuracy during training and their accu-
racy when deployed in a cloud environment. The findings reveal interesting insights
into the models’ performances across different phases. YOLOv8 emerged as the most
effective model during cloud testing, achieving an accuracy of 78%. Despite having the
same validation accuracy (83%) as YOLOv5, it demonstrated superior adaptability to the
cloud environment. This indicates YOLOv8’s potential for practical applications where
deployment in real-world cloud-based systems is critical.

YOLOv5 showed consistent performance, with an accuracy of 71% during cloud
testing. Although slightly behind YOLOv8, its robust validation and testing results indicate
that it remains a reliable choice for applications prioritizing balance between training and
deployment outcomes. YOLOv7 had the maximum validation accuracy (84%) during
training but performed poorly in cloud testing (52%). This huge decline highlights possible
issues, such as overfitting to training data or a failure to generalize well in dynamic cloud
settings. YOLOv9 had the lowest validation accuracy (73%) but performed well in cloud
testing, with an accuracy of 70%. This tight alignment of validation and testing accuracy
shows consistent, although modest, performance across scenarios.

In summary, YOLOv8 stands out as the best model for real-world deployment due to
its strong cloud performance, while YOLOv5 provides a dependable alternative. YOLOv7’s
drop in performance warrants further investigation, particularly regarding generalization
issues, and YOLOv9 offers consistent, if less optimal, results. These findings underscore the
importance of evaluating models in both controlled and deployment-specific environments
to ensure reliability and applicability.



Information 2025, 16, 57 21 of 23

8. Limitations
The study faced notable challenges during the training and validation processes of the

license plate recognition system. These included difficulties arising from faded plate numbers,
which hindered clear detection; broken plate numbers, which disrupted character continuity
and identification; and poor illumination, which impacted the visibility and contrast of license
plates. Addressing these constraints in future work will be crucial to improving model
robustness and ensuring reliable performance in diverse real-world scenarios.

9. Conclusions
This work explores the evolution and comparative performance of YOLO object detec-

tion algorithms for cloud-based license plate recognition. This study evaluates YOLOv5,
YOLOv7, YOLOv8, and YOLOv9, highlighting each model’s benefits and shortcomings
in terms of accuracy, speed, and resilience. Notably, when combined with cloud technolo-
gies, YOLOv8 displayed greater real-world performance, including increased detection
accuracy and scalability. This study helps to advance intelligent transportation systems by
providing essential insights into selecting and deploying the best YOLO models for real-
time, cloud-based applications. A future study might look at improving models for more
precision in demanding environmental settings, as well as optimizing cloud deployments
for cost-effectiveness and efficiency.

Author Contributions: Conceptualization, C.B.A. and P.A.O.; methodology, C.B.A.; software, C.B.A.
and P.A.O.; validation, C.B.A. and P.A.O.; formal analysis, C.B.A.; investigation, C.B.A.; resources,
C.T.; data curation, C.B.A.; writing—original draft preparation, C.B.A.; writing—review and editing,
C.B.A.; visualization, C.T. and E.V.W.; supervision, P.A.O.; project administration, C.T. and E.V.W.;
funding acquisition, C.T. and E.V.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Datasets used for training and validation experiments in this study
can be found at: https://www.kaggle.com/datasets/andrewmvd/car-plate-detection (accessed
on 15 August 2024). Datasets used for cloud testing for the trained model are found at: https:
//www.pexels.com/video/traffic-flow-in-the-highway-2103099/ (accessed on 20 August 2024). The
datasets are freely available online.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Malik, M.I.; Wani, S.H.; Rashid, A. Cloud Computing-Technologies. Int. J. Adv. Res. Comput. Sci. 2018, 9. [CrossRef]
2. Kaur, P.; Kumar, Y.; Gupta, S. Artificial intelligence techniques for the recognition of multi-plate multi-vehicle tracking systems:

A systematic review. Arch. Comput. Methods Eng. 2022, 29, 4897–4914. [CrossRef]
3. Gupta, S. On Cloud Technologies. 2021. Available online: https://api.semanticscholar.org/CorpusID:235483763 (accessed on 2

September 2024).
4. Prasad, N.N. Architecture of Cloud Computing. 2011. Available online: https://api.semanticscholar.org/CorpusID:61215687

(accessed on 2 September 2024).
5. Mahesh, S.; Walsh, K.R. Cloud computing as a model. In Encyclopedia of Information Science and Technology, 3rd ed.; IGI Global:

Hershey, PA, USA; New York, NY, USA, 2015; pp. 1039–1047.
6. Tan, W. Development of a Cloud-Based Traffic Diagnosis and Management Laboratory Based on High-Coverage ALPR. Ph.D.

Thesis, The University of Wisconsin-Milwaukee, Milwaukee, WI, USA, 2021.

https://www.kaggle.com/datasets/andrewmvd/car-plate-detection
https://www.pexels.com/video/traffic-flow-in-the-highway-2103099/
https://www.pexels.com/video/traffic-flow-in-the-highway-2103099/
http://doi.org/10.26483/ijarcs.v9i2.5760
http://dx.doi.org/10.1007/s11831-022-09753-4
https://api.semanticscholar.org/CorpusID:235483763
https://api.semanticscholar.org/CorpusID:61215687


Information 2025, 16, 57 22 of 23

7. Zhou, L.; Zhang, H.; Zhang, K.; Wang, B.; Shen, D.; Wang, Y. Advances in applying cloud computing techniques for air traffic
systems. In Proceedings of the 2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology
(ICCASIT), Weihai, China, 14–16 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 134–139.

8. Yan, D.; Hongqing, M.; Jilin, L.; Langang, L. A high performance license plate recognition system based on the web technique. In
Proceedings of the ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No. 01TH8585), Oakland, CA,
USA, 25–29 August 2001; IEEE: Piscataway, NJ, USA, 2001; pp. 325–329.

9. Lynch, M. Automated License Plate Recognition (ALPR) System. 2012. Available online: https://www.eff.org/sites/default/
files/filenode/20120905_alpr_lasd_system_information.pdf (accessed on 4 September 2024).

10. Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of
the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 779–788.

11. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
12. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans.

Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [CrossRef] [PubMed]
13. Vishwakarma, N. Real-Time Object Detection with SSDs: Single Shot MultiBox Detectors. 2023. Available online: https:

//www.analyticsvidhya.com/blog/2023/11/real-time-object-detection-with-ssds-single-shot-multibox-detectors/ (accessed on
4 September 2024).

14. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

15. Bochkovskiy, A. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
16. Chan, W.J. Artificial Intelligence for Cloud-Assisted Object Detection. Ph.D. Thesis, UTAR, Kampar, Malaysia, 2023.
17. Abdellatif, M.M.; Elshabasy, N.H.; Elashmawy, A.E.; AbdelRaheem, M. A low cost IoT-based Arabic license plate recognition

model for smart parking systems. Ain Shams Eng. J. 2023, 14, 102178. . [CrossRef]
18. Panganiban, C.F.G.; Sandoval, C.F.L.; Festin, C.A.M.; Tan, W.M. Enhancing real-time license plate recognition through edge-cloud

computing. In Proceedings of the TENCON 2022—2022 IEEE Region 10 Conference (TENCON), Hong Kong China, 1–4
November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6.

19. Laoula, E.M.B.; Elfahim, O.; El Midaoui, M.; Youssfi, M.; Bouattane, O. Multi-agent cloud based license plate recognition system.
Int. J. Electr. Comput. Eng. 2024, 14, 4590.

20. Chen, Y.L.; Chen, T.S.; Huang, T.W.; Yin, L.C.; Wang, S.Y.; Chiueh, T.c. Intelligent urban video surveillance system for automatic
vehicle detection and tracking in clouds. In Proceedings of the 2013 IEEE 27th International Conference on Advanced Information
Networking and Applications (AINA), Barcelona, Spain, 25–28 March 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 814–821.

21. Kamarozaman, M.H.B.; Syafeeza, A.; Wong, Y.; Hamid, N.A.; Saad, W.H.M.; Samad, A.S.A. Enhancing Campus Security And
Vehicle Management with Real-Time Mobile License Plate Reader App Utilizing A Lightweight Integration Model. J. Eng. Sci.
Technol. 2024, 19, 1672–1692.

22. Car License Plate Detection. 2020. Available online: https://www.kaggle.com/datasets/andrewmvd/car-plate-detection
(accessed on 15 August 2024).

23. Pavithra, M.; Karthikesh, P.S.; Jahnavi, B.; Navyalokesh, M.; Krishna, K.L. Implementation of Enhanced Security System using
Roboflow. In Proceedings of the 2024 11th International Conference on Reliability, Infocom Technologies and Optimization
(Trends and Future Directions) (ICRITO), Noida, India, 14–15 March 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–5.

24. Qing, Y.; Liu, W.; Feng, L.; Gao, W. Improved Yolo network for free-angle remote sensing target detection. Remote Sens. 2021,
13, 2171. [CrossRef]

25. Torgo, L.; Ribeiro, R. Precision and recall for regression. In Proceedings of the Discovery Science: 12th International Conference,
DS 2009, Porto, Portugal, 3–5 October 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 332–346.

26. Chum, O.; Philbin, J.; Sivic, J.; Isard, M.; Zisserman, A. Total Recall: Automatic Query Expansion with a Generative Feature
Model for Object Retrieval. In Proceedings of the 2007 IEEE 11th International Conference on Computer Vision, Rio De Janeiro,
Brazil, 14–21 October 2007; pp. 1–8.

27. Flach, P.; Kull, M. Precision-recall-gain curves: PR analysis done right. Adva. Neural Inf. Process. Syst. 2015, 28. Available online:
https://papers.nips.cc/paper/5867-precision-recall-gain-curves-pr-analysis-done-right (accessed on 15 August 2024).

28. Wu, S.; McClean, S.I. Information Retrieval Evaluation with Partial Relevance Judgment. In Proceedings of the British National
Conference on Databases, Belfast, Northern Ireland, UK, 18–20 July 2006.

29. Rezatofighi, S.H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.D.; Savarese, S. Generalized Intersection Over Union: A Metric
and a Loss for Bounding Box Regression. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 658–666.

30. Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. Repvgg: Making vgg-style convnets great again. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 21–25 June 2021; pp. 13733–13742.

https://www.eff.org/sites/default/files/filenode/20120905_alpr_lasd_system_information.pdf
https://www.eff.org/sites/default/files/filenode/20120905_alpr_lasd_system_information.pdf
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
https://www.analyticsvidhya.com/blog/2023/11/real-time-object-detection-with-ssds-single-shot-multibox-detectors/
https://www.analyticsvidhya.com/blog/2023/11/real-time-object-detection-with-ssds-single-shot-multibox-detectors/
http://dx.doi.org/10.1016/j.asej.2023.102178
https://www.kaggle.com/datasets/andrewmvd/car-plate-detection
http://dx.doi.org/10.3390/rs13112171
https://papers.nips.cc/paper/5867-precision-recall-gain-curves-pr-analysis-done-right


Information 2025, 16, 57 23 of 23

31. Huang, L.; Huang, W. RD-YOLO: An effective and efficient object detector for roadside perception system. Sensors 2022, 22, 8097.
[CrossRef] [PubMed]

32. Liu, Z.; Lv, H. YOLO_Bolt: A lightweight network model for bolt detection. Sci. Rep. 2024, 14, 656. [CrossRef] [PubMed]
33. Chien, C.T.; Ju, R.Y.; Chou, K.Y.; Chiang, J.S. YOLOv9 for Fracture Detection in Pediatric Wrist Trauma X-ray Images. arXiv 2024,

arXiv:2403.11249. [CrossRef]
34. Qin, H.; Gong, R.; Liu, X.; Shen, M.; Wei, Z.; Yu, F.; Song, J. Forward and Backward Information Retention for Accurate Binary

Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Seattle, WA, USA, 13–19 June 2020; pp. 2247–2256.

35. Pexels. Traffic Flow in the Highway. 2024. Available online: https://www.pexels.com/video/traffic-flow-in-the-highway-2103
099/ (accessed on 26 September 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s22218097
http://www.ncbi.nlm.nih.gov/pubmed/36365793
http://dx.doi.org/10.1038/s41598-023-50527-0
http://www.ncbi.nlm.nih.gov/pubmed/38182671
http://dx.doi.org/10.1049/ell2.13248
https://www.pexels.com/video/traffic-flow-in-the-highway-2103099/
https://www.pexels.com/video/traffic-flow-in-the-highway-2103099/

	Introduction
	Related Work
	Methodology
	Dataset
	 Data Preprocessing 
	Evaluation Metrics Used

	Training and Validation
	YOLOv5
	Results: YOLOv5 Training and Validation Experiment
	YOLOv7
	Results: YOLOv7 Training and Validation Experiment
	YOLOv8
	Results: YOLOv8 Training and Validation Experiment
	YOLOv9
	Results: YOLOv9 Training and Validation

	Cloud Deployment
	Results Analysis
	Comparative Analysis and Discussion
	Limitations
	Conclusions
	References

